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The adaptive immune response selectively expands B- and T-cell clones following antigen recognition by B- and T-cell receptors
(BCR and TCR), respectively. Next-generation sequencing is a powerful tool for dissecting the BCR and TCR populations at high
resolution, but robust computational analyses are required to interpret such sequencing. Here, we develop a novel computa-
tional approach for BCR repertoire analysis using established next-generation sequencing methods coupled with network
construction and population analysis. BCR sequences organize into networks based on sequence diversity, with differences in
network connectivity clearly distinguishing between diverse repertoires of healthy individuals and clonally expanded repertoires
from individuals with chronic lymphocytic leukemia (CLL) and other clonal blood disorders. Network population measures
defined by the Gini Index and cluster sizes quantify the BCR clonality status and are robust to sampling and sequencing depths.
BCR network analysis therefore allows the direct and quantifiable comparison of BCR repertoires between samples and intra-
individual population changes between temporal or spatially separated samples and over the course of therapy.

[Supplemental material is available for this article.]

Healthy humans have ;3 3 109 B-cells in the peripheral blood, and

this population consists of a repertoire of distinct B-cells expressing

different B-cell receptors (BCRs) necessary to bind diverse antigens

and produce an effective humoral immune response. BCRs consist

of two identical heavy-chain (IGH) and two identical light-chain

proteins, where the antigen-binding regions are highly diversified

(Tonegawa 1983; Woof and Burton 2004). BCR diversity is generated

in a number of ways. The IGH gene locus encodes for multiple dis-

tinct copies of the variable (V), diversity (D), and joining (J) gene

segments (Jung et al. 2006), with functional IGH BCR genes gen-

erated by site-specific V-D-J recombination (Latchman 2005; Schatz

and Swanson 2010). The imprecise joining of the V-D-J gene seg-

ments leads to random deletion and insertion of nucleotides during

recombination events, resulting in sequence diversification at the

junctional regions (Fig. 1A). Rearranged BCR genes are further di-

versified by helper T-cell-mediated somatic hypermutation (SHM)

through the action of activation-induced cytosine deaminase.

Through clonal affinity selection for enhanced antigen binding,

non-germ-line SHM-mediated variation contributes significantly to

the diversification of the mature B-cell repertoire (Brezinschek et al.

1995; Dorner et al. 1998; Weinstein et al. 2009; Batrak et al. 2011).

The diversification and selection dynamics of BCR repertoires

in healthy individuals and those with infection, autoimmunity,

immunodeficiency, or B-cell malignancies remain poorly under-

stood but can have important clinical implications. For example,

the majority of B-cells in individuals with B-cell malignancies typ-

ically express a single dominant clonal BCR sequence (Arber 2000;

Campbell et al. 2008), and continued intraclonal tumor evolution by

SHM in patients with B-cell lymphomas has been observed (Stama-

topoulos et al. 1996; Bagnara et al. 2006; Volkheimer et al. 2007).

Importantly, patients with chronic lymphocytic leukemia (CLL) with

mutated BCR sequences in the tumor clone compared with the germ

line have a prognostically inferior survival rate and requirement of

early treatment compared with those with unmutated malignant

clones (Caligaris-Cappio and Ghia 2008). The BCR sequence reper-

toire of an individual therefore represents a surrogate of their B-

cell clonality status in health and disease, with the potential to

give new insights into the adaptive immune response as well as

providing diagnostic and prognostic power when used clinically.

Previous studies have mainly produced descriptive analyses of

the BCR populations. Isoelectric focusing (IEF) spectrotype methods

(Williamson et al. 1973; Rieben et al. 1996; Satoh et al. 1996) pre-

ceded the advent of sequencing technologies (Arnaout et al. 2011)

and are not quantitative. The potential size of the human repertoire

is estimated to be 1011 unique BCR sequences; therefore, deep, high-

throughput sequencing is necessary for sampling this repertoire

robustly and to identify different subsets of BCRs (Dimitrov 2010;

Benichou et al. 2012). There are several methods for isolation, am-

plification, and sequencing of B-cell repertoires. Multiplex PCR

amplification, using degenerate PCR primers complementary to

germ-line V and J segments have been designed and validated pre-

viously (van Dongen et al. 2003; Lukowsky et al. 2006; Bruggemann

et al. 2007; Evans et al. 2007; van Krieken et al. 2007; Vargas et al.
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2008), used in numerous biological studies (Sanchez et al. 2003;

Campbell et al. 2008; Boyd et al. 2009, 2010; Krause et al. 2011; Jager

et al. 2012; Lev et al. 2012; Maletzki et al. 2012), and optimized for

clinical use (McClure et al. 2006; Harris et al. 2012; Sproul and

Goodlad 2012), although the potential for biased PCR amplification

remains. The 59 rapid amplification of cDNA ends (59 RACE) has also

been used (Bertioli 1997; Freeman et al. 2009; Varadarajan et al.

2011; Warren et al. 2011), but can suffer from low efficiency and

high levels of nonspecific amplification, contamination by short

fragments from RNA degradation, or incomplete cDNA synthesis.

Both methods utilize PCR and therefore have a risk of systematic

over/under-representation of immunoglobulin sequences either

through different primer annealing or different amplification effi-

ciencies of the distinct V families (Sandberg et al. 2005).

Previous studies have qualitatively shown diverse IGH rep-

ertoires in healthy patients contrasting with clonal populations in

malignancies (Sanchez et al. 2003; Campbell et al. 2008; Boyd et al.

2009; Carulli et al. 2011; Logan et al. 2011; Maletzki et al. 2012)

and have also shown that distinct subsets of B-cells within the

same individual have distinct repertoires (Wu et al. 2010). To date,

next-generation sequencing (NGS) of

BCRs have primarily focused on classify-

ing the IGHV, D, and J recombination

frequencies to understand the diversity of

the BCR repertoire (Stewart et al. 1997;

Sanchez et al. 2003; Campbell et al. 2008;

Boyd et al. 2009, 2010; Weinstein et al.

