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Abstract: We present a mathematical model for the formation of an avascular tumor based on the loss by gene mutation of 
the tumor suppressor function of p53. The wild type p53 protein regulates apoptosis, cell expression of growth factor and 
matrix metalloproteinase, which are regulatory functions that many mutant p53 proteins do not possess. The focus is on a 
description of cell movement as the transport of cell population density rather than as the movement of individual cells. In 
contrast to earlier works on solid tumor growth, a model is proposed for the initiation of tumor growth. The central idea, 
taken from the mathematical theory of dynamical systems, is to view the loss of p53 function in a few cells as a small 
instability in a rest state for an appropriate system of differential equations describing cell movement. This instability is 
shown (numerically) to lead to a second, spatially inhomogeneous, solution that can be thought of as a solid tumor whose 
growth is nutrient diffusion limited. In this formulation, one is led to a system of nine partial differential equations. We show 
computationally that there can be tumor states that coexist with benign states and that are highly unstable in the sense that 
a slight increase in tumor size results in the tumor occupying the sample region while a slight decrease in tumor size results 
in its ultimate disappearance.

Introduction
There is solid evidence for the existence of a tumor suppressor gene known as p53. The p53 protein 
functions at several levels to control cell growth. It can inhibit the transcriptional activity of other 
proteins such as Sp1 and HIF-α, both of which activate growth factor (GF ) gene expression [51, 50, 
57, 60, 65]. It can also inhibit cell mitosis and regulate cell apoptosis [50]. In particular, one can view 
p53 as a tumor growth inhibitor and Sp1 as a tumor growth stimulator. (There are other cell-generated 
inhibitors and stimulaters but we shall confine our attention to these two.)

The purpose of this paper is to present a biochemically based model for the onset of solid tumor 
formation. The model describes the onset of solid tumor formation with diffusion limited growth on a 
scale consistent with diffusion limited avascular tumor sizes. A schematic summary of the underlying 
biochemical pathway is given in Figure 1. This paper does not go beyond this point to treat the onset 
of vascularization due to the diffusion of the carcinogenic waste products of tumor necrosis (tumor 
angiogenesis). This idea is not new in the sense that in [14] the authors used the kinetics of cell 
metabolism, to model the growth of tumor cells in the micro environment.

It is not our intention to assert that this is the only way avascular tumor growth can arise from gene 
mutation.

Among many examples are cancers such as lymphoma that are driven by an overexpressed and 
mutated MYC gene [7, 32]. The wild type MYC protein both inactivates the cell cycle by suppressing 
p21 and suppresses apoptosis by inducing BIM. The mutant forms of the MYC protein found in these 
cancer fail to induce BIM [see ref below]. This pathway runs in parallel with the p53 pathway, which 
is also activated by MYC ([32]). The mathematical modeling of this biochemical pathway is very 
similar to the the pathway we consider here in many respects.

The goal here is to combine the loss of p53 regulatory function in benign cells with the consequent 
increase in the rate of benign cell loss (via mutation into tumor cells) and the effect this mutation has on 
the rate of formation tumor cells in order to model solid tumor growth in the micro environment. The 
model attempts to duplicate nature in the sense that, in the model, it is assumed that a few benign cells 
undergo a mutation by which they lose the ability to express the wild type p53 gene. More precisely, it is 
assumed that a few benign cells undergo a mutation by which there is a loss of wild type p53 expression 
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over a small spatial region for a fixed time period. 
(Following the usual biochemical convention, 
when we refer to p53, we will only mean the wild 
type because the mutant type does not regulate Sp1 
(and hence growth factor) for one of several rea-
sons including (a) an incorrect protein transcribed 
from the mutant RNA, (b) no mutant p53 at all or 
(c) a mutant p53 with no suppresser capability.) 
This loss of tumor suppressor function will, in the 
model, result in excess Sp1 production. Sp1 func-
tions as a transcription factor for, among other 
genes, the gene for MMP-1, a protease that is 
known to degrade tissue structural proteins such 
as collagen. This idea of genetic instability is not 
new (see [69]) for example. However, we think the 
modeling approach, as it combines fundamental 
biochemistry with chemotaxis and modification of 
classical competition dynamics, is novel.

We begin with an initial state in which we have 
a region that consists only of benign cells and 
matrix. This state constitutes a stationary solution 
for a dynamical system based upon the biochemis-
try described above in the absence of loss of func-
tion. Our results show that the length of the period 
of mutation (the time interval over which the loss 
of function occurs), the spatial size (the volume over 
which loss of function occurs) and the intensity of 
the mutation (percentage of cells in which loss of 

function occurs) determine whether the tumor cells 
take over the region of interest. In biological terms, 
the period of the mutation refers to the period during 
which the tissue is exposed to a mutagen, the spatial 
size refers to the volume of tissue that is exposed to 
the mutagen, and the intensity of the mutation refers 
to the concentration and potency of the mutagen. 
For example, the frequency of p53 loss of function 
in the skin is influenced by the period of exposure 
to uv light, the area of skin exposed to the light and 
the intensity and spectrum of the light.

Mathematically, the loss of function is modeled 
by the simple device of lowering the effective p53 
rate constant for a specified portion of time and 
over a specified region in the benign cell region 
for a specified percentage (intensity). (See equation 
(2.1) and notice the modification in the coefficient 
kp in equation (2.2).) The mutation in cell type is 
then modeled by a corresponding loss of benign 
cell growth rate coupled with an increase in tumor 
cell cell growth rate whenever the concentration 
of p53 falls below a threshold level. (See equation 
(3.5) and notice the last term on the right hand side 
of each rate law.)

In particular, the model shows that:

1. When the mutation is suffi ciently intense, wide-
spread or of sufficiently long duration, the 
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Figure 1. Biochemical schematics: This fi gure maybe regarded as the biochemical underpinning of our model. (Such fi gures are sometimes 
informally called “wiring diagrams” or “network diagrams”.) For example, benign cells express the wild type p53, which in its turn inhibits the 
transcription factor SP1 from initiating TGFα expression. Hence the blunt arrow leading from p53 to Sp1. No such inhibition is possible from 
the mutant p53 and hence is not shown in the fi gure or included in the model. Similarly, the double arrows express the fact that both cell 
types will secrete TGFα and in turn are infl uenced by this growth factor. The pathway from TGFα to the ECM proteins is really a schematic 
for the cell production of the matrix metallo-protein, which in its turn degrades the ECM via “standard” enzyme kinetics. Such diagrams, 
popular in the biochemical and molecular biology community, contain the seeds of systems of differential equations that begin with a con-
sideration of the Law of Mass Action. In this sense, our model is in the spirit of [14] where the authors modeled the citric acid cycle in order 
to predict the onset of solid tumor growth in the micro environment.
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malignant cell mass that develops during the 
loss of function period contains sufficient malig-
nant cell mass to take over the region under 
consideration.

2. On the other hand, if the mutation is insufficiently 
intense, very local or of insufficient duration, 
the initial transfer of some cells from the benign 
state into the tumor state induced by the muta-
tion is not sustainable and the small tumor 
perturbation dies out, with the system returning 
to its initial state.

3. The model postulates that if the intensity is 
small enough, and the region over which the 
mutation occurs is fixed, the duration time can 
never be long enough to initiate a growing 
tumor.

4. The model postulates the existence of tumor 
states that can coexist with benign states for 
very long times (i.e. form coexisting quasi-
steady states.)

Some comments on the mathematical literature: 
There is a large literature on the mathematical 
modeling of various aspects of solid tumor growth. 
See [1, 2, 3, 4, 13, 12, 15, 35, 37, 62] for some 
representative examples. Some of this literature 
reflects the controversial nature of modeling solid 
tumor growth. See for example [30] and the rebut-
tal [58]. There is also an extensive literature con-
cerned with the spontaneous remission of solid 
tumor growth, i.e. tumors that disappeared without 
treatment of any kind. A key word search on the 
phrase “spontaneous remission or regression of 
cancer” in PubMed led to over 2200 screens of 
articles. Many of the articles listed were case stud-
ies of various identified cancers. A few dealt with 
various mathematical aspects of the problem [36, 
70]. We suggest that our results demonstrate one 
possible mechanism for this remission.

There are a number of papers dealing with com-
petition models and Lotka-Volterra systems, as 
systems of ordinary differential equations and as 
systems of reaction diffusion equations, see for 
example [11, 18, 21, 22, 19, 20, 34, 38]. However 
we could find no papers in which these systems 
were combined with Keller-Segal type equations of 
chemotaxis. (We did a keyword search on MathSci-
Net and found no matches for “competition species” 
AND “chemotaxis” or “competition species” AND 
“Keller-Segal”.) Our model does combine chemotaxis 
for cell movement together with the “competition 
species” notion for competing species. Given the 

dearth of literature on these combined notions, 
perhaps we can claim some novelty for our model. 
It is not only mathematically naive but also false, 
to draw the inference that conclusions about the 
dynamical behavior of solutions of a system ordi-
nary differential equations such as the Lotka-
Volterra system for competition systems, will lead 
to valid conclusions about analogous systems of 
partial differential equations when these equations 
are combined with diffusion terms or diffusion with 
chemotactic terms. Turing instability is probably 
the classical example of the failure of the stability 
properties of nonlinear ordinary differential equa-
tions to be inherited by systems of partial differen-
tial equations with the nonlinearities arising from 
the ode system. See also the two very nice papers 
[45, 63] for alternate approaches to this issue.

