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Abstract The biologist examining samples of multicel-

lular organisms in anatomical detail must already have an

intuitive concept of morphological integration. But quan-

tifying that intuition has always been fraught with diffi-

culties and paradoxes, especially for the anatomically

labelled Cartesian coordinate data that drive today’s

toolkits of geometric morphometrics. Covariance analyses

of interpoint distances, such as the Olson–Miller factor

approach of the 1950’s, cannot validly be extended to

handle the spatial structure of complete morphometric

descriptions; neither can analyses of shape coordinates that

ignore the mean form. This paper introduces a formal

parametric quantification of integration by analogy with

how time series are approached in modern paleobiology.

Over there, a finding of trend falls under one tail of a

distribution for which stasis comprises the other tail. The

null hypothesis separating these two classes of finding is

the random walks, which are self-similar, meaning that

they show no interpretable structure at any temporal scale.

Trend and stasis are the two contrasting ways of deviating

from this null. The present manuscript introduces an ana-

logous maneuver for the spatial aspects of ontogenetic or

phylogenetic organismal studies: a subspace within the

space of shape covariance structures for which the standard

isotropic (Procrustes) model lies at one extreme of a

characteristic parameter and the strongest growth-gradient

models at the other. In-between lies the suggested new

construct, the spatially self-similar processes that can be

generated within the standard morphometric toolkit by a

startlingly simple algebraic manipulation of partial warp

scores. In this view, integration and ‘‘disintegration’’ as in

the Procrustes model are two modes of organismal varia-

tion according to which morphometric data can deviate

from this common null, which, as in the temporal domain,

is formally featureless, incapable of supporting any sum-

mary beyond a single parameter for amplitude. In practice

the classification can proceed by examining the regression

coefficient for log partial warp variance against log bend-

ing energy in the standard thin-plate spline setup. The self-

similarity model, for which the regression slope is precisely

�1; corresponds well to the background against which the

evolutionist’s or systematist’s a-priori notion of ‘‘local

shape features’’ can be delineated. Integration as detected

by the regression slope can be visualized by the first rela-

tive intrinsic warp (first relative eigenvector of the non-

affine part of a shape coordinate configuration with respect

to bending energy) and may be summarized by the corre-

sponding quadratic growth gradient. The paper begins with

a seemingly innocent toy example, uncovers an unexpected

invariance as an example of the general manipulation

proposed, then applies the new modeling tactic to three

data sets from the existing morphometric literature. Con-

clusions follow regarding findings and methodology alike.

Prologue

Contemporary morphometrics arose as a subdiscipline of

biometrics, assembled mostly from borrowed tools (shape

theory, multivariate statistics, analytic geometry, interpo-

lation theory, medical image analysis), that turns out to

have applications all across the quantitative organismal
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biosciences. Some branches of applied mathematics and

biomathematics, like shape theory, were mined very wisely

and well in the course of building this toolkit; other

branches, like multivariate statistical analysis, perhaps not

so wisely. This article, which takes the form of an extended

essay, introduces a new parameter for the scaling of shape

variation, together with an exegesis of the shape patterns

expected from shape data when that parameter takes on a

particularly interesting nonzero value.

The new approach to scaling for landmark data was first

hinted at in technical papers about the thin-plate spline not

intended to be read by biologists. But if whole-organism

developmental mechanics, functional morphology, and

evolutionary biology are to continue fruitfully to exploit

the very convenient and suggestive formalism of landmark

data, the scaling praxis must now be revisited and revisu-

alized in the biologist’s own diagrammatic language. The

parameterization I am suggesting here will have major

implications for a specific aspect of multivariate descrip-

tion, the elucidation of integration, that is presently in an

incoherent state, however intuitive its current tools may

seem. The proposal is to render this intuition coherent by

radically rethinking the notion of a ‘‘null model’’ for in-

tegration—what it means to not be integrated—so as no

longer to require that covariances of shape coordinates be

centered around zero. The new construct is intended to

replace a motley of classical notions of integration, usually

based on examination of covariance structures without

reference to the corresponding average shapes, that cannot

be successfully translated into the landmark-based setting.

It is not that the abstractions that follow here are wholly

unfamiliar to the practicing biologist. Anyone examining

samples of multicellular organisms in anatomical detail

must already have an intuitive concept of morphological

integration. That same practicing biologist knows perfectly

well that some quantifiable features of organismal form-

comparisons over ontogeny or phylogeny are measured at

large scale, using rulers calibrated in centimeters and

commensurately large protractors, while other features are

measured at small scale, using miniature rulers or tiny

protractors. But quantifying that intuition has always been

fraught with difficulties and paradoxes, and particularly so

for the anatomically labelled Cartesian coordinate data that

drive today’s toolkits of geometric morphometrics. Co-

variance analyses of interpoint distances, such as the Ol-

son–Miller factor approach of the 1950’s, cannot validly be

extended to handle the spatial structure of morphometric

descriptors; neither can analyses of shape coordinates that

ignore the mean form. I will touch on these and other

paradoxes and infelicities of today’s typical approaches at

various points in the sequel.

But this Prologue is not intended mainly as a review of

those difficulties. Instead its diagrams, all tumbled together

in the single multipanel Fig. 1, combine the standard tools

of geometric morphometrics in a new way in order to re-

veal a surprising invariant aspect of the Procrustes ge-

ometry hidden in a convenient toy data set. The Prologue is

followed by a more conventional introduction reviewing

the literature pertinent to the new tool, including references

to an earlier, more mathematical literature arguing, albeit

implicitly, that the ‘‘surprise’’ must in fact be ubiquitous

wherever the thin-plate spline approach is combined with a

certain very specific simulated Procrustes distribution of

shape coordinates. From this ubiquity follows the principal

conclusion of the paper: this particular subclass of Pro-

crustes shape coordinate distributions should be embraced

as the proper ‘‘null model’’ for studies of integration. The

model is entirely different from the models of uncorrelated

variation in that it is conditioned on the exact details of the

spacing of the points in an average landmark configuration

in such a way as to avoid privileging any particular

geometrical scale of features over any other scale. I pro-

ceed with a thorough explication of the detailed algebra of

this approach, including the formulas that should allow any

morphometrically adept reader to duplicate my calcula-

tions; then three separate worked examples involving pre-

viously published data sets; and finally a closing

Discussion.