2009; Wu et al. 2010; Jager et al. 2012; Lev

et al. 2012; Maletzki et al. 2012). How-

ever, computational assignment of V-D-J

sequences to reference databases results

in many incompletely assigned IGHV, D,

and J genes, even when the germ-line al-

leles are known (Weinstein et al. 2009).

This is most likely due to SHM masking

the identity of the germ-line genes present

in the NGS, or the existence of allelic vari-

ation relative to the reference IGH genes.

Further, investigation of V-D-J gene usage

frequencies utilizes only part of the BCR

sequence diversity, with important infor-

mation about the V-D-J joining regions and

mutational relationships not considered.

Here, we propose that analysis of the

BCR sequence relationships using the full

BCR V-D-J sequence is more informative

for human BCR repertoire analysis than

V-D-J gene classification. We show that

human BCR repertoire diversity can be

interpreted through full V-D-J genotype

diversity using BCR networks, previously

shown to be an intuitive way for un-

derstanding B-cell repertoires in zebrafish

(Ben-Hamo and Efroni 2011). In such

networks, the lowest level of organization

in a population of B-cells, namely, inde-

pendent B-cells, is represented by sparse

networks, whereas highly developed

(connected) networks most likely result

from clonal expansions of B-cells arising

through antigenic exposure or B-cell ma-

lignancies (Ben-Hamo and Efroni 2011).

Using degenerate PCR-based methods we focus on sequenc-

ing RNA populations to maximize analysis of functionally re-

arranged BCRs rather than any nonfunctional first BCR allele

defective rearrangements present in the genomic DNA from B-

cell populations, but with the disadvantage that unequal num-

bers of RNA molecules per cell have the potential to inflate or de-

flate detected B-cell populations in the repertoire. Through se-

quencing the BCRs from samples with clonally expanded B-cell

populations (peripheral blood from patients with CLL and human

lymphoblastoid cell lines [LCLs]) as well as diverse BCR pop-

ulations from peripheral blood from healthy individuals, we show

that network analysis provides a robust framework to understand

vast sequencing repertoires by sequence relationships that clearly

distinguish between B-cells quantitatively using network mea-

sures. This framework is complimentary to existing phylogenetic

methods, and we show, for the first time, B-cell tumor clone evo-

lution over the course of therapy. These methods are robust to

sampling and sequencing depths as well as different sequencing

technologies, thereby allowing the direct comparison of multiple

tumor samples from the same and different patients.

Figure 1. Sequencing of B-cell receptor repertoires. (A) Representation of the genomic rear-
rangement process during V-D-J recombination to generate the heavy-chain B-cell receptor. B-cell
receptor amplification was performed by reverse transcription on total RNA by single J region
primer, and subsequent multiplex PCR amplification. (B) The percentage of reads corresponding to
the highest expressed B-cell receptor sequence for each sample, separated into sample type: healthy
individuals, chronic lymphocytic leukemia patients (CLL), and human lymphoblastoid cell lines
(LCL). Two-sided t-tests were performed between the sample subsets, with the P-values indicated
above. (C ) Percentage of sequences shared between runs for technical repeats for (1) the RT-PCR
and resequencing (RT-PCR repeats, green bars), and (2) the 454 sequencing from the same RT-PCR
product (sequencing repeats, purple bars). For each sample, two repeats were performed and the
percentage of reads shared between the repeats is shown (each repeat is compared with the other,
so two bars are shown per sample).
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Results

Next-generation sequencing of IgH variable genes

We amplified by RT-PCR the expressed rearranged IGHV-D-J loci

from mRNA from human B-cell populations using the consensus

IGHJ primer and FR1 or FR2 IGHV family primers (Fig. 1A; Sup-

plemental Table S1; van Dongen et al. 2003). Peripheral blood (PB)

samples from 13 healthy individuals, 11 CLL patients, and eight

LCLs yielded PCR products of expected sizes (310–360 bp for FR1

and 250–295 bp for FR2 primed samples) and were 454 sequenced

(Table 1). Samples yielded an average of 42,324 sequencing reads

after filtering for quality and presence of IGH sequence (Supple-

mental Table S2). Two additional samples from CLL patient A (pre-

and post-treatment) were sequenced on the MiSeq platform. We

also analyzed the BCR 454 sequence data sets from Boyd et al.

(2009), which includes three healthy individuals and five patients

with clonal blood disorders (Supplemental Table S6).

The combined per-base error-rate for the RT-PCR and se-

quencing process for the 454 platform was similar to other studies

(Wang et al. 2007; Boyd et al. 2009) (1.74 3 10�4, of which ho-

mopolymeric indels and nonhomopolymeric errors accounted

for 59.7% [1.04 3 10�4] and 40.3% [7.04 3 10�5] of the total error-

rate, respectively). Similarly, the combined per-base error-rate for

MiSeq was 2.06 3 10�4.

To initially assess the clonality of our samples, we determined

the percentage of reads identical to the most abundant BCR se-

quence in each sample. The percentage of reads corresponding

to the highest expressed BCR sequence in each of the CLL and

LCL samples (range 39.3%–87.8% and 35.2%–78.7%, respectively)

were significantly higher than that of PB from healthy individuals

(range 0.10%–14.0%) with a P-value of <0.001 (Fig. 1B). There was

no significant difference in the percentage of identical reads be-

tween the LCL and CLL patient samples (P-value = 0.0594). There-

fore, we confirm that the healthy individuals represent diverse BCR

populations, whereas the LCL and CLL samples represent more re-

stricted or clonal BCR populations. Sanger and MiSeq sequencing

confirmed that the dominant clonal sequences from the CLL sam-

ples were identical to that from 454 sequencing (excluding homo-

polymeric indels) (Supplemental Fig. S2).