Here is an outline of the remainder of the 
paper. Sections 2–8 constitute the main body of 
the paper.

• Section 2: We present the biochemical and cell 
biological underpinnings of the model. The 
details of the biochemistry are set forth in 
Appendix A.

• Section 3: We discuss the cell movement 
equations. Here we use the notion that cells 
move up or down chemical gradients (chemo-
taxis) together with the idea that mitosis of 
each cell type interferes with the mitosis of 
the other.

• Section 4: We set forth the mechanistic equa-
tions that define the notion of diffusion limited 
tumor growth. That is, the entire system is 
governed by the consumption of nutrients deliv-
ered to the tumor region via diffusion. Waste 
products are generated as a consequence of 
protein degradation and cell apotosis. Because 
we do not use the waste products further 
as sources for tumor growth, we ignore their 
evolution here.

• Section 5: We give the appropriate boundary 
conditions and initial conditions for the problem 
dynamics.

• Section 6: We discuss the dynamics predicted by 
a subsystem of ordinary differential equations.

• Section 7: We describe how the normalizing 
constants are selected in order to nondimension-
alize the system and how the initial steady state 
is found. First the system (without mutational 
considerations) is modified in such a way that 
constant solutions of the modified system can 
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be found explicitly. These constant values are 
used to non-dimensionalize the full problem. 
By using the constant values as initial conditions 
for the system (without mutational consider-
ations) the putative non-constant, benign solu-
tion is obtained (numerically) as the time 
independent limit of the system.

• Section 8: We present the results of our simula-
tions and our conclusions. We consider our 
problem with spherical symmetry to keep the 
computational complexity to a minimum.

• Appendix A: We give a brief overview of the 
molecular biology and the resultant chemical 
kinetics upon which we base our model.

• Appendix B: We record the numerical values 
of the constants we used in the simulations.

The reader is warned that quite a bit of mathematics 
lies ahead. We do not apologize for this, since in 
order to use mathematics to describe a complex 
biochemical process, one might expect that the 
mathematical description itself might likewise be 
involved. However, to make the reader’s task some-
what more palatable, we offer the following obser-
vations. Nothing more complex than elementary 
enzyme kinetics, mass action and Fick’s law is 
involved in the description of the dynamics of the 
time evolution of the protein and nutrient concentra-
tions as well as the local cell population densities. 
The nutrient equation controls the flow of nutrients 
reaching every point of the extracellular matrix.

Notation and Kinetics
We consider the interplay among the proteins p53, 
GF the transcription factor, Sp1, the extra-cellular 
structural proteins F, and the matrix metalloprotein-
ase, MMP-1 as described in Figure 1. In this model, 
it is assumed that transport of subcellular species 
such as growth factor, p53 etc. is passive, i.e. is 
controlled by cell movement. We imagine a region 
D in two or three dimensional space. Throughout, 
X = (x, y) or X = (x, y, z) according to the dimension 
in which D lies. We use the notation in Table 1. We 
have eleven species, nine of which are chemical, 
two of which are cellular. (In the sequel the con-
stants NB , NT denote the carrying capacity densities 
for benign and tumor cells respectively.) Through-
out this paper we adopt the convention that the 
Greek μ is reserved for decay (turnover) constants 
while ν is reserved for equilibrium constants.

We begin with p53. A relationship for the rate 
of formation of this transcription factor based on 
the number of benign cells present and level of 
resources is given by
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The assumption here is that only benign cells 
express the wild type gene, wherever they appear 
in the tissue. The cell density has been re-scaled 
so that kp now includes the maximum possible 

Table 1. Notation. The standard chemist’s notation for the concentration of a species X is [X]. Using such a 
notation for functions which depend on spatial as well as temporal variables, especially in combination with sub 
and superscripts, is clumsy. To simplify this, we use the notation in the table below. Furthermore, if a molecular 
species is associated with a benign cell or with a tumor cell we use the subscripts B, T with its label. For example, 
sB, sT refer to the concentrations of Sp1 in the benign and in the tumor cells respectively.

Species Notation Function form Equation number
p53 protein P p(x,t) (2.1)
Sp1, benign cell derived GF transcription factor Tr SB(x,t) (2.6)
Sp1, tumor cell derived GF transcription factor Tr ST(x,t) (2.7)
Sp1 in activated state T a

r Sa
B(x,t) (2.8)

Sp1 inhibited by p53 T i
r S iB(x,t) (2.8)

GF, growth factor V v(x,t) (2.11)
MMP-1, matrix metalloproteinase-1 M m(x,t) (2.12)
Tissue collagen/fibronectin proteins F f(x,t) (2.13)
nutrients (amino acids, lipids, oxygen, sugars, etc.) Y Y(x,t) (4.1)
benign cell density B ηB(x,t) (3.5)
malignant cell density Tm ηT(x,t) (3.5)



167

Avascular Tumor Formation

Cancer Informatics 2006: 2

benign cell density as a factor. (In Appendix A, we 
give a rationale for the term k pY t

k p Y t
tB

B

( , )

( , )
( , )x

x
x

+
η

N
 based 

on chemical kinetics.) We refer to (2.1) as the equa-
tion of p53 evolution without loss of function.

In order to express the idea of evolution of p53 
with loss of function, consider a subregion D' ⊂ D, 
a time interval (more generally, several time inter-
vals) I = (T1, T2) and a function Ψ(x, t) with support 
in D' × I and having values in (0,1]. A mutation is 
said to occur in the region D' ⊂ D over a time 
interval I if there has been a loss of p53 expression 
in the set D' × I. That is, we replace (2.1) by
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We refer to this equation as the evolution equation 
for p53 with loss of function or as the mutated 
p53 equation. The function Ψ is called the loss of 
function coefficient. The intensity of the loss of 
function is defined as
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(2.3)

where VD′ L(I ) is the product of the volume of D′ 
and the length of the time interval over which the 
loss of function occurs. Notice that 0 � I � 1. The 
strength of the mutation is defined as

 S V L ID= ′ ( ) .I  (2.4)

Corresponding to such a loss of function coefficient 
will be a drop (pointwise) in p53 concentration. 
When this concentration falls below a certain level, 
pc say, some benign cells will become tumor cells. 
The model is not reversible. That is, tumor cells can 
only disappear via apoptosis. For the time being, it 
is enough to remark that each equation (2.1), (2.2) 
will play a role as part of a larger system. The system 
consisting of (2.1) and the remaining dynamics 
(discussed below) will be used to compute a non 
constant steady state in which there are no tumor 
cells present. This steady state will then form the 
initial condition for the system consisting of (2.2) 
and the dynamics discussed below.

Remark 1. There is experimental evidence that 
p53 in normal tissue is much more stable than in 
malignant tissue. For example, in [6] it was 
reported that although this protein has a half 
life of about three hours in normal mammary 

epithelial cells, it was approximately 15 minutes 
in E5 immortalized cells, i e. cells that were immor-
talized by the E6 gene of HPV-16, the human 
papilloma virus commonly associated with cervical 
cancers. We have not included this observation as 
it is clear intuitively that its effect should drive up 
the expression of active Sp1 and hence the level of 
growth factor over what we already have computed 
in the regions where tumor cells are present.

From the literature [51] we know that p53 
inhibits the transcription factor Sp1. We assume 
that this occurs via the equilibrium:
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where T Tr
a

r
i,  represent the active and p53 inhibited 

form of Sp1. We write:
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for Sp1 growth and decay in benign cells. In tumor 
cells we write
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where μsT
 � μsB since the decay rate (the turn-

over rate) for Sp1 in benign cells is larger than 
that for tumor cells in general. We have, in terms 
of the notation in Table 1, for benign cells only

 s s s s v s pB
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(2.8)and hence
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Before proceeding further, we need some termi-
nology. By a “switch” we mean a Heaviside func-
tion, i.e. a function H(x) which is zero if x � 0 and 
one if x � 0.1 In the single cell, a switch is either 
on or off. In a population model such as this one, 
the transition from “off” to “on” is actually smooth 
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and “smooth” versions of the Heaviside function 
were employed in the simulations. For example, 
one could use H(x, K ) = max{xm/(K + |x|m),0)} 
where K � 0 and m is an odd positive integer so 
that H(K1/m, K) = 1/2. Alternatively H(x,m) = 
max{0, 1 − exp(−mx)} and H(ln 2/m,m) = 1/2.