By way of setting the scene for the maneuvers to follow,

the reader’s attention is called to the 15 panels of Fig. 1.

At upper left is a schematic of the conventional offset

isotropic Gaussian model for shape variation around an

average. Shapes will vary around a mean form comprising

the six points numbered as shown, evidently derived from a

square grid such as is found on ordinary graph paper. The

circles around the six points are drawn at 2 standard de-

viations of the underlying circular normal (Gaussian) var-

iation assigned to every landmark independently. There

results, of course, the familiar offset isotropic Mardia–

Dryden model for the variation of the corresponding shape

of the landmark configuration (Dryden and Mardia 1998).

To its right in this upper row is a simulation of 1000 draws

from this shape distribution, as presented in the conven-

tional Procrustes shape coordinate plot after centering,

scale, and orientation have all been standardized. The bi-

lateral symmetry of this configuration across its horizontal

axis is visually pleasing but actually has no role to play in

the argument here. For small standard deviations, when

shape is represented by a suitable projection of these

twelve coordinates (x and y for each of the six points) it is

well-known that the representation lies in a linear subspace

of dimension eight.

The second row of Fig. 1 shows one particular follow-

up manipulation of these Procrustes coordinates, the

separation of two of the eight dimensions from the other

six. This separation is nothing new. It was already
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diagrammed in Bookstein (1991), and was most recently

formalized in matrix notation on page 418 of Bookstein

(2014). The dimensions we seek to separate out are the two

dimensions of the uniform or affine transformations, those

that leave straight lines straight and midpoints midpoints.

These transformations are spanned by the two exemplars at

left in this row of the figure, which correspond to projec-

tions along rows 1 and 2, respectively, of the matrix written

out in full in Eq. (7) below. As drawn, neither of these

changes is actually within the Procrustes shape space it-

self—I omitted the rotation and rescaling steps—but it is

easier to appreciate the construction to follow if the forms

are left in this mixed coordinate system. The uniform

transformations here will be highlighted below as the al-

gebraically simplest characterization of the totally inte-

grated transformations. In the representation as maps here,

they are characterized by having the same affine derivative

at every point of the organism. In other versions it will be

the second derivative that is modeled as constant in this

global (organism-wide) way, so as to include the homo-

geneous growth-gradients as well.

Still in the second row, at far right is the scatterplot of

Procrustes shape coordinates after these two uniform

(affine) dimensions have been partialled out of the

simulation. In terms of the original shape space, we have

removed two dimensions out of the eight that were needed

to characterize the original spherical shape variation. What

remains has a different covariance structure than the ori-

ginal shape coordinates—in particular, its rank is now six,

not eight—and it has a trace (sum of the variances of all the

coordinates here) that is just 6=8 ¼ 75% of what the trace

was before.

Turn now to the third row. Here I have selected two

different subconfigurations of the six-landmark scheme that

Fig. 1 Explicit construction of the self-similar domain of variation

for a toy data set of six landmarks (a simulation of the offset

isotropic Mardia–Dryden model on the loci in the upper left panel).

The variances of the two distributions of square shape examined in

the last row of the figure are the same even though their geometric

scales differ by a factor of
ffiffiffi

2
p

. The deflation maneuver that is the

subject of Sect. ‘‘A Theorem with Its Corollary Algorithms’’ of this

paper protects us from being misled into thinking that the large

square was an intrinsically less variable sort of ‘‘feature’’ just

because of its large size. The detailed descriptions of the panels in

this figure are together too lengthy to be laid out in this caption;

please see the Prologue
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have the same expected shape (an exact square, according

to the mean form) but different sizes. There is a smaller

square, on the landmarks numbered 1, 2, 3, and 4 at upper

left, and also a larger square (landmarks 2, 3, 5, 6) on the

diagonal of the smaller square. Thus the two squares differ

in scale by a factor of exactly
ffiffiffi

2
p

. We are interested in the

nonuniform variation of these two subconfigurations of

landmarks—the extent to which both can be characterized

by local features (which, for this mean configuration, are

the ‘‘square-to-kite’’ and ‘‘square-to-trapezoid’’ processes

that concern us in more detail in Fig. 8 below). Each of

these is a descriptor space of exactly two dimensions (as

the nonaffine space for any starting set of four landmarks

would be). At far left in this row is the plot corresponding

to that in the second row for just the smaller square,

landmarks 1, 2, 3, 4. Inspection of a copy printed at much

larger scale reveals that the distributions at ends of a di-

agonal are identical and those at opposite ends of an edge

are opposites. Furthermore, the variation is obviously cir-

cular in the plane of the diagram. Then the net extent of

variability can be summarized by the variance of any single

Cartesian coordinate at any landmark. That variance turns

out to be 0.001247 (in Procrustes units).

To its right is the same construction on the larger square

(landmarks 2, 3, 5, 6). Again there are only two available

dimensions of shape variation—ends of diagonals have the

same pattern, ends of edges exactly opposite patterns. The

scale of the Procrustes shape coordinate plot has changed

only because of the orientation of the square upon the

original form. When that is adjusted (see the rightmost plot

in this row) we can see that the Procrustes variance of these

shapes is much smaller for this larger square than for the

smaller square 1, 2, 3, 4. We compute it as 0.000662,

which, for this sample of 1000 simulations, is indistin-

guishable from precisely half the nonaffine shape variance

of the smaller square. In other words, the variance of fea-

tures of squares varies as the inverse of the area of the

square: 1
2
¼ ð1=

ffiffiffi

2
p

Þ2: This will prove unhelpful when we

are trying to interpret principal components of shape.