Validation of sequencing to represent the B-cell populations

To assess the reproducibility of the RT-PCR sequencing method to

sample the BCR repertoire, we compared the number of over-

lapping sequences from two types of technical repeats on a range

of samples: (1) repeating the RT-PCR and resequencing (RT-PCR

repeats) and (2) repeating the 454 sequencing from the same RT-

PCR product (sequencing repeats). The percentage of the sequences

shared (no more than 1-bp difference) between sequencing runs

was calculated using all-against-all alignments. This showed over

98% and 30% reproducibility for LCL and healthy PB samples,

respectively (Fig. 1C), probably due to the increased probability of

resampling more abundant BCR types in LCLs. It is clear that the

sequencing overlaps between RT-PCR repeats (Fig. 1C, green bars)

are not significantly different from those between sequencing re-

peats (Fig. 1C, purple bars) (P-value = 0.738 by paired t-test), sug-

gesting that our RT-PCR amplification and sequencing depth is

sufficient to be representative of the major clonal BCR population

in the sample.

Comparison between independent primer sets suggests limited
primer bias

To assess whether multiplex PCR methods cause significant PCR

amplification bias, we determined the correlation between IGHV

gene usages for samples independently amplified by the FR1 and/or

FR2 primer sets. The IGHV gene usage frequency distributions for

both healthy individuals and LCLs resemble those seen by Arnaout

et al. (2011) (Supplemental Fig. S3A,B). IGHV gene usage frequencies

between FR1 and FR2 amplified samples

from eight LCL samples and four healthy

individual samples are highly correlated

(R-value = 0.984, Supplemental Fig. S3C)

suggesting that there is minimal primer

amplification bias. Performing RT-PCR re-

peats using the FR1 primer set measures

the stochastic effect of resampling the

RNA populations, and again we found

a strong correlation between IGHV gene

usage frequencies between replicates (R-

value = 0.972, Supplemental Fig. S3D).

Importantly, for both of these compari-

sons, we see a strong linear correlation

between IGHV gene usage frequencies

when percentages are >5% of the overall

population, but BCR sequences at a fre-

quency of 0%–5% show some effect of

stochastic sampling, irrespective of primer

set usage. Therefore, overall, we do not see

significant primer amplification bias un-

der the conditions used here.

Limitations of V-D-J classification

We classified the V-D-J genes for each read

by sequence similarity to germ-line se-

quences from the ImMunoGeneTics da-

Table 1. Sample information

Sample Patient type Age, years Gender Time since CLL diagnosis, years

CLL 1 CLL 77 Male 7
CLL 2 CLL 58 Male 2
CLL 3 CLL 78 Male 1.5
CLL 4 CLL+HCC 77 Male 2.5
CLL 5 CLL 59 Female 1.25
CLL 6 CLL 67 Male 2
CLL7 CLL 69 Male 13
CLL 8 CLL 64 Male 4.5
CLL 9 CLL 77 Male 5.25
CLL 10 CLL 81 Male 8
CLL 11 CLL 81 Male 10
Healthy 1 Age matched control 1 74 Female -
Healthy 2 Age matched control 2 62 Female -
Healthy 3 Age matched control 3 75 Female -
Healthy 4 Age matched control 4 67 Female -
Healthy 5 Age matched control 5 68 Female -
Healthy 6 Healthy 6 55 Male -
Healthy 7 Healthy 7 23 Male -
Healthy 8 Healthy 8 23 Male -
Healthy 9 Healthy 9 25 Male -
Healthy 10 Healthy 10 24 Female -
Healthy 11 Healthy 11 24 Female -
Healthy 12 Healthy 12 24 Female -
Healthy 13 Healthy 13 24 Female -

(CLL) Chronic lymphocytic leukemia; (HCC) hepatocellular carcinoma.
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tabase (IMGT) (Lefranc et al. 2009; Sup-

plemental Fig. S4). The majority of se-

quences could be classified to their most

closely related reference sequences for

IGHV and IGHJ genes (average of 99.8%

and 96.1%, respectively). Substantially

fewer IGHD were identifiable (average of

40.5%) due to the shorter sequence length

and potential insertions and deletions

within the joining regions between the

V-D-J boundaries, which has been noted

in previous studies (Weinstein et al. 2009).

Incomplete V-D-J gene classification may

be due to SHM masking the identity of

the germ-line genes present in individuals

and/or the existence of allelic variants of

reference IGH (Boyd et al. 2010). We find

no significant difference between the

percentage of classified V, D, and J genes

of our data set compared with that of

Boyd et al. (2009) (Supplemental Fig. S4).

To overcome limitations of IGHV-D-J gene

classification, we propose that the use of

complete V-D-J sequence information and

mutational relationships would be a more

informative and robust framework for

BCR repertoire analysis and B-cell pop-

ulation structure than simple V-D-J gene

classification.

BCR sequences naturally organize into
networks based on sequence diversity

For each sample, filtered and trimmed 454

or MiSeq sequences were used directly to

generate a sequence network (Fig. 2A).