We turn to the action of the growth factor. We 
consider not only the action of the transcription 
factor Sp1 on GF synthesis but also the degradation 
of growth factor during the course of the cell 
synthesis of MMP-1. The synthesis and degrada-
tion of growth factor is assumed to be regulated 
by Sp1 according to the discussion in the appendix. 
Thus we write:
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Clearly, as the concentration of p53 falls, more 
inhibited Sp1 in benign cells is converted to the 
active form. This causes an increase in growth 
factor production.

A simplified scenario for the GF role in the pro-
duction of MMP-1 might be the following: Once the 
cell has expressed a molecule of GF and released it 
to the ECM, the molecule binds to a GF receptor (R) 
and initiates signaling via a MAP-kinase pathway to 
induce transcription of the MMP-1 gene with the 
eventual translation to create the protease. A simpli-
fied mechanism for this is given in [44]. That 
mechanism, in its turn, is a bit more complicated than 
we need for our purposes here. Instead we use:
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where V΄ denotes the products of GF degradation. 
Michealis-Menten kinetics for this system yields, 
assuming V is in excess so that the concentration 
of the intermediate {VR} is constant:
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The number n is the cell amplification factor for 
MMP-1. It is thought to be fairly large and is a 
consequence of the amplification properties of the 
MAP-kinase signaling pathway and transcriptional 
response to growth factor. It is not constant, but 
depends upon the local concentration of growth 
factor, first increasing and then decreasing with 
growth factor concentration [61].

Likewise, there is a corresponding loss of growth 
factor that follows from the kinetics (2.10), namely

 

d V
dt

k k V Y R
k k Y

on
r

off
r

off
r

m
r

[ ] [ ][ ][ ]
[ ]

= −
+  

In the mechanism (2.10), we need to distinguish 
carefully between the receptors on the tumor cells 
and the receptors on the benign cells. Relating 
receptor density to cell density, and taking into 
account the transcription of GF as well as its decay 
and conversion to MMP-1, we may write:
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(2.11)

In turn, growth factor induces the cellular expres-
sion of MMP-1:
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We have neglected the diffusion of growth factor 
in (2.11) because its half life is short in tissues.

Next we consider the rate equation for collagen/
fi bronectin degradation. It has been established 

1The Heaviside function is only defined “almost everywhere”. Typically, one splits the difference and sets H(0) = 1/2.
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experimentally that some tumor cell types have a 
limited ability to express fibronectin relative to 
benign cells [16, 54, 24, 64]. We assume that this 
rate is a small percent, εf  , of the rate of production 
of benign cells. Moreover, the molar rate of pro-
duction of collagen/fibronectin must not only 
depend upon the local cell density but also upon 
the local concentration of resources, up to some 
saturable limit. To reflect these ideas, we write2:
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We have written 4/Tf  as the time constant at satu-
ration for convenience. In this form, at saturation 
and low concentrations of f, the doubling time for 
f is Tf ln 2/4. The factor of four is included since 
then 4x(1 − x) has a maximum value of unity.

Cell Movement
In order to track the movement of cells consider 
again the kinetics that follow from (2.10). The law 
of mass action when applied to the rate equation 
for the receptor density would yield ∂[R]/∂t = 0 in 
consequence of the Michealis-Menten hypothesis 
that [RV] is nearly constant. However, the issue is 
somewhat more complicated in this case because: 
(1) the receptor distribution is tied to the cell 
membrane movement; (2) the cell movement is 
dependent on the local concentrations of growth 
factor, enzyme and ECM protein in a chemotactic 
(and chemokinetic) as well as haptotactic manner 
rather than being completely random; and (3), the 
cells themselves undergo mitosis and apoptosis 
(programmed cell death). However, we can relate 
cell density to receptor concentration via the rela-
tionship [R](x, t) = cN(x, t) where the left hand 
side has the units of micro molarity (micro moles 
per liter) say while the cell density N is expressed 

in cells per liter so that the constant has units of 
micro moles per cell. Then a rate for [R] is propor-
tional to a rate for N and we can consider cell 
movement rate laws in their own right coupled to 
the protein movement laws.

Suppose, for the moment, that N is the density 
of one of the two cell types under consideration 
here. From the continuity equation in the absence 
of sources or sinks (mitosis and cell death)

 ∂ = −∇t N J
�� ��

.  (3.1)

where J
��

 is the local flux of cell density at (x, t).
Fick’s law is then modified so that the flux of 

cell density will be influenced by the gradient in 
protease density m(x, t) (chemotaxis), and gradi-
ents in collagen density f (x, t ) (haptotaxis). These 
notions mean that each biochemical species 
influences the flux of the cells through a term that 
is proportional to the cell density and that depends 
on the gradient of the species, vis:

 

J D N N M m f m

F m f f N

�� �� ��

��
= −∇ + ∇

+ ∇

( ){ [ ( , )

( , ) ] }  
(3.2)

where M, F are some phenomenological func-
tions of (m, f ). These functions, sometimes called 
the chemotactic sensitivity functions, determine 
the influence of the specific species on the flux 
of cell densities. For example, where M � 0 the 
gradient of protease opposes the cell density 
gradient while where M � 0, it assists that gradi-
ent. If one makes the assumption that the vector 
(M, F) = ∇[T(m, f )] where ∇ is now the gradient 
in the variables (m, f ), for some potential func-
tion T 3, writes T(m, f ) ≡ exp(T(m, f )) and uses 
this in the resulting flux vector, then the cell 
movement equation (without sources and sinks) 
takes the form
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(3.3)

This is perhaps a strange way to write the equation 
for chemotactic cell movement. However, the 

2The chemical mechanism for collagen degradation is M + F �  {MF} → M + F′ where F′ denotes the products of matrix degradation. The Michealis-
Menten hypothesis yields the second term in (2.13). The logistic type term f (1−f /fM ) must be modified to reflect cellular expression of matrix protein and 
hence the inclusion of the normalized cell concentrations. This can be made rigorous using kinetics but limitations of length preclude us doing so here.
3If curl M F

� ���� �
 [( , )] ,= 0  such a function exists. In particular if M depends only on m and F only upon f this is always true.
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meaning is clear. It says that near steady state, “N 
should follow T(m, f )”, an observation of Hans 
Weinberger (private communication).

The function T(m, f ) is called the probability 
transition function (PTF). We can understand its 
meaning at the intuitive level if we consider the 
stationary (time independent) version of the equa-
tion. Suppose N(x), m(x), f (x) are smooth functions 
connected by the relationship N(x) = λT(m(x), f (x)) 
for some constant λ. Then it is clear that N(⋅) must 
be a stationary solution of (3.3) and we say that 
“the solution N follows T”.

Another way of looking at (3.3) is from the point 
of view of “cellular free energy”. That is, one views 
T as a correction factor for chemotaxis/haptotaxis 
in the associated “cellular potential” here corre-
sponding to the cell density. The “cellular poten-
tial” is defined as ρ(N) = −D ln (N/N0) where N0 is 
the “concentration” in some reference state. 
Without the correction factor, using Fick’s first law, 
Nt = −∇J where J = −DN ∇ρ(N) we obtain the 
ordinary diffusion equation for cell density. We 
can think of the cellular potential in much the same 
way as the chemist thinks of chemical potential for 
the isothermal change in free energy. Then we view 
N/T(m, f ) in much the same way as a chemist thinks 
of fugacity (mole fraction times pressure) at zero 
pressure in non-ideal gas dynamics or activity 
(which replaces ion concentration) in ionic solu-
tions at finite dilution. See books on chemical 
thermodynamics such as [68] for more information. 
(The authors thank James Keener for bringing to 
our attention this interpretation of the appearance 
of the logarithm in (3.3).)

The choice of T(m, f ) is phenomenological. 
Other possible dependencies for the probability 
transition rate function T are certainly possible. 
For example, T(m, v, f ) is a possibility. Any other 
external biochemical variable for which it is known 
that cells respond in a chemotactic/haptotactic 
manner may also be added to the argument list. For 
example it has been observed that endothelial cells 
will move up a protease gradient, but if the con-
centration of protease is too high, the enzyme will 
kill the cell, causing the cessation of movement. 
Likewise, EC cannot move through a matrigel bed 
if the density of matrigel is too high nor can they 
move along a surface unless there is some ECM 
protein such as collagen or fibronectin onto which 
it may attach its pseudopodia. Experimental 
evidence is given in [10]. These two qualitative 
observations suggest that this function should be 

biphasic in each variable (i. e. first increasing and 
then decreasing in each variable). The precise 
form we use in our simulations is described in 
Appendix B.

When we have two cell types present whose cell 
densities are denoted by ηB, ηT, say, (3.3) must be 
replaced by a system. One question that arises 
naturally is how to model the preference for cells 
of different types to fill regions vacated by dead 
cells. Generally speaking, as cells move, they 
consume the resources that are responsible for 
supplying the energy for cell movement. As this 
energy is exhausted, cell movement slows.