Consider now the grids in the fourth row of this figure.

These are all of the principal warps of the configuration of

six landmarks here, each one drawn at the same amplitude

(0.25 Procrustes units) at the mean form along the direction

of that axis of bilateral symmetry (x-axis in the diagram).

Above each is written its specific bending energy, the net

integral of summed squared second derivatives of the

corresponding spline map taken over the whole picture

plane, as in Eq. (5) below. It is known that these energies

can be derived as eigenvalues of the bending-energy matrix

for this mean landmark configuration, the formalism set out

in detail in the exposition below. As printed on the figure,

these eigenvalues are proportional to 1:1.07:2.15. One

could draw each of these principal warps as well in the

application to the other Cartesian coordinate of this situa-

tion, the y-coordinate instead of the x-coordinate, or to their

combination as real and imaginary components of the same

maneuver, the construction of the partial warp scores,

which are now in the complex ðx; yÞ plane. Because the

principal warps are functions only of the mean configura-

tion, and because they are perpendicular in shape space,

they constitute a statistically arbitrary orthogonal rotation

of the original Procrustes variation, which is spherical in all

eight of its dimensions. The uniform terms and the partial

warps are four orthogonal two-dimensional subspaces of

this eight-dimensional space, and so the simulation should

show the same shape variances for each of the four. In fact

we get variances of 0.00337, 0.00359, 0.00350, and

0.00344, which do not meaningfully differ—in this most

familiar of the Procrustes shape coordinate models there is

no spatially differentiated pattern to be found. Thus this

data has no spatial structure. Rather, it is, using the ne-

ologism to be introduced below, totally ‘‘disintegrated,’’

which is to say, incompatible with life.

Taking all this for granted, we can produce a deflation of

the observed Procrustes variation—in reality one route to

the production of a relative eigenanalysis (see below)—by

reducing the variance of each partial warp by a factor

proportional to its specific bending energy. By doing so we

will make possible (though it will not be demonstrated until

Sect. ‘‘Visualizing Integration: Three Examples’’ below)

the construction of a new set of principal components that

are diagonalized not in terms of Procrustes distance but in

terms of bending energy. Since this quantity is zero for the

uniform transformations, the calculation must be restricted

to the nonaffine subspace of shape, the subspace we are

working in here. There results the new ‘‘deflated’’ scatter of

Procrustes coordinates shown at the far right in this fourth

row, directly under the original, undeflated version in the

second row. Plotted in this fashion, it is not at all obvious

what has changed.

What has changed over the deflation, in fact, is the bi-

ologist’s language of pattern analysis for these coordinates.

To see this, examine the scatters in the last row of the figure,

each of which is aligned with one of the scatters in the third

row. There they dealt with variations of nonaffine shapes of

subsquares in the Procrustes coordinates, andwe saw that the

variance was inverse to the area of the squares. Here in the

fifth row, by contrast, the variance of the nonaffine compo-

nent of the shape of these perturbations of squares is inde-

pendent of scale! The visual extent of the little circles in the

nonaffine scatters for the 1, 2, 3, 4 square, far left, and for the

2, 3, 5, 6 square, far right, are nearly identical. In fact the

variances of the two are 0.000629 and 0.000663. Again these

variances do not differ; but this time they are variances of the
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same shape feature as it would be reported at two different

spatial scales.

By deflating each dimension of nonaffine shape space by

the bending energy of its principal warp, then, we have

produced a shape distribution for which the original

equality of variances of equally important potential fea-

tures is replicated at this particular contrast of scales. The

distribution of nonaffine shapes of square subconfigura-

tions of landmarks, in other words, is now self-similar, the

same at every available geometric scale (there are only two

available in this example). This will prove to be the case

for every landmark or semilandmark configuration. Of even

greater importance for our applications is the obverse of

this proposition: what we intend when we report a specific

‘‘shape feature’’ is to be construed as a feature of the de-

viation of shape variability from this model. Not the prin-

cipal components with respect to Procrustes distance (the

‘‘relative warps’’ appearing in the overwhelming majority

of papers that use geometric morphometrics to analyze real

organismal data sets) but the principal components with

respect to bending energy constitute the tool we should be

using to search for meaningful characters across the full

range of scales available to our characterizations of living

or dead organisms.

Introduction

How is it that deflation by bending energy serves to

equalize phenomena at different scales? Let’s look at an

even simpler example, the bending energy for a quincunx

of landmarks (the pattern of dots on the side of a die that

has five of them). From the formula to follow in Sect. ‘‘A

Theorem with Its Corollary Algorithms’’, this will prove to

be proportional to the quadratic form

BQ ¼

2 �1 2 �1 �2

�1 2 �1 2 �2

2 �1 2 �1 �2

�1 2 �1 2 �2

�2 �2 �2 �2 8

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

;

for which the only eigenvectors of nonzero eigenvalue are

the patterns W1 ¼ ð1;�1; 1;�1; 0Þ and W2 ¼ ð1; 1; 1; 1;
�4Þ: (The central element of the quincunx corresponds to

row or column 5 in these expressions, and for W1 the other

landmarks have been numbered consecutively around the

outline.) After these vectors are normalized to unit length

we have Wt
1BQW1 ¼ 6;Wt

2BQW2 ¼ 10: The two specific

bending energies are thus in the ratio of 3 to 5, as shown in

Fig. 2.