Each vertex represents a different se-

quence, and the number of identical BCR

sequences defines the vertex size. Edges

are created between vertices that differ by

one nucleotide. Clusters are groups of

interconnected vertices. Differences in

network architectures are clearly seen by

comparing B-cell populations from healthy

individuals and LCLs. In LCLs, the majority of 454 sequences fall

within a small number of clusters as these samples are pre-

dominantly comprised of a small number of large B-cell clone types

(Fig. 2B,i). In contrast, healthy individuals have sparsely connected

networks where most sequences are unique, thus yielding small

vertices indicative of high BCR sequence diversity in the sampled

repertoire (Fig. 2B,ii). From healthy individuals, 4.8%–32.2% of BCR

sequences fall within clusters of three or more reads, with the largest

cluster representing 16.7% (4023 reads) of the total population in

healthy individual 10. Sequences within a cluster are most likely

related to a single V-D-J BCR progenitor. Alignment of sequences

within the clusters shows that the nucleotide differences are dis-

tributed along the length of the 454 sequences (Supplemental Fig.

S5A–C). In all of the healthy individual samples, mutations sig-

nificantly occur within the complementary determining regions

(CDRs), known to be hotspots for somatic hypermutation (Lin et al.

1997) compared with the framework regions (FWRs) (P-value =

0.000338, Supplemental Fig. S5D). As expected, the LCLs showed no

significant difference between the mutational proportions of the CDR

and FWR regions. Mismatches are not found primarily at the V-D or

D-J boundary, suggesting that cluster sequences are derived from the

same B-cell precursor.

The maximum CLL vertex sizes differ between samples

(39.2%–99.5% of total sequences), suggesting that large but var-

iable-sized subsets of B-cells express the predominant BCR se-

quence(s), surrounded by BCR variants (including total process

errors) of the dominant sequence. Of note, the extent of cluster-

size diversity is different between CLL samples, with some dis-

playing extensive clonal enlargement (Fig. 2C,i), whereas others

have more limited clonal expansion (Fig. 2C,ii) and expansion of

two dominant clusters (Fig. 2D). Similar networks were generated

from Boyd et al.’s (2009) data set (Fig. 2E). Therefore, the magni-

tude of connectivity of different samples varies between individual

patients with CLL. In all cases, however, the CLL sequence networks

are clearly distinct from the largely sparsely connected age-matched

healthy individuals.

Figure 2. B-cell receptor repertoires from different samples. (A) Schematic diagram showing the
method by which the sequencing networks are generated: Each vertex represents a unique sequence,
where the relative size of the vertex is proportional to the number of 454 sequencing reads that were
identical to the vertex sequence. Edges are created between vertices that differ by one base (indel or
substitution). The vertex colors correspond to the relative abundance of the corresponding sequences,
where red, orange, and yellow indicates observation of a sequence in >90%, between 40%–90%, and
<40% of the reads in the sample, respectively. (B) Comparison of BCR sequence networks between (i)
a typical LCL sample and (ii) a typical healthy individual. (C ) BCR sequence networks of CLL patients with
(i) extensive clonal enlargement and (ii) limited clonal expansion. (D) BCR sequence networks of CLL
patient 5 showing expansion of two dominant clusters. (E) Networks generated from sequencing data
set from Boyd et al. (2009) of (i) healthy donor 1, (ii) patient 2 with follicular lymphoma (FL), and (iii)
patient 3 with FL and small lymphocytic lymphoma (SLL).
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Population measures capture network and sample diversity

We next aimed to quantify BCR population measures to allow

comparison and interpretation of B-cell repertoire dynamics and

biology. We investigated several parameters to describe different

aspects of the B-cell populations. The Gini Index is an unevenness

measure. When applied to the vertex size distribution for a given

sample, these measures indicate the overall clonal nature of a sample,

and when applied to the cluster-size distributions, these measures

indicate the overall SHM of a sample. The maximum cluster size is the

percentage of reads corresponding to the largest cluster and indicates

the degree of clonal expansion of a sample. To assess the possibility of

dual clonal expansions, we include a measure of the second maxi-

mum cluster size as a percentage of reads in a sample.

The LCL samples, due to the more restricted repertoires and

highly connected clusters, yield high cluster and vertex Gini In-

dices (averages of 0.94 and 0.80, range 0.91–0.97 and 0.62–0.91,

respectively) (Fig. 3A), suggesting a high unevenness of the size

distributions. In contrast, B-cell networks of healthy individuals

occupy a distinct region of the Gini Index vertex and cluster space

(averages of 0.21 and 0.05, range 0.10–0.39 and 0.03–0.11, re-

spectively). The CLL samples occupy a spatial range between

healthy individuals and LCL B-cell population extremes with a low

vertex (between 0.62 and 0.97), and cluster Gini Indices (between

0.15 and 0.83), indicating B-cell clonal expansions. There is,

however, considerable variation between the cluster Gini Indices,

with CLL patients 1, 10, and 11 having low-cluster Gini Indices,

indicative of a highly expanded dominant cluster or dominant

Figure 3. Measures differentiating between B-cell receptor populations. (A) Cluster Gini Index plotted against vertex Gini Index for 13 healthy individual
samples, 11 chronic lymphocytic leukemia (CLL), and eight human lymphoblastoid cell line (LCL) samples. Point (a) corresponds with healthy individual
10. The red box and gray dashed box distinguish between the regions occupied between diverse and clonal populations, respectively. (B) The second
maximum cluster sizes plotted against the maximum cluster sizes. The red, gray-dashed, and black solid boxes distinguish between the regions occupied
between unexpanded populations, monoclonal expanded populations, and biclonally expanded populations, respectively. (C ) B-cell receptor networks
for the titration of a chronic lymphocytic leukemia clonal sample into healthy peripheral blood from the data set from Boyd et al. (2009), and (D) the
corresponding number of reads corresponding to the leukemic clone (green) and the maximum cluster size of each dilution (gray). The solid horizontal
line shows the mean maximum cluster size for healthy individuals from this data set (0.52% of total reads), and the dashed horizontal lines show the
mean 6SD of maximum cluster size for healthy individuals for this data set. (E ) Correlation between the Gini Index and the length of time since
chronic lymphocytic leukemia (CLL) diagnosis for each patient in our data set, with corresponding R2-value.
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clones. Of note, one healthy individual (healthy individual 10) has

a more developed network as defined by an increase in connec-

tivity and vertex sizes, resulting in higher vertex and cluster Gini

Indices (Fig. 3A, point a). This was also verified by independent

sequencing using the FR2 primer set (Supplemental Fig. S6). Fur-

ther, the highest expressed BCR sequence for healthy individual 10

has 90.6% sequence identity with the closest germ-line IGHV gene

(16 mismatches in 243 bp of alignment) suggesting that this B-cell

clone has undergone SHM.