Additionally, the cells will behave differently 
under “crowding” conditions. That is, we expect 
the clumping of benign cells to slow their move-
ment and push them into G0, whereas tumor cells, 
which do not enter G0, are more aggressive and 
not as influenced by the effects of crowding. In 
both cases, we expect movement to decrease as 
cell concentration rises, but we expect the rate of 
decrease of movement to be more rapid for benign 
cells than for tumor cells. Although we did not use 
this in our simulations, the model allows for this 
possibility. These ideas are much broader than we 
employ here [52]. Here we simply include the cell 
densities themselves as a part of the “chemotactic” 
sensitivity function and write
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(3.4)

where we have omitted mitotic and apoptotic 
effects for the moment.

We next consider the issues of mitosis and 
apoptosis (sources and sinks) that must be included 
in both cell movement equations. These are viewed 
as forcing terms and are somewhat easier to 
explain. If we assume that the quantities of growth 
factor produced are close to the background rates, 
then cell proliferation rates may be taken to be 
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nearly independent of growth factor. However this 
is not always true, especially in the case of angio-
genesis. See [61] and [43] for an application of 
this fact.

It is known that p53 is a regulator of cell mito-
sis and proliferation. In particular, it enhances 
apoptosis and inhibits mitosis [50]. We make the 
assumption here that the distinguishing features 
between tumor cells and benign cells are the 
following:

1. A drop in p53 concentration below a critical 
value in benign cells results in the change of 
type (a mutation) of such cells to the malignant 
state. It is assumed that this occurs at a rate 
proportional to the benign cell density and is 
controlled by a switching mechanism. That is, 
the rate is proportional to H(pc −p)ηB. The pro-
portionality constant is denoted by λtr . Here pc 
is a background critical value required to main-
tain a steady state population consisting only of 
benign cells in the region in question. The 
transfer is one way only; it allows for the growth 
of tumor cells at the expense of benign cells by 
permitting the conversion of the latter to the 
former through a modification in their respec-
tive growth rates.

2. The apoptosis to mitosis ratio of benign cells is 
higher than the corresponding ratio for tumor 
cells since the latter do not express p53 and the 
former do. (See [59] for some simple mathe-
matical models of tumor growth based upon 
differing mitotic and apoptotic rates for tumor 
cells versus benign cells. See also the discussion 
in [7, 32].)

3. Both DB, DT are constant.
4. For * = B, T, the sensitivity functions T*(ηB, ηT, 

m, f ) can be written as products T*(m, f ) ψ*(Z) 
where Z = ηB /NB + ηT /NT is the volume fraction 
of a given region occupied by cells. From 
physical considerations, we have 0 � Z � 1. 
(A simple formal argument using the logistic 
equation for total cell growth, namely dZ/dt = 
cZ(1 − Z ) convinces us that if 0 � Z(0) � 1, then 
Z(t) remains in this interval. In the general case 
one can argue from the maximum principle.) In 
reality, Z � ZM � 1 where 1 − ZM is the volume 
fraction of the extracellular region between the 
cells. However, we shall ignore this volume frac-
tion in the model.

Based on the above considerations, the cell move-
ment equations take the form:
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The factor H(v – vB) in the first of (3.5) says that 
when v � vB benign cells proliferate, while when 
the growth factor is below this level, they cannot. 
The factor H(v) in the second of (3.5) has a similar 
meaning for tumor cells (with vT = 0). These two 
factors reflect the fact benign cells are generally 
quiescent (in G0) whereas tumor cells are usually 
constantly passing through the cell cycle. The 
threshold vB is intended to model the lower prolif-
erative response of benign cells to growth factor than 
that of tumor cells. Unfortunately, the number vB is 
unknown. Therefore, by taking vB = 0, in the model, 
we are giving the benign cells a greater survival 
advantage than they would ordinarily be expected 
to possess. The qualitative form of the results we 
give below will be unchanged by taking vB � 0. The 
factors λBY/(κB + Y) and λT Y/(κT + Y) are included 
to reflect the idea that when nutrient levels are low, 
cell population production is low, but, as the nutrient 
levels rise, the population growth rates approach a 
saturation level given by the constants λB, λT.

The factors LT, LB are included as in [27, 28]. 
We refer to them as mitosis inhibition or apoptosis 
enhancement factors as they can be viewed as 
either inhibiting the former or enhancing the latter. 
(We have written the equations as though they 
inhibit the mitosis.) In general, we expect that LT � LB, 
that is tumor cells influence the benign cell net 
proliferation rate much more than vice-versa. 
This clearly gives the proliferation advantage to 
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tumor cells. However, it does not imply that under 
all circumstances, the tumor cells will take over 
the region of interest from the benign cells.

Mass balance equations
In this model, nutrients function directly to support 
cell production of p53, Sp1, GF and MMP-1. These 
proteins also decay and are transported out of the 
region D by molecular diffusion (in the absence of 
a vasculature). Additionally, tumor and benign cells 
are undergoing mitosis and apoptosis in this region 
while collagen/fibronectin is being generated by 
the cells and degraded by MMP-1.

For example, in the rate equation for p53, 
resources are being consumed at a rate dictated by 
the first term on the right of (2.1) while the products 
of protein decay are being generated by the second 
term on the right of that equation. At steady state, 
as for example, in the healthy tissue, these two 
terms agree, otherwise they do not.

We have the mass rate loss for the resources:

∂

∂
= ∇ ⋅ ∇

−
+

+
+

+

⎡⎣ ⎤⎦

⎡

⎣
⎢
⎢

Y

t
DY Y

Y t
k

K Y t

k

K Y t

kvH S

p

p

s

s

B

a

( , )
( , ) ( , )

(

x
x x

x,, )

( , )

( , )

( , )
( , )

( ,

t

K Y t

t

N

Y t
k

K Y t

kvH s

v

B

B

s

s

T

( )⎤

⎦

⎥
⎥

⎡

⎣
⎢

+

−
+

+

x

x

x
x

x

η

tt

Kv Y t

t

N

Y t
nKcat

r v t

K Y t

T

T

m
r

B

)

( , )

( , )

( , )
( , )

( , )

( )⎤

⎦
⎥
⎥+

−
+

x

x

x
x

x

η

η (( , )

( , ) /

( , )
( , )

( , )

x

x

x
x

x

t

N

t

N

T

K Y t
f t

f t

f

B

T

T

f

f

⎡

⎣
⎢

⎧
⎨
⎩

⎤

⎦
⎥

( )
+ +

+

−

η 4

1
MM

B

B
f

T

T

B
B

B

B

t

N

t

N

H v

Y t N

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥+

+
+

−

η
ε

η

λ

κ

η

( , ) ( , )

( )

( , )

x x

x
� l

BB
T

T

T
BL

N
−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

η
η

 

(4.1)

+
+

− −

≡ ∇ ⋅ ⋅ ∇

−

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪

[ ]

�T
T

T

T

T
B

B

B
T

Y

H v

Y t N
L

N

D Y

λ

κ

η η
η

( )

( , )x
l

YY t Y f s s vB
a

T B T( , ) ( , , , , , , )x S η η

where S is the (positive) coefficient of Y in the 
preceding line. The constants �B, �T are conversion 
factors that permit us to convert the units of cells 
per unit volume to molecular weight per unit vol-
ume. That is, the constants CB ≡ NB �B λB and CT ≡ 
NT �TλT may be regarded as the maximum veloci-
ties of resource conversion into mass. These prod-
ucts are expected to be quite large, in any case 
much larger than the other velocities at saturation 
such as kp, kv , ks, km etc. We have written the dif-
fusion term, ∇⋅[DY ∇Y] in this generality to indicate 
that the diffusion factor DY need not be constant.

If we prescribe the level of nutrients on the bound-
ary of D and a given initial concentration of nutrients 
in D, with time, we expect the level of nutrients in 
the tissue to be low in regions “far” from the bound-
ary. If the level of nutrient supply is sufficiently low, 
the tumor cells cannot proliferate except near the 
edge of the tumor. This is what is meant by “diffu-
sion limited” tumor growth. This is the equation that 
controls the nutrient level in the tissue region, D.

Coupled to this should be an equation that reflects 
the diffusion of the products of cell metabolism in 
the tissue. Clearly the products of collagen degrada-
tion are among these products. Likewise, we should 
include the degradation products of p53, Sp1, MMP-1 
and GF. However, since no further biochemical use 
of these waste materials is made in this article, we 
omit a detailed discussion of them.

Boundary and Initial Conditions
We begin this section with a discussion of the 
boundary conditions. Since equations (2.1), (2.2), 
(2.6), (2.7), (2.11), (2.12), (2.13) are all ordinary 
differential equations in time, no boundary condi-
tions are needed for them. On the other hand, (4.1), 
and (3.5) require boundary conditions. We take
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where Z is again the local volume fraction occupied 
by the cell types and where it is understood that 
x ∈ ∂D, (the boundary of  D) and where n denotes 
the outward directed unit normal to the boundary 
of D. The first two conditions say that the total flux 
of either cell type from the given region is zero. The 
flux constant ry needs to be determined from 
phenomenological considerations. The constant Yb 
is a prescribed level of nutrients on the outer wall.