This diagram is intended to clarify the role of the

bending energy in rendering further comparisons relatively

scale-free. Look at the grid spacings where they are

densest: the gradients away from these loci contribute the

most to the bending energy integral. Informally, what we

are doing is (approximately) normalizing to that densest

spacing of the lines (see the figure). These spacings convert

to potential shape features roughly as ratios to lengths that

are unchanging: for W1; the ratio of the length of the left

edge, or the right edge, to the width of the quincunx on its

page; for W2; the ratio of height (in the page’s vertical) of

the upper triangle of landmarks, or the lower, to this same

width. The effect of the switch to the bending-energy norm

is to render the maximum (densest) spacing roughly equal

between the two dimensions of variation, and hence to

calibrate the intensity of a shape feature, the integrated

squared rate of change of densities like these, in a way that

is relatively independent of its geometric scale (which is

considerably smaller for the second principal warp than for

the first). The situation is the same for the general landmark

configuration: normalization by bending energy reduces all

changes in the nonaffine space, regardless of approximate

geometric extent, to the same currency of derivatives of

this contour density, squared and then integrated over the

picture.

Such a procedure strikingly resembles a technique that

has been known for over a hundred years to apply in the

temporal domain: the normalization of random walks and

diffusions such as Brownian motion by the square root of

time. In the technical jargon, both are Gaussian increment

processes. In other words, the resemblance is more than

mere analogy: our bending-energy maneuver is actually a

strict mathematical generalization of the Brownian motion

case. (See Mardia et al. 2006, especially sections 2.1–2.3.)

Perrin (1913/1923) received the Nobel Prize in Physics for

demonstrating the validity of this self-similar scaling for-

malism as it applies to real Brownian motion on the Ein-

stein model (see Bookstein 2014, Section E4.3.2). In that

physical setting, the variance of a Brownian motion can be

shown to vary linearly in elapsed time.

From the fact (or, rather, the theorem) of this temporal

scaling, it proved possible to convert the study of paleon-

tological time series from the relatively fruitless consid-

eration of models against a null of no change to a much

more fruitful null model, the temporal integration of in-

dependent increments corresponding to the neutral model

of phenotypic evolution (see, e.g., Nei 2007). The simple

suggestion of computing a scaling dimension for the extent

of maximum change, in particular, led, over the course of a

quarter of a century, to a great radiation of methods for the

analysis of these series. As presented in Bookstein (1987,

1988) for univariate series and Bookstein (2013) for mul-

tivariate series such as sequences of shapes, the role of

random walk is as a null model affording access to inter-

pretable biological phenomena in both of its tail directions.
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For series that are hypervariant with respect to this linear

model, the rejection of the null is an assertion of trend; for

series that are instead hypovariant, rejection entails the

contrary finding, stasis. Recognizing the manner of scaling

of random walks with time induced a relocation of the null

hypothesis for evolutionary series from constancy of a

mean (stasis) to neutral drift. The vocabulary by which

these time series could be discussed in biologically

meaningful terms, along with their causes or effects, was

correspondingly enriched.

The present paper intends just such a recentering for the

complementary domain of spatial variation (and, by ex-

tension, their joint combination in the spatiotemporal pro-

cesses that are of central interest in the evo-devo sciences

and in phylogenetic inference). The difference between the

two approaches to a null model is usually more dramatic

than what was demonstrated in the Prologue. For instance,

from a set of (artificial) landmarks in a 5� 5 grid, we can

generate precisely 50 different squares that vary by size,

grid position, and orientation. In the isotropic Procrustes

model, the nonaffine shape variance of these squares itself

varies strongly by size and to some extent by position and

orientation as well. After the deflation by bending energy,

though, they all show exactly the same distribution of

nonaffine shape. Figure 3 numbers the landmarks and

displays the basic Procrustes and bending-deflated scatters.

The concluding panel shows the proportionality of variance

after deflation to bending energy in the form of the log-log

plot with slope �1 in order to anticipate the findings in two

of the empirical examples in Sect. ‘‘Visualizing Integra-

tion: Three Examples’’, which extract other slopes for this

same plot in realistic settings. It is this slope that stands for

the actual parameter of integration when integration is

actually found to be a meaningful partial description of a

data set. Figure 4 collects examples of forms over a narrow

range of Procrustes distances, showing how biologically

uninterpretable the majority of such shape dimensions

would be, and then the corresponding bending-deflated

grids, which would be much more suggestive of inter-

pretable biological patterns were they to have arisen in real

data analyses. Figure 5 confirms that in the deflated version

of the isotropic Procrustes distribution, the nonaffine shape

variation of any square highlighted within this grid is not

dependent on the size, position, or orientation of that

square upon the mean landmark configuration of Fig. 3. It

is quite startling that such a distribution of multiple shape

coordinates should exist at all, let alone that it can be

generated from the standard Procrustes shape space by such

a simple manipulation.

What makes the grids at the right in Fig. 4 interpretable

is the possibility of reporting via a short list of superposed

large-scale and small-scale patterns. The large scale pat-

terns, we will see in our Vilmann rodent skull example

below, are a geometrization of the growth-gradients in-

troduced by Julian Huxley in his Problems of Relative

Growth of 1932 as previously formalized for Bookstein

coordinates (two-point shape coordinates) in Bookstein

(1991). The small-scale features can be considered as

generalizations of the second principal warp for the quin-

cunx already shown in Fig. 2: the relocation of a single

landmark with respect to the location it would be assigned

by the larger-scale transformation of some cell of the

PW 1 , normed by Procrustes length

PW 1 , normed by bending energy

PW 2 , normed by Procrustes length

PW 2 , normed by bending energy

Fig. 2 The two nontrivial

principal warps for a quincunx

of landmarks (the shape of the

five-spot of a die), as

represented by thin-plate

splines. Above, normed to the

same Procrustes length; below,

to the same bending energy,

which deflates the more bent

principal warp (right column)

by a factor of
ffiffiffiffi

:6
p

. After the

deflation, the visual density of

grid lines is much more nearly

equal at their loci of greatest

density (left column, center left;

right column, upper center).

