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In the past 30 years, few researches focus on the efficacy of adjuvant against Trichinella
spiralis infection. Identifying new, improved vaccine adjuvants for T. spiralis infection
are required. β-glucan are effective and safe as adjuvant for infectious diseases. In this
paper, we first observed the adjuvanticity of β-glucan as adjuvant for defensing helminth
T. spiralis in vivo. We showed that IgG and IgE were elevated in the mice immunized with
β-glucan combined with recombinant T. spiralis serine protease inhibitor (rTs-Serpin),
which is one of the vaccine candidates. Furthermore, in vitro, the combination of β-
glucan and rTs-Serpin enhanced the maturation of bone marrow dendritic cells (BMDCs)
compared to rTs-Serpin alone. We showed that β-glucan + rTs-Serpin –treated BMDCs
secreted higher production of IL-12 and IL-10. Moreover, β-glucan + rTs-Serpin –treated
BMDCs not only promoted the population of CD4+ IFN-γ+ T cells, but also enhanced
the population of CD4+ IL-4+ T cells. These findings suggested that β-glucan, as an
adjuvant, have the capacity to protect against T. spiralis infection via activating both Th1
and Th2 immune response.
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INTRODUCTION

Trichinellosis is one of the most common parasitic diseases worldwide in various wild and domestic
animals and human (Robertson, 2018). Over the past 30 years, a large number of vaccinations
have been undertaken to control Trichinella spiralis infection, however, few researches focus on
the protection of adjuvant against T. spiralis infection (Zhang et al., 2018b). Freund’s adjuvant
is efficient but not accepted due to animal welfare. Aluminium-based adjuvants cannot produce
enough immunity to the antigens with the application of recombinant subunit vaccine and
synthetic vaccine (Temizoz et al., 2016). Thus, there is an urgent need to develop new, improved
vaccine adjuvants for the control of T. spiralis.

Many polysaccharides are recognized by innate immune cells, thereby regulating immunity
in the host (Hou et al., 2016; Zhao et al., 2016; Wattanasiri et al., 2017; Gu et al., 2019). More
importantly, many natural polysaccharides are safe with no tissue deposition in the host (Sun et al.,
2018). Previously, we showed that lentinan derived from mushrooms can improve the protective
immunity of the vaccine on T. spiralis infection (Jin et al., 2020b). β-glucans is also present in
mushrooms, yeast, oats, barley, seaweed and many other organism species, but does not exist in
mammals. It is used as an adjuvant and anti-tumor immunity in vaccines against viral infections
as well as immunomodulators in anti-cancer immunotherapy (Borchani et al., 2016). Glucans can
stimulate various immune responses, including the production of antibodies, without any negative
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side effects, and is regarded as a promising immune adjuvant
(Cordeiro et al., 2015; Moreno-Mendieta et al., 2017). Up to
now, the adjuvanticity of β-glucan on helminth infection such as
T. spiralis remains undetermined.

Dendritic cells (DCs), the strongest antigen-presenting cell
population, are recognized as having unparalleled ability to
activate innate and adaptive immune pathways. Adjuvants could
activate the mature DCs and have the potential to promote
the T cell responses (Saxena and Bhardwaj, 2017), thereby
establishing the protection against T. spiralis (Coakley and
Harris, 2020). The process of DCs maturation includes the
secretion of inflammatory cytokines, the increase of MHC
class II (MHC-II) cell surface expression, the increase of
costimulatory molecules, so that the antigen is presented to
the naive T cells (Sato et al., 2017). The immunostimulatory
effect of β-glucan and the antigenic protein on DCs are
not well described.

Previous studies showed that an antigenic protein, Ts-Serpin
identified as a vaccine for protecting host against T. spiralis (Wu
et al., 2009; Xu et al., 2017; Song et al., 2018). Based on this
vaccine, in this paper, we evaluated the adjuvanticity of β-glucan
in the protection against T. spiralis in vivo and in vitro.

MATERIALS AND METHODS

Ethics Statement
C57BL/6J mice (female, 4–6 weeks old) were purchased from
the Experimental Animal Centre of College of Basic Medical
Sciences, Jilin University (Changchun, China) and kept in a
temperature-controlled room (22 ± 2◦C) under a 12 h dark–
light cycle. All animal experiments were performed according
to regulations of the Administration of Affairs Concerning
Experimental Animals in China. The protocol was approved
by the Institutional Animal Care and Use Committee of Jilin
University (Permit No. 20170318).