We generated networks from the sequences derived from

Boyd et al. (2009) to validate these population measures on in-

dependent BCR sequence data. We show that the clonal pop-

ulations of the patients with CLL, small lymphocytic lymphoma

(SLL), and/or follicular lymphoma (FL) are distinct from the diverse

populations of healthy individuals (Supplemental Fig. S7A), oc-

cupying equivalent regions of the cluster and vertex Gini Index

graphs to samples within this study. Therefore, we conclude that

the Gini Index population measure robustly separates distinct

B-cell populations into different regions based on the clonal nature

of the sample.

We then determined whether we could separate monoclonal

expansions, biclonal expansions, and diverse B-cell populations

using the maximum cluster sizes and second maximum cluster

sizes (Fig. 3B). We show that the CLL and LCL samples have max-

imum cluster sizes >30% of the total reads compared with maxi-

mum cluster sizes of healthy individual samples of <20%. How-

ever, the LCLs and CLLs collectively occupy two distinct regions

in this space. One group exhibits a single dominant clonal se-

quence, where the remainder of the clusters are <5% of the total

reads (Fig. 3B, surrounded by the dashed line). The second group

of samples has two dominant clusters above 40% and 20% of

the total reads, respectively. The CLL patient 5 repertoire com-

prises two dominant clonal groups, each utilizing different V-D-J

genes ([IGHV3-66*03/IGHD6-19*01/IGHJ3*02] and [IGHV6-1*01/

IGHD3-3*01/IGHJ4*02], respectively), where the two clones are

unlinked and represented by completely different BCR sequences

(Fig. 2D; Supplemental Fig. S8). Limited polyclonal expansions

were also observed in 5/8 of the LCL samples, reflecting that EBV

transformation of peripheral B-cells frequently results in poly-

clonal LCLs. Using the data set from Boyd et al. (2009), we show

the same phenomenon of polyclonal expansions in a subset of

samples (patients with CLL/SLL and FL/SLL, Fig. 2E,iii) where the

maximum cluster sizes are >35% and second maximum cluster

sizes are >19% of the total reads (Supplemental Fig. S7B). There-

fore, the polyclonal status of the tumor samples can be de-

termined using B-cell network reconstruction and analysis.

An important requirement of this approach is that the net-

work diversity measures must not be highly dependent on the

depth of sequencing (scale invariant) and volume of PB sample. If

a given diversity measure is scale invariant for B-cell networks,

then the network diversity measure should be the same regardless

of the depth of sampled sequences, i.e., a subset of 454 sequences

should yield the same network diversity measure as the full set of

sequences. We tested all of the proposed population measures as

a function of sequencing depth by randomly sampling different

proportions of the sequence data for each sample, followed by

calculation of the corresponding network parameters for both the

vertex and cluster-size distributions for the LCL, CLL, and healthy

samples. All of the proposed measures showed little variation at

different sample sizes, even when subsampling was as low as 20%

of the original data size (Supplemental Fig. S9). Below 20%, small

deviations in the Gini Index measures are seen. As these network

measures had minimal standard deviation over all sub-sampling

ranges, they are therefore robust parameters for intersample

comparison.

Minimal effect of sequencing errors on network properties

We determined whether clusters were likely to be due to the pro-

cess of somatic hypermutation or sensitive to or generated through

sequencing error of unique amplified BCR sequences. For a given

BCR sequenced multiple times, such as when multiple B-cells ex-

press identical BCRs, we estimated the expected number of vertices

comprising a cluster that could be due to sequencing error given

our experimentally derived PCR and sequencing error-rates. We

find that all of the samples have cluster sizes greater than that

expected due to error alone, even at twice the measured error-rate

(Supplemental Fig. S10). Therefore, the connectivity patterns of

networks predominantly reveal differences in clonal expansions of

B-cell populations rather than total sequencing errors. We propose

that clusters identified in BCR networks are therefore derived from

B-cells that share a common pro-B-cell progenitor with rearranged

V-D-J that have subsequently expanded and diversified.

Directly comparing the Gini Index measures of V-D-J se-

quences from samples amplified independently by distinct primer

sets (FR1 or FR2 primer sets) showed a strong positive linear cor-

relation between the two primer sets, with R-values of 0.999 and

0.996, respectively, for the vertex and cluster size diversities (Sup-

plemental Fig. S11A). This supports a lack of PCR or sampling bias

or an effect of sequencing errors for independent RT-PCRs with FR1

compared with FR2 primer sets. Further, we find that networks

generated to include edge lengths of up to five base changes faith-

fully retain the network architecture for both the LCL and healthy

individual samples (Supplemental Fig. S11B).

BCR repertoire network properties relate to CLL development

To assess the sensitivity of this analysis method, we use the titra-

tion experiment from Boyd et al. (2009), in which serial 10-fold

dilutions of a known clonal CLL PB sample into normal peripheral

blood was performed. We find 90.9% of all reads in the undiluted

sample fall within the leukemic cluster (Fig. 3C,D). Using our

methods, we can detect the leukemic clonal sequences at dilutions

as low as 1:100,000. When the leukemic cluster sequences are

unknown, detection of expanded clones relies on detecting the

maximum cluster size that is significantly different from that of

healthy individuals. We see significant increases in maximum

cluster size above that of the healthy individual in CLL dilutions of

1:100 or less. Therefore, deep sequencing of BCR repertoires po-

tentially allows the detection of a clonal lymphoid population in

a background of polyclonal cells without prior knowledge of the

leukemic sequence types by comparing to healthy control BCR

clonality (Sayala et al. 2007).