We turn to a discussion of the initial conditions. 
Recall that a mutation is said to occur in a region 
D' ⊂ D over at time interval I if there has been a loss 
of p53 expression in the set D' × I. That is, equation 
(2.1) is replaced by (2.2). The function Ψ is called 
the loss of function coefficient and the strength of 
the loss of function is defined in (2.3). We start such 
a perturbed system with a stationary solution of the 
system of equations for which there are no tumor 
cells present and no loss of function. Notice that we 
are not making any change in the initial values for 
either the proteins or the cell type densities. The only 
changes to be made are in the dynamics wherein the 
p53 equation takes the mutated form (2.2). The cell 
type equations are modified in that cell type change 
is driven only by the transfer rate λtr .

Dynamics of the Modified 
Lotka-Volterra system
In order to understand what might be expected 
from the full system, we consider the set of station-
ary solutions of (3.5) in the spatially homogeneous 
case for constant values of v, Y, f, m. When the 
transfer coefficient λtr = 0, we are led to consider 
a Lotka-Volterra competition model of the form:
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when we freeze the coefficients that depend on the 
switches and resources.

A complete discussion of the dynamical behavior 
of the solutions of this system to be found in [46]. 
One is tempted to believe that the solutions of the full 
system might behave like those for the system of 
ordinary differential equations. However there are 
two very good reasons why this may not be the case.

First, the presence of the free energy terms (i.e. 
the terms involving cell movement, both random 
and chemotactic or haptotactic), as well as the fact 

that the various parameters may depend upon the 
other variables, does not make such an expectation 
a rigorous statement. (As a well known example 
of how partial differential operators can radically 
alter the behavior of solutions of systems of ordi-
nary differential equations, we refer the reader to 
a discussion of Turing instability [46].) See, for 
other examples, [11, 18, 21, 22, 19, 20, 34, 38] 
where studies have been made of related systems 
in which the Lotka-Volterra terms (the right hand 
sides in (6.1)) function as reaction terms in a 
system of reaction diffusion equations of competi-
tion type.

Secondly, the system of ordinary differential 
equations that corresponds to the spatially homo-
geneous cell equations can be reduced to the fol-
lowing form when we freeze the coefficients that 
depend on the switches:
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This reduces to the Lotka-Volterra system when
Λ = 0.

The “constants” λ'B, λ'T, xB, yT will depend upon 
v, Y, μB, μT, λB, λT, while Λ will depend upon λtr 
and p. The three relevant ordinary equations from 
our model take the form:
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In order to understand how p affects the dynam-
ics, we use smooth forms of the Heaviside function 
and consider the case of no loss of function, i.e. 
Ψ ≡ 0. To put this system into standard form, we 
freeze the values of Y, v, let Pn be some normal-
izing constant for p53 and set
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where h(z) is a smooth approximation of 
H(pc/Pn −z). In terms of these quantities the system 
becomes
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If the transfer rate λtr = 0, so that g = 0, then the 
first two equations decouple from the third equa-
tion, yielding a planar system for x and y which is 
a Lotka-Volterra competition model with four rest 
points: i) (0, 0), ii) (x0, 0), iii) (0, y0) and iv) (x1, y1), 
the point of intersection between the lines 
x0 − x − k1y = 0 and y0 − y − k2x = 0. The point 
(x1, y1) is not always physically relevant. Depending 
on k1, k2 it may not be in the first octant, or it may 
not satisfy x1 + y1 � 1. The dynamics of the system 
also varies with k1, k2. A thorough discussion can 
be found in [46]. In the case where the parameters 
are such that x0 = y0, k1 = k2 and k1k2 � 1, The points 
(x0, 0) and (0, y0) are asymptotically stable. These 
two, as well as a third, (x1, y1) are physically 
relevant (i.e. x1 � 0, y1 � 0, x1 + y1 � 1). However, 
(x1, y1) is unstable.

The rest points of the full 3-dimensional system 
(6.3) satisfy F = G = H = 0. Since H = 0 if and 
only if z = αx, where α = λ3/μ3, the 3-d system can 
be reduced to a planar system for x and y; namely 
F (x, y, αx) = G(x, y, αx) = 0. This system can be 
analyzed graphically by plotting the curves 
F (x, y, αx) = 0, G(x, y, αx) = 0 and looking for 
points of intersection. For the choice of parameters 
and smooth approximation to the Heaviside 
function used in the simulations, this approach 
leads to Figure 2.

Figure 2 shows there are now 5 rest points, one 
of which is not phyically relevant. The solutions 
can be found numerically and a linear stability 
analysis can also be performed numerically. 
Table 2 gives the results of this process for the 
physically relevant rest points. These results show 
that for the reduced system (6.3) with smooth 
approximations to the Heaviside function, there 
can be an equilibrium state with co-existing benign 
and tumor cell densities that is unstable!

Steady state solutions
Before we can perform simulations to explore the 
effects of modeling mutational loss of function in 
p53, steady states of the system must be determined. 
Since we cannot expect spatially homogeneous 
steady states, equilibrium solutions must be 
determined computationally, rather than 
algebraically. To do this, we use a shooting strategy 
which relies on asymptotic stability. That is, we 
choose initial conditions for the system and then 
let the system evolve. If the initial conditions are 
nearby an asymptotically stable steady state, then 
the evolving time-dependent solution will converge 
to the nearby equilibrium solution. This raises the 
question of how to choose appropriate initial 
conditions, which we discussed in the first 
subsection. Essentially we use constant solutions 
of a perturbed system. These values also serve 
as normalizing values for some of the variables. 
A second question arises along the way, that of an 
appropriate boundary value Yb. This is discussed 
in the second subsection. Simulation results are 
also presented.

Initial conditions and normalizing 
constants
In this subsection we treat Ye as a parameter and 
seek spatially constant solutions of (2.1), (2.6), 
(2.7), (2.11), (2.12), (2.13), (3.5) and the following 
perturbation of (4.1):

 
∂
∂

= ∇ ⋅ ∇ + −Y
t

D Y Y Y t

Y f s s v

Y r

B
a

T B T

[ ] ( , )

( , , , , , , )

x

S η η

 (7.1)

where S is defined implicitly in (4.1) and where 
Yr is to be chosen so that there is a constant station-
ary solution for the system (2.1), (2.6), (2.7), (2.11), 
(2.12), (2.13), (7.1), and (3.5).
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To determine this solution, we set the right 
hand sides of (2.1), (2.6), (2.7), (2.11), (2.12), 
(2.13), (3.5) to zero, assume that the variables in 
the resulting equations are constants, set all the 
Heaviside switches to unity except that we set 
H(pc − p) = 0 in order to indicate that there is no 
transfer of cells from the benign state to the 
malignant state at p = pe � pc where pe is an 
equilibrium value to be determined as explained 
below.

We use the underlying assumption that ηB
e > 0 

and ηT
e = 0. Therefore sT

e = 0. For the benign 
variable we obtain a normalized solution,
ηB

e
BN/ ,  as
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In order to have NB
e > 0 we need μB B

eY< . This is 
an inequality in Ye that is equivalent to Ye � μB λB/ 
(λB – μB) ≡ YB). It is also clear that NB

e → +0 , as 
Y Ye B→ + .

From the remaining equations we obtain:
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Let
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To determine a constant solution fe � 0 of 
(2.13), we set F f fe e M= / , �K K m fcat

f
cat
f

e M= / ,  and
�K K fm

f
m
f

M= / . Depending on parameter values there 
may or may not be a positive solution of the station-
ary equation for (2.13). If we set x = Fe, α = Y Nf

e
B
e , 

β = �Kcat
f , and γ = �Km

f . It can be shown that if γ � 1, 
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Figure 2. The null clines of the reduced planar system F(x, y, α x) = 0 (solid curves) and G(x, y, α x) = 0 (dashed curves). The rest points 
are the intersection points of a solid curve with a dashed curve. Notice that there is one with a negative y coordinate.

Table 2. Numerically determined rest points of physical 
relevance (rounded to 3 decimal places) for the system 
(6.3) and their stability properties.