Generation and Maintenance of
T. spiralis
The T. spiralis isolate (ISS534), genotyped and proved by OIE
Collaborating Center on Foodborne Parasites in Asian-Pacific
Region, was preserved by serial passages in Wistar rats as
described previously (Jin et al., 2020b). Briefly, Wistar rats
were orally infected with 3000 infective larvae, and T. spiralis
muscle larvae were recovered at 35 days post infection (dpi) via
artificial digestion with pepsin-HCl (1% pepsin and 1% HCl at
37◦C for 2 h).

Preparation of Recombinant Ts-Serpin
(rTs-Serpin)
Recombinant Ts-Serpin (rTs-Serpin) was expressed in Escherichia
coli (BL21) and purified as previously described (Xu et al., 2017;
Jin et al., 2020b). The contaminated endotoxin was effectively
removed by ToxOut High Capacity Endotoxin Removal Kit
(Biovision, United States), approximately equivalent to 20 pg/mg
endotoxin in rTs-Serpin (Jin et al., 2020b).

Immunization and Challenge Infection
To determine the adjuvanticity of the β-glucan, female C57BL/6J
mice were randomly divided into four groups (n = 20): (1)
control group mice (immunized with PBS only), (2) mice
immunized with 50 µg of rTs-Serpin, (3) mice immunized
with rTs-Serpin emulsified with Freund’s adjuvants (FCA/FIA)
(St. Louis, Mo, United States), (4) mice immunized with
rTs-Serpin emulsified with 200 µg of β-glucan in PBS. β-
glucan (No. G6513) from barley was purchased from Sigma-
Aldrich. The purity of β-glucan was >95% determined by
high performance liquid chromatography. Immunization was
performed subcutaneously 3 times at 2 week interval. 2 weeks
after the final vaccination, all mice were orally infected with 500
T. spiralis muscle larvae/mouse.

Helminth Burden
Intestinal adult worms were collected at 7 dpi, and muscle larvae
were recovered and counted at 35 dpi as previously described
(Cui et al., 2019). The helminth burden and the percent of
reduction in the mean number of adult worms or the recovered
muscle larvae per gram (LPG) of muscle by artificially digesting
the carcasses were calculated.

Antibody Determination
Specific antibodies against rTs-Serpin were evaluated at 6 weeks
post vaccination (wpv). Blood was collected from mice at 2,
4, and 6 wpv. The titers of anti- rTs-Serpin IgG, IgG1, IgG2a
subclasses, and IgE were measured using an indirect enzyme-
linked immunosorbent assay (ELISA) as described previously
(Jin et al., 2020b).

Cytokine Production From Spleens
Cytokine production from splenocyte culture supernatants was
tested as described previously (Jin et al., 2020b). Briefly, 1
week after the final immunization, CD4+ T cells in spleens
derived from mice were purified using anti-CD4 magnetic beads
(Miltenyi Biotec). The purified CD4+ T cells had >90% purity.
The CD4+ T cells were cultured to 1 × 106 cells/mL in complete
RPMI-1640 containing 10% fetal bovine serum (FBS), penicillin
(100 U/mL) and streptomycin (100 µg/mL) and treated with rTs-
Serpin at a concentration of 20 µg/mL at 37◦C for 72 h. The
supernatants of CD4+ T cells were collected for determining the
levels of IFN-γ and IL-4 by ELISA (R&D Systems).

Isolation and Stimulation of Dendritic
Cells
Bone marrow-dendritic cells (BMDCs) were isolated from mouse
bone marrow cells as previously described (Jin et al., 2019a).
Briefly, bone marrow cells were isolated and cultured in RPMI
1640 medium containing 20 ng/mL recombinant GM-CSF
(Sigma–Aldrich), 20 ng/mL IL-4 (Sigma–Aldrich) and 10% FBS
at 37◦C and 5% CO2. Immature DCs were collected on day 7
for further experiments. The DCs were treated with rTs-Serpin
(10 µg/mL) alone or combination of rTs-Serpin (10 µg/mL)
and β-glucan (50 µg/mL) in vitro for 24 h. Dendritic cells
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were treated with sterile PBS as a control. Cytokines (IL-
12p70 and IL-10) levels in the supernatant were quantified by
ELISA (R&D Systems). The stimulated DCs were stained with a
FITC-conjugated monoclonal antibody (mAb) to CD11c, APC-
conjugated mAbs to CD86 (Biolegend, United States) and PE-
conjugated mAbs to MHC-II (Biolegend, United States). The cells
were analyzed by using a BD FACSCalibur Flow Cytometer and
FlowJo software (Tree star Inc, Ashland, OR) (Jin et al., 2020a).