Informally, bending energy is

the integrated squared rate of

change of this pattern of

densities when it is drawn all the

way out to infinity in all

directions

400 Evol Biol (2015) 42:395–426

123



landmark grid within which it finds itself. That is, the grids

at right in Fig. 4, which constitute a sample from the

bending-deflated distribution, appear to be hierarchical in

their features, whereas those at the left in the same figure,

derived from the original Procrustes shape distribution, all

exemplify the pattern that will be called ‘‘disintegrated’’

below.1

The technique recommended in this paper will combine

two aspects of any actual Procrustes data set, the covari-

ances and the mean—the covariance patterns of shape

coordinates (normalized distances from an orthogonal pair

of lines through the centroid) and the spatial disposition of

the relative positional shifts that account for those

patterns—that have hitherto been kept analytically separate

in our literature, to the great disadvantage of that literature.

Whenever individual landmarks contribute to more than

one distance, there is no obvious extension of either the

Olson and Miller (1958) approach to ‘‘morphological in-

tegration’’ or any other popular covariance-based style of

factor analysis of multiple measured distances that can

properly take into account the spatial arrangements of those

distances. The analysis of deformations by relative warps,

on the other hand, inappropriately privileges end-to-end

gradients over more local shape phenomena even when the

local phenomena involve shape changes at larger ratios or

otherwise of larger magnitude when assessed appropriately

locally. All the existing protocols known to me for ‘‘test-

ing’’ models of this fused domain inappropriately compare

the observed patterns to models of noncorrelation rather

than to the models of spatially cumulative random fields

that clarified the corresponding literature for time series.

The technique of bending-energy-based deflation on which

this essay focuses represents the extension of the time

series analysis (scaling of variance to linear time, the ex-

pectation on a random walk) to the two-dimensional or

Fig. 3 The isotropic offset Gaussian distribution for a 5� 5 square

grid of artificial landmarks. The standard deviation of the isotropic

offset Gaussian process was set to 0.15 of the unit cell spacing. (upper

left) The landmarks, numbered for use in Fig. 5. (upper right) The

Procrustes shape distribution after the two-dimensional affine term

has been projected out. (lower left) The bending-deflated version.

(lower right) Confirmation of the self-scaling claim in the text: the

relation between feature scale (specific bending energy) and feature

variance is precisely loglinear with a slope of �1 for the 22 partial

warps of this artificial configuration after the deflation. Upper line:

original variances by partial warp, slope � 0: Lower line: variances
after deflation, slope � � 1; to be confirmed by the explicit analyses

for squares in Fig. 5

1 This term is intentionallywrittenwithout the hyphen: ‘‘disintegrated’’

instead of ‘‘dis-integrated.’’ Likewise the noun in this paper’s title is

‘‘disintegration’’ instead of ‘‘dis-integration.’’ The intention is to

preserve not only the pronunciation (elision of the s with the short i that

follows it) but the dynamic connotations of the term in existing contexts

where it is always unhyphenated. There is an aggressively non-

biological character to the deformation grids in the left panel of Fig. 4. It

is difficult to imagine any biomathematically plausible differential

equation, morphogenetic or otherwise, that would be capable of

producing results so disorganized.
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three-dimensional context of landmarks dispersed in mul-

tiple spatial dimensions.

The distinction I am making here can be clarified by

comparing two sets of 5� 5 grid transformations that all

have roughly the same Procrustes amplitude. Figure 6

shows three grids selected from the 1000 involved in Fig. 3

that all have Procrustes distance about 0.1 (before defla-

tion) from the starting square configuration. These were

selected from a set of 92 at distances between 0.10 and 0.11

to exemplify two extremes. At the top are the three grids

that have the lowest bending energy—the likeliest to turn

up from our deflated isotropic Procrustes distribution.

These seem relatively legible in terms of their reportable

features, for instance, the relative enlargement of the upper

right quadrant in grid 502 or the U-shaped dilation of the

vertical at left in grid 897. The grids of highest bending

energy, by contrast, show a wholly disordered pattern of

perturbations not consistent with any suggestive verbal

summary. If the examples of low bending energy in the top

row appear to be integrated, with features that are

positively correlated from cell to neighboring cell, then

those in the bottom row surely should be considered

disintegrated, lacking in any such features. For more dis-

cussion along these lines, see Bookstein (2015).

I mentioned in the Prologue that the customary ap-

proaches to morphological integration based on correla-

tions among multiple dimensions of descriptors do not suit

our formalisms of Procrustes shape coordinates; it is time

that I justified that claim. Figure 7 conveys two easily

summarized paradoxes in this covariance-based morpho-

metrics of distance data in order to conclude that no co-

variance pattern can be interpreted unambiguously unless

the mean landmark configuration is an explicit component

of the pattern analysis. The two triangles shown in the

upper row are characterized by the same covariance

structure

r2
0 0 0

0 1 1

0 1 1

0

B

@

1

C

A

for the full set of three pairwise distances, where r is any

sufficiently small quantity and the distances are taken in the

order 12, 13, 23. (That points 1 and 2 are at an invariant

distance suggests that all three points might have been

represented by their Bookstein coordinates at the outset of

the example.) But the two descriptions of the ‘‘same’’

pattern are nevertheless remarkably different when con-

sidered as evidence of biological processes. On the left,

landmark 3 is restricted to the line through landmarks 1 and

2. On the right, landmark 3 is restricted to their perpen-

dicular bisector, which makes as large an angle (90�) with
the collinearity constraint as it possibly could. If we add a

parameter f for the failure of this canalization—the signed

variation of point 3 away from the line along which it was

supposed to be canalized—then the rate at which the

variance of the difference of distances d13 � d23 rises, and

hence covðd13; d23Þ falls, is at least eightfold greater as a

function of varðf Þ for the second configuration than it is for

the first.