X y z Dynamics
0.000 0.000 0.000 unstable, 1-D unstable 

manifold
0.000 0.986 0.000 asymptotically stable
0.567 0.247 0.573 unstable, 1-D unstable 

manifold
0.986 0.000 0.996 asymptotically stable
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there will be a positive solution if and only γ � β/α. 
It turns out that the stationary equation will have 
distinct real zeros if and only if β/α � (γ + 1)2/4. 
In this case, the larger one is given by 
x = − + + −1

2 1 1 42( ( ) ( / )).γ γ β α  If γ � l this root 
is positive. Since γ � (γ + 1)2/4, it follows that 
the weaker requirement β/α � (γ + 1)2/4 is 
necessary and suffi cient for x � 0 when γ�1. If the 
constant Yr is now determined by setting Yr = YeS(Ye, 
fe, se, 0, ve, ηB

e ,0), then the above values give the 
desired constant solutions of (2.1), (2.6), (2.7), 
(2.11), (2.12), (2.13), (7.1), (3.5).
Remark 2. Notice that Pe, … , ηB

e  depend only 
upon the kinetic constants, the proliferation and 
apoptosis rates and Ye , the level of resources.

The boundary value Yb
The constant values found above are not steady 
states of the original system in which (4.1) appears 
rather than (7.1). In fact constant solutions are not 
possible. Clearly the distribution of resources 
cannot be spatially homogeneous, since 
Y Y Y f v s ss B

a
T B T= >S( , , , , , , ) ,η η 0 unless all vari-

ables are zero. However, there are spatially 
inhomogeneous equilibrium solutions of the system 
that are close to these constant values, provided that the 
flux of nutrients at the boundary diffuses through 
the region resulting in a distribution of resources 
approximating the distribution determined by Yr . The 
key issue is to determine the proper boundary value 
for Yb. This can be done analytically as follows.

Suppose that Y0 (x) is the resource component 
of an equilibrium solution of the model system 
(with Yr = 0) in which there are no tumor cells 
present. Then Y0 (x) satisfies

 0 0 0
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where D is the region of interest, ∂
∂
Y
v

 denotes the 
outward normal derivative and sB

a ,v, f, Y, ηB are 
the corresponding steady states of the full system. 
If Y0(x) ≈ Ye throughout D then we would expect 
their average values to be approximately the same. 
We use this observation to determine Yb, and hence 
the flux at the boundary, by requiring
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Suppose that ˆ( )Y x  is the solution of (7.1) satis-
fying the homogeneous boundary condition
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∂
∂ + = 0, x ∈ ∂D. Since the equations (7.1) 

are linear and Yb is constant, the principle of super-
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to determine Yb, it is suffi cient to determine the 
mean value of ˆ( ).Y x  If the values of sB
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are approximately the same as the nor maliz ing 
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to obtain the normalizing constants.
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of radius R centered at the origin, then ˆ ( )Y xe  can 
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resource level at the boundary.

Evolution to Equilibrium
All our computations were done with the system 
in non-dimensionalized form. The non-
dimensionalization of the variables is given in 
Table 3. To computationally determine steady 
states we used a shooting strategy. We were able 
to determine an asymptotically stable steady state 
of the system, as predicted by the reduced system, 
that has a nearly constant benign cell population 
with no tumor cells present. It was possible to use 
the constant states found in section 7.1 as initial 
values and successfully evolve to this steady state. 
In terms of the non-dimensional variables many of 
the initial values were equal to one. However, a set 
of initial values that lies closer to this steady state 
is obtained if the values of p, ηB and ηT are chosen 
instead to be the (constant) solutions of the reduced 
system, with v = ve, Y = Ye fixed that are given in 
Table 5.

Figure 3 shows the evolution of the benign cell 
density, starting with the initial values of sB, sT, v, 
m, f and Y chosen as the constants from section 7.1 
and the initial values of p,ηB and ηT chosen as the 
solutions of the reduced system (with all values 
non-dimensionalized). Spatial profiles at incre-
ments of 100 hours are superimposed in this plot. 
After a fairly rapid initial transient the profiles 
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gradually approach an equilibrium. All other 
variables in the system were observed to approach 
their equilibrium profiles much more rapidly than 
the benign cell density. The equilibrium states 
of the full system are shown in Figure 4.

Results and Conclusions
It is clear that the system of equations and bound-
ary conditions is quite involved. It is perhaps worth 
taking a paragraph or two to explain what one 
might expect from the replacement of (2.1) by 
(2.2). The implementation of the loss of function 
is through equation (2.2) and is controlled by the 
loss of function coefficient. Suppose that the level 
of p53 falls below the critical level. Then there will 
be a small gain in tumor cell density. This will 
drive, through the equation for tumor induced Sp1, 

an increase in growth factor production and hence 
an increase in MMP-1 production as one sees from 
the first term in (2.12). This in turn leads to a deg-
radation of matrix collagen/fibronectin as is indi-
cated by the sink term in (2.13). If there are no 
tumor cells initially present, this small gain in tumor 
cell density will drive the production of tumor 
expressed Sp1. The tumor expressed Sp1 is not 
under the regulation of p53 and hence can induce 
an increase in the rate of growth factor production. 
The induced concentration gradients in these two 
proteins in turn stimulate the chemotactic move-
ment of the two cell types.

As presented in (2.2), the loss of function is 
modeled by the expression 1 – Ψ(x,t). Sup-
pose that Ψ(x, t) = I�(x)ψ(t) where: i) φ(x) = 1 for 
x ∈ D' and is zero elsewhere, ii) Ψ(t) = 1 for t0 � t � t0 + 
T and is zero elsewhere (for some t0), and iii) I ∈ [0,1] 
is an amplitude factor. Then T is the duration of the 
loss of function event, and I is the intensity of the 
loss of function, with I = 0 corresponding to no loss 
of function and I = 1 being complete loss of function. 
The domain D′ can also be manipulated, but we will 
focus more on duration and intensity. For example, 
suppose D′ = B(r0) is the ball about zero of a fixed 
radius r0 � R. Then S = 4 30

3T rπ T /  is the strength of 
the loss of function. When S = 0 = I there is no loss 
of function while when S T r= 4 30

3π / , the loss of 
function is complete on B(r0) × [t0, t0 + T].

The simulations were done using a spherical 
domain D, with the origin of the coordinate system 

Table 3. Nondimensionalized variables. Except for length and time scales, the normalizing constants in this 
table were computed in subsection 7.1.

Quantity Variable Dimensionless variable
time t τ = t/t
position x x = x/L
p53 p(x, t) P(x,τ) = p(x, t)/pe

Sp1 sB(x, t) SB (x, τ) = sB (x, t)/se

active Sp1 sB
a(x, t) SB

a (x,τ) = sB
a (x, t)/se

Sp1 sT(x, t) ST (x,τ) = sT (x, t)/se

MMP-1 m(x, t) M(x,τ) = m(x, t)/me

GF v(x, t) V(x, τ) = v(x, t)/ve

collagen f(x, t) F(x,τ) = f(x, t)/fM, Fe = fe/fM
Nutrients Y(x, t) Y(x,τ) = Y(x, t)/Ye

benign cell fraction ηB(x, t) NB (x, τ) = ηB (x, t)/NB

tumor cell fraction ηN(x, t) NT (x,τ) = ηT (x, t)/NT

cell fraction total η(x, t) = ηB(x, t)/NB + ηT(x, t)/NT N(x,τ) = NB (x,τ) + NT (x,τ)

Table 5. Derived normalizing constants used in 
simulations. The choice of Ye given in the table deter-
mines normalized benign cell density to be ηe

B/
NB = 0.990, fe = 0.139(104)μM. and the normalizing 
constants given in the table.

variable value
Ye 0.200(104)μM
pe 0.645(10−1)μM
se 0.283(10−1)μM
ve 0.278(10−1)μM
me 0.127(100)μM
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at the point where loss of function occurs. Radial 
symmetry was assumed, so that all functions 
depended only on r = |x|, the distance to the origin. 
The domain was non-dimensionalized to the ball 
bounded by the sphere of radius R = 1. The domain 
D′ was taken to be a ball with a smaller radius. As 
with the other step functions appearing in the 
model description, smoothed versions of the 
functions φ(x) and ψ (t) defining Ψ(x, t) were used 
in the 1 simulations. In particular. we chose 

φ δ π δ( ) ( cos (( ) /( )),r r r= + − +1
2 01 2  for |r – r0| 

� δ, with φ(r) = 1 to the left of this interval and 
φ(r) = 0 to the right. Thus, D′ was a ball of 
radius r0 + δ.

Basic Simulations
The model will demonstrate that the loss of p53 
function can lead to the uncontrolled growth of a 
malignant avascular tumor if the loss is sufficiently 
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strong, occurs for a sufficiently long time or 
involves a sufficiently large number of cells (as 
measured by the product of cell density times 
volume). On the other hand if any one of these 
three factors is sufficiently small, regardless of the 
intensity of the others, the loss of function will be 
harmless in the sense that any initial tumor forma-
tion will decay. The loss of function is manifested 
in the model by a decline in the mitosis rate for 
benign cells together with an increase in the mito-
sis rate for tumor cells, both rates having the same 
(maximum) magnitude λtrηB where ηB is the local 
density of benign cells.