Co-culture of BMDCs With CD4+ T Cells
in vitro
Spleen CD4+ T cells derived from OT-II mice were purified
using anti-CD4 magnetic beads (Miltenyi Biotec) as previously
described (Jin et al., 2019b). The purified CD4+ T cells had>90%
purity. DCs (1 × 105/well) and CD4+ T cells (1 × 106/well)
were cocultured for 72 h with OVA (1 mg/mL). To determine
the cytokine production, cells were stimulated with 10 mg/mL
Brefeldin A (eBioscience), 50 ng/mL phorbol 12-myristate
13-acetate (PMA) (eBioscience), and 750 ng/mL Ionomycin
(eBioscience) for 6 h at 37◦C. Cells were stained with FITC-anti-
CD4 antibodies (BD Biosciences) for 35 min at 4◦C. These cells
were fixed, permeabilized using a FIX/PERM set (Biolegend) and
blocked in 5% rat serum for 10 min at room temperature in the
dark prior to intracellular staining with APC-conjugated mAbs to
IFN-γ and PE-conjugated mAbs to IL-4 (Jin et al., 2020a).

To determine CD4 + T-cell proliferation induced by
DCs, CD4 + T cells (5 × 105/well) were stained with 5-
and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE)
(eBioscience) before co-culture with DCs. Samples were analyzed
using a BD FACS Calibur Flow Cytometer and FlowJo software
(Tree star Inc, Ashland, OR) (Jin et al., 2019b).

Statistical Analysis
All results are expressed as the mean ± SD. Statistical analysis
was performed using the GraphPad Prism 8 software for
Windows. One-way, two-way analysis of variance (ANOVA) and
independent exponent t-test were used to compare the means and
determine statistically significant differences between different
conditions. P values are expressed as ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001.

RESULTS

β-Glucan Improved the Immune
Protection of Vaccine Against T. spiralis
To explore the effect of β-glucan as adjuvant against T. spralis
infection, combination of β-glucan and rTs-Serpin was
administered prior to T. spralis challenge. We analyzed the
adult worm burden at 7 dpi and muscle larvae burden at
35 dpi. rTs-Serpin significantly reduced the helminth burden
compared to the PBS group. Compared with mice from PBS
or rTs-Serpin group, immunization could lead to reduced
adult worm burden and muscle larvae burden in the mice
from FCA + rTs-Serpin group and β-glucan + rTs-Serpin
group. And β-glucan + rTs-Serpin significantly decreased

the helminth burden compared with FCA + rTs-Serpin
(Figures 1A,C). Our results demonstrated that the reduction
rate of β-glucan + rTs-Serpin was significantly higher than
FCA + rTs-Serpin (Figures1B,D).

β-Glucan Upregulated the Levels of
Specific Antibodies and the Production
of Th1/Th2 Cytokines
To test humoral antibody responses to β-glucan in the
host, the levels of IgG and IgE were measured by ELISA.
After the second immunization, ELISA results showed the
significant enhancement in total IgG level in the mice from β-
glucan + rTs-Serpin group, compared with FCA + rTs-Serpin
group (Figure 2A). Combination of β-glucan + rTs-Serpin
induced elevated levels of IgG1 and IgG2a, compared with
FCA + rTs-Serpin group (Figures 2C,D). The levels of specific IgE
were also significantly increased in the mice from β-glucan + rTs-
Serpin group than FCA + rTs-Serpin group (Figure 2B).

Furthermore, to confirm whether Th1/Th2-mixed response
was induced by administration with β-glucan, levels of Th1/Th2
cytokines, including IFN-γ and IL-4, were detected. Compared
with FCA + rTs-Serpin group, elevated production of IFN-γ
and IL-4 were observed in the mice from β-glucan + rTs-Serpin
group (Figure 3), indicating thatβ-glucan induced a stronger
Th1/Th2-mixed response based on the vaccine.

β-Glucan + rTs-Serpin Regulated the
Phenotype of DCs
An important way of adjuvant is to prolong the antigen
exposure and induce the maturation of DCs (Ho et al., 2018).
rTs-Serpin significantly enhanced the population of CD11c+
CD86+ MHC-II+ DCs compared to the PBS. We also showed
that β-glucan + rTs-Serpin induced the expansion of CD11c+
CD86+ MHC-II+ DCs compared to the PBS or rTs-Serpin
(Figures 4A,B). Moreover, rTs-Serpin significantly promoted the
level of IL-10, but not IL-12p70. Combination of β-glucan + rTs-
Serpin could induce higher levels of IL-12p70 and IL10 compared
to rTs-Serpin (Figure 4C).