In that example, the mean landmark configurations had

different shapes. Yet even when we restrict our attention to

comparisons having the same average shape, severe

anomalies of interpretation can arise. In the lower row of

Fig. 7 are two representations of a different covariance

matrix

r2

1 � 1 0 0 0 0

�1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

Procrustes nonaffine                    deflated

Fig. 4 (left) A selection of grids near the 95th percentile of Procrustes

distance from the distribution in the upper right panel of Fig. 3. These

grids do not suggest any biologically meaningful interpretations—

they are too disorganized. (right) The same for the deflated versions

of the same grids (that is, the same specimens, but now drawing shape

coordinates from the distribution at lower left in Fig. 3). The majority

of these now suggest biological interpretability in terms of a small

number of features at a discrete set of spatial scales
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for all six distances among the four corners of the same

square configuration. (In this matrix some of the 0’s are

exact and some are only approximate, corresponding to

distances that vary relatively less and less as the variability

in the direction of the factor indicated by the arrows drops

lower and lower.) On the left, the two distances that have

equal variances and a perfect correlation of �1 are the two

diagonals of the square; on the right, they are a pair of

parallel edges. The difference between this pair of exem-

plary models on four landmarks does not manipulate the

mean locations of the landmarks, only their numbering.

(The essence of the contrast is that the segments whose

lengths bear the negative correlation intersect in the first

instance but are disjoint in the second.) In spite of arising

from the same mean form and having the same covariance

structure among the set of all six relative distances, the

shape phenomena in question are completely unrelated as

biological patterns. On the left, we see a transformation

that would be reported by thin-plate spline as a uniform

change; on the right, no uniform term, but instead a pure

growth-gradient (linear dependence of the affine derivative

along some transect of the form). Clearly the locations of

the average landmarks and even the numbering of those

locations matter for interpretation of these covariances in

terms of biology, but that information is not accessible to

the factor analysis machinery or the associated permutation

tests by which current approaches customarily deal with it.

In other words, the covariances of the distances per se are

not sufficient to make any sense of variations in these

configurations—the mean locations must somehow be

brought into the analysis.

A further caveat applies with even greater force to any

pattern by which the six distances on landmark pairs of a

starting square are claimed to change. If the landmarks are

to lie in a plane at all, the distances must satisfy a com-

plicated polynomial condition that seems intuitively inac-

cessible: the condition

0 1 1 1 1
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¼ 0; ð1Þ

Fig. 5 A more accessible demonstration that the bending-deflated

shape distribution at lower left in Fig. 3 is self-similar. All integers in

panel titles correspond to the landmark numbering scheme at upper

left in Fig. 3. (top) Nonaffine shape of selected squares having edge

lengths 1, 2, 3, or 4 unit cells with edges horizontal and vertical.

(bottom) The same for squares aligned with the grid diagonal, having

edge lengths
ffiffiffi

2
p

and
ffiffiffi

8
p

, and for knight’s-move squares with

subscript shifts like ð2; 1Þ, hence edge length
ffiffiffi

5
p

, or ð3; 1Þ, of edge

length
ffiffiffiffiffi

10
p

. All of these shape distributions are the same. In other

words, the deflation of bending energy corresponds to a self-similar

model of shape variation against which it is reasonable to test

empirically encountered data for the existence of patterns that deviate

from the model. This and every other explicit comparison of

distributions over identical subconfigurations are guaranteed invariant

by the slope of �1 for the plot at lower right in Fig. 3
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where dij is the measured distance between landmark i and

landmark j. If there are more than four landmarks, this must

be true for every subset of four. The determinant is actually

288 times the squared volume of the tetrahedron on the six

edges. In this form it is called the Cayley-Menger formula

for that squared volume. (But the formula is remarkably

old—it originated with Piero della Francesca, the fifteenth-

century Italian geometer and painter, although in a differ-

ent notation, the determinant j � j not having been invented

yet.) Any representation of ‘‘all the distances’’ among four

or more landmarks in two dimensions, or five or more in

three dimensions, necessarily lies on a curving subsurface

of the corresponding multivariate space, and hence cannot

be described by a multivariate Gaussian, certainly not one

of full rank.

Back in two dimensions of landmark coordinates, the

meaningful dimensions of shape changes in Procrustes

space for a square mean form necessarily zero out the four

patterns of joint coordinate variation shown in the top row

of Fig. 8, while leaving the other four dimensions, those

shown in the middle row, free to vary. In the bottom row I

have interpreted three of these middle patterns (the three

drawn in solid arrows) in terms of the effective differential

for each edge of the original square—increase, decrease, or

invariance (to first order, anyway). There are six such

patterns in total, but only four dimensions, so the patterns

must be correlated across the modes. This means that we

cannot diagnose the kind of transformation we are looking

at just by examining the signs of changes of edges. We

have to know where the landmarks are, too.
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Fig. 6 A selection of six grids drawn from the Procrustes simulation

in Fig. 3 that all have approximately the same Procrustes distance

from the mean (about 0.1). (top) The three of lowest bending energy,

relatively more consistent with the biologist’s intuition of what an

integrated feature can be expected to look like. (bottom) The three of

highest bending energy, less biologically suggestive in the same sense

(in other words, more difficult to reduce to ordinary verbal

summaries). The deflated shape distribution of the proposal here is

in effect the substantial overweighting of distributions of the upper

type with respect to those of the lower type, and the less localized the

bending, the greater the overweighting
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Such paradoxes and counterexamples can be extended

ad libitum. We make little progress toward the under-

standing of patterns of shape change by examining co-

variance structures alone. If integration is to be studied

from a biologically fruitful point of view, it must be based

in some formal combination of the information in the mean

form and the information in the shape covariances. That

combination is precisely what the algorithms in the next

section produce.