We therefore sought to understand the relationship between

the BCR population measures and the CLL clinical information for

each patient. Interestingly, there was a strong correlation between

the length of time since CLL diagnosis and the vertex Gini Index

(Fig. 3E). This suggests that longer disease times lead to larger ver-

tices representing larger tumor clonal populations, in agreement

with previous studies (Kelly et al. 2002; Hayes et al. 2010).

By BCR deep-sequencing and network analysis, we hypothe-

size that we can follow the dynamics of dominant clonal pop-

ulations at multiple time points. To test this, we sampled a stage B

CLL patient (patient A) during the course of therapy. A pretreatment

IgH networks delineate between B-cell populations
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sample was taken immediately before entering the second cycle

of Chlorambucil treatment, and the second sample was taken 28 d

later. The BCRs were sequenced on the MiSeq platform, yielding

40,414 and 36,197 high-quality reads, respectively. The most

abundant BCR sequences in the two samples were identical. Net-

work construction shows a single dominant cluster at both time

points, which decreases from 86% to 53% of total reads, reflecting

the reduction in WBC (Fig. 4A). This corresponds to the vertex Gini

Index reducing from 0.892 to 0.713 and the cluster Gini Index re-

ducing from 0.244 to 0.138. A composite network was generated of

all of the sequences from the dominant clusters in both time-points,

where the vertex sizes correspond to frequencies of each BCR at

either the pre- or post-treatment samples (Fig. 4B). The proportions

of each unique BCR sequence between the pre- and post-treatment

samples give a strong linear relationship (R-value = 0.999995) (Fig.

4C), where the post-treatment proportional frequencies are 62% of

those in the pretreatment sample, indicating that all BCR clones

within the leukemic cluster are equally affected by this treatment.

To understand the evolution of the leukemic cluster over

time, a maximum parsimony tree was fitted (Schliep 2011) en-

compassing sequences that were observed at least six times for the

two samples (Fig. 4D). Bootstrapping was performed to evaluate

the reproducibility of the trees, showing strong tree support (>95%

certainty for all branches). A total of 122/231 of the BCR sequences

are unique to the pretreatment sample (e.g., Fig. 4, Clone 1) com-

pared with 13/231 unique to the post-treatment sample (e.g., Fig. 4,

Clone 2). However, the sequences that are primarily observed in the

post-treatment sample show divergence from the dominant leuke-

mic clone, suggesting leukemic cluster BCR evolution during treat-

ment (e.g., Clone 2). A similar analysis was performed on an in-

dependent data set from Boyd et al. (2009) for a patient with chronic

lymphocytic leukemia and small lymphocytic lymphoma samples

separated by 3 mo (Supplemental Fig. S12) showing distinct clonal

diversification patterns.

Discussion
Deep sequencing of B-cell and T-cell repertoires offers the potential

for quantitative understanding of the adaptive immune system in

health and disease. Here, we use deep sequencing of B-cell receptor

V-D-J population frequencies and novel analyses of BCR reper-

toires at the level of clonal populations. The observation of fre-

quent multiple identical BCR sequences in tumors and much lower

frequency in identical BCR sequences in PB from healthy in-

Figure 4. B-cell leukemic clonal evolution. (A) The B-cell sequence networks for patient A with chronic lymphocytic leukemia for samples (i) prior to and
(ii) after second cycle of Chlorambucil treatment, separated by 1 mo with corresponding white blood cell counts. (B) All sequences from the dominant
clusters from both temporal samples were used to generate a composite network, and the differential frequencies at each time point are indicated by the
relative vertex sizes. (C ) Correlation between the proportional frequencies of each unique BCR within the dominant clones of patient A with corresponding
R-value and linear regression equation. (D) An unrooted maximum parsimony tree was generated showing the relationships between sequences that were
observed at least six times between the pre- and post-treatment samples, where the branch lengths are proportional to the number of varying bases
(evolutionary distance). The tip colors show the relative difference in sequence abundance between the different time points, where green indicates
observation of sequence primarily in the pretreatment sample, blue indicates predominant observations in the post-treatment sample, and white indicates
no change in frequency. Clones 1 and 2 refer to examples of BCRs observed only in the pre- or post-treatment samples, respectively.
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dividuals suggests that we rarely sequence multiple identical RNA

molecules from a single B-cell. Therefore, clusters of related se-

quences are likely to represent BCRs from clonal expansions of

evolutionarily related B-cells, whereas naı̈ve B-cell populations

form singletons in sparsely connected networks. The effects of RT-

PCR or sequencing error and amplification bias on our analysis,

often of concern for deep sequencing, are minimal. We show

a strong linear correlation between the network parameters of

samples that have been RT-PCR amplified using different primer

sets to distinct regions of the IGH variable RNA transcript, sug-

gesting that the PCR methods here have limited primer or am-

plification bias. We confirm the dominant clonal sequences for

the CLL patients by Sanger sequencing, and show that in all cases

the samples have cluster sizes notably greater than that expected

due to the measured total process error-rate. Therefore, these

observed V-D-J clusters are likely to have undergone mutational

processes greater than process errors.