β-Glucan + rTs-Serpin –Treated DCs
Promoted the Population of Th1/Th2
Cytokines and the Proliferation of CD4+

T Cells
It is critical that vaccines contain adjuvants that induce strong
T cell proliferation and immune response (Jin et al., 2018). We
observed that rTs-Serpin –treated DCs significantly increased
the population of CD4+ IL-4+ T cells compared to PBS
group. However, there is no significant difference in the levels
of CD4+ IFN-γ+ T cells. Notably, β-glucan + rTs-Serpin –
treated DCs significantly promoted these two different type
T cells compared to rTs-Serpin –treated DCs (Figures 5A,B).
Moreover, we demonstrated that the proliferation of CFSE –
labeled CD4+ T cells induced by rTs-Serpin –treated DCs was
not increased significantly compared to PBS –treated DCs. FACS
results showed that β-glucan + rTs-Serpin –pulsed DCs boosted
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FIGURE 1 | Helminth burden in the immunized mice. (A) The number of adults recovered from intestines from immunized mice after challenge with 500 ML of
T. spiralis. (B) The reduction rates of adult worms were analyzed based on the mean number of adult worms. (C) The number of muscle larvae (ML) per gram (LPG)
in skeletal muscles from immunized mice after challenge with 500 ML of T. spiralis. (D) The reduction rates muscle larvae were analyzed based on the mean number
of recovered muscle larvae per gram (LPG) of muscle from vaccinated groups compared with PBS group. Results are expressed as the mean ± SD of 10 mice per
group. The data shown are representative of three independent experiments. *P < 0.05 as indicated by the line (Tukey multiple comparison following ANOVA).

FIGURE 2 | Analysis of humoral immune responses. (A) The levels of IgG in the serum were measured by ELISA. (B) The levels of IgE in the serum were measured
by ELISA. (C) The levels of IgG1 in the serum were measured by ELISA at different time points. (D) The levels of IgG2a in the serum were measured by ELISA at
different time points. The values shown for each group are the mean + SD of the antibody levels (n = 10) from three individual experiments *P < 0.05 as indicated by
the line (one-way ANOVA with Tukey’s post-test).
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FIGURE 3 | Analysis of cytokine production from CD4+ T cells. (A) The level of IFN-γ was measured by ELISA one week after the final immunization. (B) The level of
IL-4 was measured by ELISA one week after the final immunization. The data are the mean ± SD of each group (n = 10) from three independent experiments.
*P < 0.05 as indicated by the lines.

FIGURE 4 | DC phenotype induced by β-glucan + rTs-Serpin. Immature DCs were treated with rTs-Serpin (10 µg/mL) or combination of rTs-Serpin and β-glucan (50
µg/mL) in vitro for 24 h. (A) (I) gating on viable cells and (II) gating on CD11c+ cells. (B) Expression of CD11c+ CD86+ MHC-II+ cells were measured. (C) Cytokines
(IL-12p70 and IL-10) levels in the supernatant were quantified by ELISA Data represent mean ± SD deviations (n = 3) of the results from three individual experiments
*P < 0.05, **P < 0.01, and ***P < 0.001 vs. the control groups.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 July 2021 | Volume 9 | Article 701708

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-701708 July 6, 2021 Time: 18:29 # 6

Liu et al. Adjuvanticity of β-glucan Against Trichinellosis

FIGURE 5 | CD4 + T cells response induced by β-glucan + rTs-Serpin –treated DCs. The purity of CD4+ T cells were analysis by FACS after magnetic sorting using
anti-CD4 magnetic beads. The purified CD4+ T cells had > 90% purity. DCs (1 × 105/well) and CD4+ T cells (1 × 106/well) were cocultured for 72 h with OVA
(1 mg/mL), then cells were incubated with 10 mg/mL Brefeldin A, 50 ng/mL phorbol 12-myristate 13-acetate (PMA) and 750 ng/mL Ionomycin for 6 h at 37◦C. (A) (I)
gating on viable cells and (II) gating on CD4+cells. (B) Percentage of CD4+ IFN-γ+ and CD4+ IL-4+ T cells were determined by flow cytometry. (C) CD4 + T cells
were stained with CFSE before co-culture with DCs. The proliferation of CD4 + T cells were determined by flow cytometry. Results are shown as mean ± SD (n = 3)
of three different experiments. *P < 0.05, **P < 0.01, ***P < 0.001 as indicated by line (one-way ANOVA with Tukey’s post test).

the proliferation of CD4+ T cells compared to DCs treated with
rTs-Serpin alone (Figure 5C).