In particular, the model demonstrates the exis-
tence of a critical intensity, Ic such that if the 
intensity is below this number, any tumor formed 
during the time period during which loss of func-
tion is experienced will decay once the loss of 
function is no longer being experienced. On the 
other hand, if the intensity is larger than this critical 
intensity, then there is a critical time duration, TI, 
such that if the loss of function is experienced for 
any finite time longer than this critical time, the 
formed tumor will grow and take over the entire 
region. (Recall that this region is only one or two 
mm in diameter and that we are dealing only with 
solid tumor growth.) If the loss of function occurs 
only for a time duration smaller than this critical 
time, the solid tumor will eventually decay.

In this case, the model suggests the existence of 
an unstable tumor cell region coexisting with the 
benign cell region which will form if the loss of 

function is experienced for the critical duration. 
From a practical point of view, one can view the 
formation of such a tumor cell region as occurring 
if the duration time is only close enough to the 
critical time. For example if the doubling time 
(when T � TI) or half life (when (T � TI) is much 
larger than the remaining life expectancy of the 
individual, we can view the tumor to be in a quasi 
steady state with its surroundings.

Figures 4–6 show the result of a loss of function 
event that does not result in tumor growth. Figures 
7–9 show the result of a loss of function event that 
does result in tumor growth. Both simulations were 
started with the system in equilibrium and allowed 
to evolve, maintaining equilibrium, for 100 hours. 
The equilibrium state is shown in Figure 4. 
After a very brief one hour transition the loss of 
function event begins. The intensity of the event 
is the same in both cases, I = 0.5; that is a 50% 
loss of function. The parameters determining φ(r) 
were also the same in both cases: r0 = 0.1, δ  = 0.05. 
After T hours, another brief one hour transition to 
a system with no loss of function is made. These 
times are recorded in the figures, with the one 
hour transitions ignored. The durations were 
T = 200 hours in the first case and T = 400 hours 
in the second case.

Threshold and Critical Values
Given a level of intensity I for a loss of function 
event, there may be a critical value TI of the time 
of duration such that if T � TI then the event 

Figure 5. The state of the system just after the end of the loss of function event. Functions plotted are the same as in Figure 4. The intensity 
of the event in the simulation was I = 0.5, that is a 50% loss of function. The duration of the event was T = 200 hours. The state of the 
system at the end of the event is shown. For subsequent times the system evolves with no loss of function.
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results in tumor growth, while if T � TI then the 
event does not result in tumor growth. The 
simulation results presented in the previous 
subsection clearly suggest this is the case when 
I = 0.5. It is also intuitively clear that if the 
intensity is extremely small then no significant 
tumor growth will occur, regardless of the dura-
tion of the loss of function event. In other words, 
there should be a threshold of intensity that must 
be exceeded before significant tumor growth can 
occur after a sufficiently long loss of function 
event.

The roles of I and T can be reversed and one 
can ask, for a given time of duration T, whether or 
not there is a critical intensity Ic. From this point 
on view, one would expect a threshold for the time 
of duration that must be exceeded for significant 
tumor growth to occur even when the intensity is 
as large as possible.

Threshold values for both I and T are predicted 
by the model. In the model, a loss of function event 
results in a decrease in the production of p53. If 
the amount being produced does not fall 
below the critical value pc then the transfer term, 

Figure 6. The state of the system in Figure 5 at a later time. Functions plotted are the same as in Figure 4. The system has continued to 
evolve and eventually returns to the original equilibrium state. An immediate time between the end of the loss of function event and full 
recovery is shown.

Figure 7. The state of the system just after the end of the loss of function event. Functions plotted are the same as in Figure 4. The intensity 
of the event in the simulation was I = 0.5, that is a 50% loss of function. The duration of the event was T = 400 hours. The state of the sys-
tem at the end of the event is shown. For subsequent times the system evolves with no loss of function.
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λtr H(pc − p)ηB, appearing in the cell equations 
(3.5) will remain zero and no change in the dynam-
ics should be expected. (However, there will be a 
subtle change in the growth factor and resource 
level that can change production levels slightly.) 
In order to have the level of p53 fall below the 
critical value, the loss of function event must have 
a sufficient intensity, and this results in thresholds 
for both I and T.

The graph in Figure 10 shows the functional 
dependence of the critical time TI of duration on 

the intensity for loss of function events as predicted 
by the model. It also shows the threshold value for T 
at maximum intensity I = 1. The threshold for I is 
indicated by the vertical asymptote. The curve also 
depends on the size of the region D′ where the loss 
of function occurs. For the plotted curve, the same 
function φ(r) described above was used, with the 
parameters determining φ(r) being r0 = 0.10, δ = 0.05. 
To determine points on the curve, a bisection 
technique was used. For example, for a given 
value of I, two bracketing values T0 � T1 of the 

Figure 8. The state of the system in Figure 7 as the tumor cell population expands, causing the density of benign cells to fall dramatically 
in the region surrounding the location where the loss of function occurred. The spread of the tumor cell population and the decline of benign 
cell population progresses in the form of a traveling wave. Functions plotted are the same as in Figure 4.

Figure 9. The state of the system shown in Figures 7, 8 at a much later time. Functions plotted are the same as in Figure 4. The tumor cell 
population has almost completely displaced the benign cell population in the entire region.
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time of duration were found such that the system 
returned to equilibrium if the time of duration was 
T0, or experience overwhelming tumor growth if 
the time of duration was T1. Then the average of 
these times Tm = (T0 + T1 )/2 was used as the dura-
tion for the loss of function event in a simulation 
experiment. If the system returned to equilibrium 
then T0 was replaced by Tm, otherwise T1 was 
replaced by Tm. Then the experiment was 
repeated.

When the domain D′ over which the loss of 
function takes place increases in size the intensity 
or duration of the event is diminished. In Figure 11 

two curves of critical points are plotted. The lower 
curve was determined using a domain D′ and func-
tion φ(r) determine by the parameters r0 = 0.5, 
δ = 0.05, while the upper curve corresponds to 
r0 = 0.10, δ = 0.05 as in Figure 10. Because 
mutations in one location are very rare, the domain 
of a single the loss of function event is expected to 
have roughly the volume of a single cell or two.

Appendix A. Biochemistry
In this section, using a kinetic approach to the 
molecular events involved in transcription and 

Figure 10. The curve of critical points that indicates threshold values for tumor growth.

Figure 11. Curves of critical points that indicates threshold values for tumor growth. The lower curve is corresponds to a domain D′ and 
function φ(r) determined by the parameters r0 = 0.5, δ = 0.05. For the upper curve r0 = 0.10, δ = 0.05.
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translation, we derive equations (2.1), (2.6), (2.7), 
(2.11), and (2.12). Because the actual events are 
quite complex, we take an overall approach to 
them. Our purpose is to give some justification for 
the simple relationship used in these equations 
from a kinetic point of view.

The sources of the nucleotides and amino acids 
involved in the assembly of the mRNA and proteins 
must ultimately be the blood and tissue.

For our purposes, a cell consists of two 
regions, the nucleus and the cytoplasm separated 
by a membrane. The transcription of a gene into 
RNA and its maturation into mRNA takes place 
in the former. The mRNA is transferred from 
the nucleus across the nuclear membrane into 
the cytoplasm. There the ribosome translates it, 
via the genetic code, into a protein. This protein 
may stay associated with the cell or it may be 
secreted into the extra cellular matrix (ECM) 
where it may perform several functions. For 
example, it might be a protease that degrades the 
ECM or a growth factor that binds to a receptor 
on the same or another cell (that need not be of 
the same type as the parent cell) to initiate the 
expression of other genes via some signal 
transduction pathway.

Clearly, the sequence of events involved in 
transcription and translation will involve bio-
chemical mechanisms and processes that may be 
only incompletely understood quantitatively as 
well as qualitatively. In order to obtain the “start-
ing” material from the ECM and plasma, one has 
to transfer these molecules across the cell 
membrane and, in the case of the nucleotides, 
across the nuclear membrane. This is typically 
accomplished by diffusion. There are transmem-
brane proteins that permit the transfer of such small 
molecules.

We take the point of view in all of this that the 
rate limiting step is the translation step in the cyto-
plasm: That is, the ribosome (Rb), the cytoplasmic 
mRNA (cRn) and the tRNA (not shown) work to 
assemble the protein from the amino acids in the 
cytoplasm:
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k c

c k c c
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Y RnRb Rb N n P

off
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+

+ ⎯ →⎯ + +

� ,  (A.1)

(Here n represents the number of molecules of the 
protein that are assembled during the life time of 
the mRNA.)

However, if we assume that the second of 
equations (A.1) is rate limiting and we apply the 
Law of Mass Action to this chemical equation we 
should expect that if Y is in excess,
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where [mRNA(PG)] is the cytoplasmic concentra-
tion of mRNA that codes for PG and where we have 
included an additional decay term μ[PG] on the 
right of this last equation. The Heaviside factor 
H([TG](t)) reflects the fact that it is the transcription 
factor, TG, that initiates the mRNA(PG) production. 
(The factor n is included in the constant K in this 
last equation.)