We define for the first time B-cell V-D-J sequence population

measures that describe the clonality of the sequences and quantify

both the effect of B-cell sequence diversification (cluster size) and

clonal proliferation (vertex size) using the Gini Index as an un-

evenness measure. The maximum and second maximum cluster

size is used to assess dual clonal expansions. If the B-cell network

from limited sequencing is a random sample of the entire circu-

lating peripheral blood BCR repertoire, then a scale invariant di-

versity measure should also capture the predominant structure of

the unsampled network. We show that network structures com-

bined with these population measures discriminate between B-cell

repertoires of different clonalities in health and disease. These

measures are robust to variations in sequencing and sampling

depth and different filtering strategies, and are applicable to in-

dependently produced data sets (Boyd et al. 2009). Using differ-

ent primer sets, sequencing depths, and sequencing technologies,

the samples still cluster according to the clonal nature of the

samples, occupying the equivalent distinct regions of Gini Index

and maximum/second maximum graphs. Therefore, this analytical

strategy is applicable to any BCR deep-sequencing technology.

We observed variation between the BCR repertoires in healthy

individuals and in CLL. One healthy individual showed a more

developed network, defined by an increase in connectivity, with

corresponding higher Gini Index values and larger maximum

cluster sizes compared with the other healthy individuals. This

clone was not germ line in sequence and could be a result of an-

tigen-specific memory B-cell expansion or an undiagnosed ma-

lignant transformation. Variation in network structures between

individual healthy zebrafish BCR repertoires was also observed in

the study by Ben-Hamo and Efroni (2011), where higher connectiv-

ity suggested an immune response within the individual. Similarly

in CLL, assessing the maximum and second maximum cluster sizes,

we identify patients with more than one BCR clonal expansion,

where the two dominant clones have different V-D-J gene usages.

This may be due to either the expansion of two distinct malignant

B-cell transformations or separate antigen-stimulated B-cell clonal

expansion unrelated to CLL. These methods used in time-series may

allow the distinction between antigen-driven positive selection in

CDRs compared with malignant-driven expansion (Supplemental

Fig. S5). Multiple separate clonal B-cell populations have been ob-

served in previously published data in a subset of patients identified

by different V and J chain usages (Hsi et al. 2000; Boyd et al. 2009),

but the clinical significance of these findings are not known.

Time-dependent evolution of BCR networks may, however, pro-

vide a powerful means of assessing B-cell tumor evolution and re-

sponse to therapy as well as the dynamics of a healthy B-cell repertoire.

The CLL vertex Gini Index is correlated with the time an individual has

been living with CLL (Fig. 3E). This coupled with the observation of

in vivo evolution of BCR clones in CLL (Fig. 4) suggests that BCR

sequencing in CLL may provide an additional prognostic value for

the disease. Divergent evolution from a common leukemic ancestor

has previously been observed in CLL, possibly through the accumu-

lation of driver mutations with selective advantages in growth over

other subclones (Campbell et al. 2008). Hypermutations within the

IGH locus may also play a driver role in clonal expansions (Ghia and

Caligaris-Cappio 2006). Therefore, BCR sequencing and subsequent

network and evolutionary analysis may play an important role in

identifying population changes. However, an evolutionary model

for BCR diversity in health and disease, similar to the models used in

infectious disease phylogenetics is needed to fully explore these

possibilities. Nevertheless, for the first time we show the short-term

effect of therapy on the B-cell repertoire in CLL and demonstrate

how networks lend themselves to phylogenetic approaches. These

methods are sensitive and informative for characterizing of B-cell

populations in health and B-cell malignancies.

Methods

Samples
Peripheral blood mononuclear cells (PBMCs) were isolated from 10
mL of whole blood from healthy volunteers and CLL patients using
Ficoll gradients (GE Healthcare). Total RNA was isolated using TRIzol
and purified using RNeasy Mini Kit (Qiagen), including on-column
DNase digestion according to the manufacturer’s instructions. Total
RNA was also isolated from 1 3 106 cells from human lympho-
blastoid cell lines (LCLs) from the HapMap project (The International
HapMap Consortium 2007). Research was approved by relevant in-
stitutional review boards and ethics committees (07/MRE05/44).

RT-PCR

RT-PCR reagents were purchased from Invitrogen. The FR1 and FR2
primer sets used (supplied by Sigma Aldrich) are described by van
Dongen et al. (2003) and in Supplemental Table S1. Reverse transcrip-
tion was performed using 500 ng of total RNA mixed with 1 mL of JH
reverse primer (1 mM), 1 mL of dNTPs (0.25 mM), and RNase free water
added to make a total volume of 11 mL. This was incubated for 5 min at
65°C and 4 mL of First strand buffer, 1 mL of DTT (0.1 M), 1 mL of
RNaseOUT Recombinant Ribonuclease Inhibitor, and 1 mL of Super-
Script III reverse transcriptase (200 units/mL) were added. RT was per-
formed at 50°C for 60 min before heat-inactivation at 70°C for 15 min.
PCR amplification of cDNA (5 mL of the RT product) was performed
with the JH reverse primer and the FR1 or FR2 forward primer set pools
(0.25 mM each) using 0.5 mL of Phusion High-Fidelity DNA Polymerase
(Finnzymes), 1 mL of dNTPs (0.25 mM), 1 mL of DTT (0.25 mM) per 50
mL of reaction. The following PCR program was used: 3 min at 94°C, 35
cycles of 30 sec at 94°C, 30 sec at 60°C, and 1 min at 72°C, with a final
extension cycle of 7 min at 72°C on an MJ Thermocycler.