A Theorem with Its Corollary Algorithms

This section sketches the mathematical basis for the formal

statistical-geometrical study of integration and its associ-

ated data-analytic algorithms. The methodology turns out

to spring from the self-similarity property already noted in

connection with Figs. 1, 2, 3, 4 and 5. This invariance—the

reason that bending-deflated versions of Procrustes distri-

butions produce self-similar features within the corre-

sponding nonaffine subspaces—will drive a general

algorithm for parameterizing real-world data sets in terms

of their scaling properties. The algorithms involved in

producing these distributions and the relative intrinsic

warps that summarize them are set out in detail. ‘‘Inte-

gration’’ will be a biological interpretation of the rejection

of self-similarity when the regression slope produced by

Algorithm III below is greater than 1 in absolute value. In

Sect. ‘‘Visualizing Integration: Three Examples’’ the

technology will be extended to include displays that

demonstrate the range of scales within which some real

data sets prove to be self-scaling or, when they are not, the

representation by polynomial growth-gradients of the fea-

tures by which they differ from that model.2

Let us briefly review the standard notation for thin-plate

splines and their descriptors as first published by Bookstein

(1989). In this notation, let U be the function

UðrÞ ¼ r2 log r, and write Pi ¼ ðxi; yiÞ; i ¼ 1; . . .; k, for k

points in the plane. With Uij ¼ UðPi � PjÞ, build up

matrices

12 3 12

3

Fig. 7 Two simple demonstrations of the fundamental paradox of

interpoint distance analyses: no covariance pattern can be interpreted

unambiguously unless the mean landmark configuration is an explicit

component of the pattern analysis. In every panel, the arrows indicate

the loadings of a factor that changes only the indicated coordi-

nate(s) while leaving all others invariant. (top) Two triangles of

landmarks having the same covariance matrix of all pairwise

distances (see text) that nevertheless correspond to wholly different

biological interpretations. (bottom) Two instances of the same

covariance pattern (again see text) for two different numberings of

the six pairwise distances among the four landmarks of the same

mean configuration, again corresponding to entirely different

biological interpretations, inasmuch as the segments corresponding

to the distances that increase or decrease relatively fastest intersect in

the scheme at lower left but are parallel in the scheme at lower right

or

0
0

0
0+

−

0
+

0
−0

0

−
+

+
−0

0

Fig. 8 Dimensions of the shape space for variations around an exact

square. (top) The four patterns of coordinated change in the

Procrustes coordinates of landmarks around a square starting form

that must have zero variance. They are drawn two per panel, thin

arrows or thick arrows, at 90� both in the full Procrustes space and at

each landmark separately. (middle) There remain four dimensions

which can be notated using the little vectors here. The second set,

arising from the first principal warp of the bending-energy matrix for

this square, is drawn to two different bases focusing on different

patterns of changes in pairwise landmark distance, but the two-

dimensional subspace they span (the purely nonaffine transforma-

tions) is the same. (bottom) Differentials of the six edge-lengths for

three of the patterns in the middle row (those drawn with the solid

arrows). þ: distances that increase with increase in the component

drawn. �: distances that decrease. 0: distances that do not change to

first order in the change of the component score. The left and center

panels of this row are the same simulations already shown at the

bottom of Fig. 7

2 The data sets to which I have access offer no examples of

completely disintegrated distributions. This model appears to be an

option characteristic of textbook examples rather than systems

describing the world of living or previously living metazoa.
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and

L ¼
K Q

Qt O

� �

; ðk þ 3Þ � ðk þ 3Þ; ð3Þ

where O is a 3� 3 matrix of zeros. Write H ¼
�

h1. . .hk 0 0 0
�t

and set V ¼
�

v1. . .vk a0 ax ay

�t ¼ L�1H.

Then the thin-plate spline f ðPÞ having heights (values) hi at

points Pi ¼ ðxi; yiÞ; i ¼ 1; . . .; k, is the function

f ðPÞ ¼
X

k

i¼1

viUðP � PiÞ þ a0 þ axx þ ayy: ð4Þ

This function f ðPÞ has three crucial properties:

1. f ðPiÞ ¼ hi, all i: f interpolates the heights hi at the

landmarks Pi.

2. The function f has minimum bending energy of all

functions that interpolate the heights hi in that way: the

minimum of

ZZ

R2

o2f

ox2

� �2

þ2
o2f

oxoy

� �2

þ o2f

oy2

� �2
 !

ð5Þ

where the integral is taken over the entire picture

plane. (The word ‘‘bending’’ is borrowed from con-

tinuum mechanics, where a corresponding expression

describes the actual bending energy of an idealized

thin metal plate originally flat but now clamped at

locations corresponding to the heights over the

landmarks.)

3. The value of this bending energy is

1

8p
VtKV ¼ 1

8p
Vt � H ¼ 1

8p
Ht

kL�1
k Hk; ð6Þ

where L�1
k , the bending energy matrix, is the k � k

upper left submatrix of L�1, of rank k � 3; and Hk is

the initial k-vector of H, the vector of k heights.

The bending energy matrix’s three eigenvalues of zero

correspond to height surfaces that are exact mathematical

planes: the height surfaces f : ðx; yÞ ! a0 þ a1x þ a2y.

Eigenvectors for the other k � 3 eigenvalues have diagrams

that look bent. These nonzero eigenvalues are conven-

tionally sorted in increasing order, from least to greatest

eigenvalue. Whenever eigenvalues are distinct the corre-

sponding eigenvectors are orthogonal with respect to the

sum of squared displacements h (equivalently, with respect

to squared Procrustes length). Each eigenvalue is the

‘‘specific bending’’ of its eigenvector, meaning, 8p times

the actual bending energy of the interpolant as extrapolated

to unit Procrustes length.