Because the available mRNA for each gene 
is proportional to the number of cells whose 
genes express it, we can write, for some con-
stants kG, μG
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Depending on other underlying processes within 
the cell, this rate equation may be subject to further 
modification. For example, one might have two 
proteins, one of which functions as an enzyme for 
the degradation of the other. For example, if protein 
PG1

 functions as a regulator for protein PG with 
Kcat, Km as kinetic constants, then the equation that 
replaces (A.2) will be
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(A.3)

Remark 3. In (A.2), (A.3) the assumption was 
that the concentration of cell nutrients [Y] is in 
excess. This need not be the case, especially in 
situations that lead to tumor cell necrosis. There-
fore, one may need to modify (A.2), (A.3) by 
replacing kG by kg Y/(Km + Y), which would then 
reflect the fact that the rate of transcription is 
also proportional to the level of resources 
available:
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The rate law for nutrient consumption must also 
be introduced. It will take the form:
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where the sum is taken over all genes that are 
expressed as proteins. The term Sr includes both 
tissue sources of nutrients and diffusive effects. 
For example, if the distribution of nutrients is not 
spatially homogeneous, then

 S D Y Y x y tr Y r= +Δ[ ] ( , , ).  (A.7)

where ∆ denotes the Laplace (diffusion) operator 
(∆[Y ] = div(grad [Y ]). The term Yr (x, y, t) includes 
any tissue generated nutrients that contribute to the 
cellular events described above. Boundary 
conditions for (A.7) will include capillary supplied 
nutrients that move from the vasculature into 
the ECM.

Appendix B. Parameter values 
and Normalizing Constants
The determination of appropriate biological con-
stants from the literature is notoriously difficult. 
Not only are in vivo values often different from 
in vitro values, but very likely the former are 
unknown. When the constants for a given protein 
are known, the protein itself may function 
entirely differently in vivo than in vitro. That is 
to say, different cell types can respond to the 
same growth factors in different ways, and the 
response of a single cell type can be influenced 

by its environment, including the cells that 
surround it. Thus, the responses to a growth fac-
tor observed in vitro of a particular cell type 
grown as a mono culture are not necessarily the 
same as for the same cell type in tissues in vivo 
where its neighbors are not of the same cell type 
[40]. Thus, the task to find good values for the 
model is daunting, to say the least. We took a 
pragmatic approach, using available literature 
values where possible and trial values, when no 
values were available to us.

Notes on Parameter Values
In the simulations, the spatial domain D was 
assumed to be a sphere of radius R centered at the 
origin, and all variables were assumed to spatially 
depend only on the radial variable, r, the distance 
to the origin. Table 4 contains a list of the model 
parameters that were used in the simulations. The 
basic units of measurement are millimeters 
(1 mm = 10−3 meters), hours (h), and micromoles 
per liter (1 μM = 10−6 moles/L). Cell densities have 
the units of cells per liter. Although many of the 
values are based on data reported in the literature, 
it was not possible to find literature supporting all 
of the values. The values in the table with no sup-
porting data are described as simulated values. 
Several of the parameter values were taken from 
[43], where supporting references can be found.

Unit conversions were used to determine some 
of the parameters from available data. To convert 
molecules per unit volume to micro moles per liter, 
we used the fact that one milliliter equals one cubic 
centimeter. Thus 1L equates to a volume of 1015μm3. 
Hence N molecules per μm3 equates to N × 1015 
molecules per liter. Dividing by Avogadro’s number 
gives (N/6.02) × 10−8 moles/L = (N/6.02) × 10−2μM. 
Similarly, to convert molecules per cell to μM, we 
estimated that the volume of a typical cell is 103μm. 
This value is consistent with the available data for 
endothelial cells (cf. [43]). Using this value, 
N molecules per cell translates to N × 10−3 
molecules per μm3, or (N/6.02) × 10−5μM.

The kinetic rate constants for p53, Sp1 and GF 
were computed from translation rates of mRNA 
and the number of amino acids in each protein. 
Assuming 10 amino acids are translated per second 
and there are M amino acids in the protein, a cell 
containing N mRNA’s would produce 10N/M pro-
tein molecules per second, or (3.6 × 104)N/M 
molecules per cell per hour. Using one of the unit 
conversions described above, this results in 
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(3.6/6.02) × N/M × 10−1 μM/h. Estimating that there 
are 750 mRNA’s per cell of p53, that contains 393 
amino acids, this calculation gives a rate 
kp = 0.114h−1. The amino acid counts: 696 for Sp1, 
191 for GF; and the estimates: 750 mRNA’s per 
cell for Sp1, 1000 mRNA’s per cell for GF, yield 
the entries for ks, kv in the table.

Estimates of half-lives τ were used to determine 
decay rates μ = ln 2/τ. The half-life of p53 was 
estimated to be 30 minutes, yielding μp = 1.4/h. 
The half-life of GF is on the order of 20 minutes 

so that μv = 2.08/h. In [23], a half-life of VEGF in 
blood was reported as 33.3 ± 13min.

The carrying capacity for fibronectin was 
obtained from extrapolation and unit conversion 
from data taken from [5] and [67]. According to 
both, the maximum density of a single layer of 
fi bronectin molecules is 3 × 103μm2. Extrapolating, 
by using a molecular width of 35 angstroms, yields 
8.57 × 105 molecules per μm3, which converts to 
1.4 × 103μM. The kinetic rate constant is the same 
as in [43].

Table 4. Numerical values used in simulations.

Equation Constants Values References
R 0.100(101) mm simulated value

(2.1) kp 0.114(100) h−1 see notes
Kp 0.500(103) μM simulated value
μP 0.140(101) h−1 see notes

(2.6),(2.7) ks 0.644(10−1) h−1 see notes
Ks 0.500(103) μM simulated value
μSB

0.180(101) h−1 see notes

μST
0.180(101) h−1 see notes

(2.8) Ve 0.500(102) (μM)−1 simulated value
(2.11) kv 0.313(100) h−1 see notes

Kv 0.500(103) μM simulated value
μv 0.208(101) h−1 see notes

Kr
cat 0.300(101) h−1 simulated value

Kr 
m 0.500(103) μM simulated value

(2.12) μM 0.416(101) h−1 see notes
nm 0.800(101) simulated value

(2.13) Tf 0.180(102) h see notes
Kf 0.500(103) μM simulated value
fM 0.140(104) μM see notes
∈f 0.100(100) simulated value

Kf
cat 0.170(102) h−1 simulated value

Kf
m 0.700(103) μM simulated value

(3.5) NB 0.100(1013) l−1 see notes
DB 0.360(10−5) mm2h−1 see notes
λB 0.120(10−1) h−1 see notes
KB 0.500(103) μM simulated value
LT 0.150(101) simulated value
μB 0.100(10−3) h−1 see notes
λtr 0.750(10−2) h−1 see notes
NT 0.100(1013) l−1 see notes
DT 0.360(10−5) mm2h−1 see notes
λT 0.120(10−1) h−1 see notes
κT 0.500(103) μM simulated value
LB 0.150(101) simulated value
μT 0.100(10−3) h−1 see notes

(4.1) DY 0.500(10−5) mm2h−1 simulated value
�B 0.200(10−5) μM simulated value
�T 0.200(10−5) simulated value

(5.1) ry 0.100(101) mmh−1 simulated value
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The carrying capacities for the cell densities 
obtained from extrapolation and unit conversion 
were based on the estimate of 103μm3 for the from 
data taken from [5] and [67]. According to volume 
of a typical cell. Since 1L = 1015μm3, this estimate 
yields a carrying capacity of 1012 cells per liter. DB 
and DT were assumed constant, with values the 
same as those used in [43]. Both cell types were 
assumed to divide once every 48-60 hours (cell 
doubling time) in response to growth factor. 
A value of 56 hours was used as a doubling time 
to determine λB, λT. The apoptosis rates used are 
similar to those used in [43], and determine nor-
malized constants that are near the carrying 
capacities.

Sensitivity Functions
For the simulations, we chose to define the 
sensitivity functions rather than the probability 
transition functions. The flux terms were taken as
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The sensitivity functions were defi ned by
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with α  = 1.25 × 10+1, β = 7.5 × 10+1, and γ = 
2.5 × 10+1.

The sensitivity functions having the form 
ξ(c) = −α(c − c0) correspond to movement up the 
gradient when the concentration c is below the 
level c0, and down the gradient when the concen-
tration c is above the level c0. Implicitly, c0 is a 
desirable level of the concentration. Assuming c0 
is a constant, the corresponding probability transi-
tion function is τ(c) = exp(−α(c −c0)2/2), a Gaussian 
with mean c0 and variance σ2 = 1/α. In the 

simulations, we chose to let the desirable levels be 
determined by the computed equilibrium values, 
so that they depended on location.
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