DISCUSSION

Trichinella spiralis causes a huge economic burden to animal
husbandry (Bai et al., 2017). Most vaccine trials are conducted
in the host generally with FCA (Zhang et al., 2018b), but which
is unacceptable due to the toxicity of FCA, which can cause
animal pain and damage to meat quality. Oil based adjuvants
are widely used in veterinary vaccines, but the host displays
the local and systemic reactions (Aucouturier et al., 2001). In
addition, aluminium-based adjuvants have the tolerability in the
host, however, excessive level of aluminum can lead to reduced
renal function, affecting neurological syndromes and dialysis-
related dementia (Petrovsky and Aguilar, 2004). We aimed to
explore the effect of a novel adjuvant on helminth infection.

Adjuvants based on polysaccharide have the characteristics
of low toxicity and safety (Liu et al., 2016; Wattanasiri et al.,

2017; Sun et al., 2018). β-glucan are glucose polymers found
from yeast cells and bacteria as well (Chan et al., 2009). A high
dose up to 10 mg/kg is well tolerated in vivo, and no adverse
reactions have been seen, which proves that β-glucan is non-toxic
(Zhang et al., 2018a). Previously, we found that immunization
of β-glucan alone could not reduce the burden of T. spiralis
(data not shown). However, it has been reported that β-glucan
is a powerful adjuvant for favor in antiviral immunity (Soares
et al., 2019). However, adjuvanticity of β-glucan against helminth
infection is still unknown. T. spiralis serine protease inhibitor is
likely the potential vaccine target against T. spiralis (Song et al.,
2018). Our data first demonstrated that β-glucan promoted the
vaccine -triggered host defense against T. spiralis infection than
FCA through upregulating the levels of specific IgG and IgE.
Recently it was proposed that β-glucan enhance immunological
memory following initial infectious exposure and may provide
protection against reinfection (Domínguez-Andrés et al., 2019).
Many studies proposed the term “trained immunity” for the
enhanced state of innate cells by β-glucan, leading to increased
resistance to infection (Netea et al., 2011). Further studies will
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focus on the role of trained immunity in β-glucan –induced
immunoprotecion against T. spiralis infection.

Cellular immunity was important for protective immunity.
In our study, β-glucan administration could induce immune
response that involved both Th1 (IFN-γ) and Th2 (IL-4)
cytokines in vivo, as other research has shown (Liu et al.,
2011). Glycans have been proven to play an important role in
the induction of Th2 immune response by T. spiralis in vivo
(Cvetkovic et al., 2014). We showed that β-glucan triggered
a mixed IgG1 (Th2)/IgG2a (Th1) antibody response. Delayed
clearance of T. spiralis exists in mice deficient IL-4 deficient
mice (Scales et al., 2007). Moreover, it was proved that decreased
burden of muscle larvae is associated with higher IFN-γ
level (Helmby and Grencis, 2003), which could enhance the
cytotoxic killing effect of eosinophils, granulocytes and activated
macrophages, and exert its protective effect against T. sprialis
(Yang et al., 2019).

Dendritic cells (DCs) have the ability to regulate naïve T
cells responses (Zhu et al., 2010). An ideal adjuvant can induce
the generation of DC –mediated immune response through
modulation of the phenotype of DCs. We showed that β-
glucan administration with recombinant protein led to activation
of mature DCs characterized by higher expressions of CD86
and MHC-II, which could trigger T cell proliferation. Our
results demonstrated that β-glucan -treated DCs have shown
a remarkable capacity for inducing proliferation of CD4+ T
cells. It has been found that β-glucan also up-regulated CD4+
T cell level in vivo (Zou et al., 2019). Furthermore, we observed
lower production of IL-12 and elevated levels of IL-10 secreted
by rTs-Serpin -treated-DCs. IL-10 by DCs can promote the
development of Th2 cells (Williams et al., 2013). As expected,
these DCs induced strong Th2 immune response, but not Th1
immune response. Interestingly, combination of β-glucan and
rTs-Serpin not only promoted CD4+ T cells proliferation, but
also stimulated a mixed higher levels of Th1 and Th2 immune
responses. In other study, β-glucan also showed an excellent
adjuvant effect on H5N1 vaccine via promoting the production
of Th1 and Th2 related cytokines (Wang et al., 2016).

CONCLUSION

We demonstrated that β-glucan significantly improved the
efficacy of the vaccine against T. spiralis infection in vivo. And
β-glucan induced mature DCs and modulated the cytokine
production by DCs, thereby resulting in the proliferation of

CD4+ T cells and expansion of mix Th1/Th2 immune response
in vitro. Thus, β-glucan could be used as an effective immune
adjuvant for a vaccine against T. spiralis.
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