Sequencing methods

454 libraries were prepared using standard Roche 454 Rapid Prep
protocols incorporating 10-base multiplex identifier (MID) tags

and sequenced using a 454 GS FLX Titanium (Roche) or by 250-bp

paired-ended MiSeq (Illumina). Raw 454 or MiSeq reads were fil-

tered for base quality (median >32) using the QUASR program

(http://sourceforge.net/projects/quasr/) (Watson et al. 2013). MiSeq

forward and reverse reads were merged together if they contained an
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Genome Research 1881
www.genome.org

http://sourceforge.net/projects/quasr/


identical overlapping region of >65 bp, or otherwise discarded. Non-

immunoglobulin sequences were removed and only reads with sig-

nificant similarity to reference IGHV genes from the IMGT database

(Lefranc et al. 2009) using BLAST (Altschul et al. 1990) were retained

(1 3 10�10 E-value threshold). Primer sequences were trimmed from

the reads, and sequences retained for analysis only if both primer

sequences were identified and if sequence lengths were >255 bp or

195 bp for FR1 and FR2 primed samples, respectively, for 454, or

both forward and reverse reads >110 bp for MiSeq. FR1-primed PCR

samples from CLL patients were also Sanger sequenced.

Per-base error quantification

The same PCR protocol and read quality filtering was used to am-
plify beta actin, beta hemoglobin, and GAPDH genes from two

healthy individuals (amplicon sizes of 150 bp and 340 bp, re-

spectively). The sequence representing the majority of the reads

for each sample was classified as the ‘‘true’’ gene sequence for that

individual to account for individual allelic variation. Any differ-

ences between this sequence and the reads were considered to be

a PCR and/or sequencing error and classified as homopolymeric

indels (occurring in a region of two or more consecutive identical

bases), nonhomopolymeric indels, or mismatches.

Reference-based V-D-J assignment

BLAST (Altschul et al. 1990) was used to align the 454 sequences
against known BCR sequences from the ImMunoGeneTics (IMGT)

database (Lefranc et al. 2009). Due to the difference in length of the

different gene families, different BLAST E-value thresholds were

used for the IGHV, IGHD, and IGHJ genes (10�70, 10�3, and 10�20,

respectively).

Network assembly and analysis

The network generation algorithm is summarized in Figure 2A and
Supplemental Figure S1. Briefly, each vertex represents a unique
sequence, where the relative size of the vertex is proportional to
the number of sequence reads identical to the vertex sequence.
Edges were calculated between vertices that differed by single nu-
cleotide non-indel differences. The network analyses were per-
formed using igraph implemented in R (http://igraph.sourceforge.
net/index.html). The distribution of mismatches within a single
network cluster were determined by aligning the sequence repre-
senting the largest vertex with the sequences to which it is con-
nected, and the positions of mismatches were determined along the
sequences. Two-sided t-tests were performed in R.

Diversity measure calculations

The Gini index was calculated by ordering the cluster sizes from the
largest to smallest and creating a cumulative frequency distribution,

where R = r1; r2; . . . ; rnf g ri is the cumulative size of all of the largest

clusters until the ith largest cluster and normalized such that rn = 1. The

Gini index is

Gini index gð Þ = +
N

i = 1

ðri � i=N

� �
Þ

N
;

where N is the number of clusters (Morrow 1977).

Estimation of cluster sizes due to sequencing error

The Poisson distribution can estimate the expected number of reads
containing i errors from the (central) vertex of size n reads, given an

estimated error rate. The expected number of sequences with i errors
is n.pi, where

pi = P X = ið Þ= le�l

i!

and l is the expected number of mutations per read. A cluster is
defined as a set of interconnected vertices in which edges are
generated between vertices that differ by a single base. A vertex v is
only included in a cluster when the minimum distance from v to
any of the sequences in the cluster containing the central vertex is
one. Thus, all of the sequencing errors at i=1 generate vertices that
have edges connecting to the central vertex. At i >1, a vertex with
a set of mutations Mx will be connected to the cluster only if there
exists a vertex in the cluster with a set of mutations My such that

Mx

My

����
����= jfx 2 Mxjx =2 Mygj= 1

(i.e., there is only one mutation in Mx that is not in My). Therefore,
the probability of vertices due to i sequencing errors is estimated by
drawing S n; i½ � samples from a multinomial distribution, for
which the probability of the possible vertices that could connect
to the cluster is given by

S n; i½ �=
Yi�1

j =1

E n; j� 1½ �
l

: pi;

where l is the length of the sequence and E n; j½ � is the estimated
number of vertices that are in the cluster that are at a distance of j
from the central node. Here, we draw 1000 independent samples
from the multinomial distribution to estimate the average number
of vertices at distances i from the central vertex and, therefore, the
cluster size due to sequencing error can be estimated by summing
over the expected number of vertices at all i, 1 # i # ‘.

Temporal evolution of dominant clones

Sequences from the dominant clusters that were observed at least
six times for the two samples underwent a multiple alignment
using the ClustalW2 algorithm (www.ebi.ac.uk/Tools/clustalw2/
index.html) with default parameters. A phylogenetic tree was fitted
using the unrooted parsimony methods implemented in R (http://
cran.r-project.org/web/packages/phangorn/). Model tests were per-
formed on different substitution models, for which the JC+G+I
substitution model was found to be optimum and thus used here. A
total of 1000 bootstrap samples of individual nucleotides in the
multiple alignment was used to assess the reproducibility of the
phylogenetic trees. The proportional difference in expression, diff(i),
of a given sequence i between month 0 and month 3 was calculated
by the difference in expression between the two time points and
divided by the sum of the expression of the sequence over both
times:

Diff ið Þ ¼ Ei t ¼ 3ð Þ � Eiðt ¼ 0Þ
Ei t ¼ 3ð Þ þ Eiðt ¼ 0Þ ; �1 # Diff ið Þ # 1;

where Ei t = 0ð Þ and Ei t = 3ð Þ is the expression of sequence i at 0 mo
and 3 mo, respectively.

Data access
The IGH sequences discussed can be found under accession num-
ber ERP002120 in the European Nucleotide Archive (ENA; http://
www.ebi.ac.uk/ena/).
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