In the application to two-dimensional landmark data, we

compute two of these splined surfaces, one (fx) in which the

vector H of heights is loaded with the x-coordinate of the

landmarks in a second form, another (fy) for the y-coordi-

nate. Then the first of these spline functions supplies the

interpolated x-coordinate of the map we seek, and the

second the interpolated y-coordinate. It is easy to show

(Bookstein 1989) that we get the same map regardless of

how we place the (x; yÞ coordinate axes on the picture. For

any such coordinate system, the resulting map

ðfxðPÞ; fyðPÞÞ is now a deformation of one picture plane

onto the other which maps landmarks onto their homologues

and has the minimum bending energy of any such inter-

polant. The bending energy of a grid is now the scalar sum of

the bending energies in the x-coordinates and y-coordinates

of the target configuration separately. To the trained eye, the

grid looks ‘‘as smooth as it can be’’ given where the land-

marks have to go—it looks like it is minimizing some sort of

net bending, which is just what it is actually doing. The

affine or uniform transformations are the formulas

ðx; yÞ ! ða0x þ a1xx þ a2xy; a0y þ a1yx þ a2yyÞ. Maps of

this class continue to have bending energy zero.

The basic mathematical result on which I am relying is a

theorem brought to our attention by Kent and Mardia in an

underappreciated paper of 1994 showing how the thin-plate

spline of geometric morphometrics, a graphical style still

somewhat unfamiliar at the time, serves also as the solution

of a certain problem of kriging, which is actually a tech-

nique for the optimal prediction of spatial random fields.3

A random field YðtÞ in d Cartesian dimensions is called

self-similar for some degree �a if for any positive s, which

will be identified below with the scale of a biometrical

feature, the distribution of saYðstÞ is the same as that of

YðtÞ: (I have omitted some niceties of notation.) The thin-

plate spline in two dimensions turns out to satisfy this

equation with a ¼ �1: In the sequel we will limit our at-

tention to the ‘‘intrinsic random fields,’’ those considered

without reference to the linear (affine) term. This constraint

is identical in its logic to the approach in the temporal

domain that studies Brownian motion without paying any

attention to its starting location, since, technically speak-

ing, the mean of a Brownian motion is simply irrelevant,

3 This odd term, pronounced ‘‘kreeg-ing,’’ derives from the name of

its originator, the South African mining engineer D. G. Krige,

1919–2013. Krige’s gifted empirical work of the 1950’s was

formalized for mathematicians by the probabilist Georges Matheron

in subsequent decades, and now forms the foundation of the field

known as geostatistics (see, e.g., Cressie 1991).

406 Evol Biol (2015) 42:395–426

123



and when followed over increasingly long time intervals its

variance becomes greater and the retrospective estimate of

the starting value steadily more and more imprecise.

If the thin-plate spline is considered as an example of a

prediction function, the covariance between values ob-

served and values predicted is closely related to the entries

rðrÞ ¼ r2 log �r of the matrix K in Eq. (2). As noted on

page 65 of Mardia et al. (2006), this covariance function

satisfies the identity rðsrÞ � s2rðrÞ up to an even quadratic

polynomial. (We have, in fact, ðsrÞ2 log ðsrÞ ¼ s2ðr2ðlog r

þ log sÞÞ ¼ s2ðr2 log rÞ þ r2ðs2 log sÞ; which differs from

s2rðrÞ only by a scalar multiple of r2:) Hence, within the

subspace of trend-free regression splines, rðrÞ and rðsrÞ
yield the same predictions. Another way to state this is that

the whole thin-plate spline approach is invariant under

arbitrary isotropic changes of Cartesian coordinate system

(translations, rotations, rescaling). It was already obvious

(see Bookstein 1989) for translations and rotations; the

equivalence of rðrÞ and rðsrÞ constitutes the same verifi-

cation in respect of scaling.

The theorem at which Kent and Mardia (1994) arrive is

that the thin-plate spline is a solution of the kriging

problem, meaning that it is an optimal predictor in a sense

different from that of Eq. (5). There, the spline was

treated as a function of the position being predicted, with

the data h fixed. In kriging, the same formula is treated as

a linear combination of variable data h, with the predic-

tion target fixed. The concept of self-similarity arises in

the kriging context, most commonly in geostatistics,

where it relates prediction errors at different sites. It is the

spectrum of the bending-energy matrix that permits this

concept to transfer to the domain of interpolation maps

(deformation grids, D’Arcy Thompson’s ‘‘Cartesian

transformations’’), which is where today’s biologist usu-

ally encounters them.

This equivalence of splined grids and kriging-based

prediction can be reworded in a more biologically ac-

cessible language. Our intuition tells us that, qualitatively

speaking, nearby pairs of landmarks should be expected

to covary in position more strongly than landmarks at

greater distance. Such a statement is not yet ready for

prime time, as we didn’t specify how position was to be

quantified. Rephrase, then: in a coordinate system in

which one of the landmarks is fixed, we expect that the

position of the second landmark with respect to the first

landmark has a variance that is, in general, smaller as its

distance from the fixed landmark shrinks. But we still

aren’t thinking with sufficient precision to satisfy the

geometer. For that notion of ‘‘position’’ to make sense,

there has to be an orientation assigned to that coordinate

system, not just a center. So actually we needed to be

talking about three landmarks, not two. And yet there is

still something unsatisfying about this way of thinking,

because if the reference direction for the coordinate sys-

tem we are imagining is set at some finite distance (e.g.,

the other end of the long axis of the form), it may have

rotated (perhaps by quite a large angle) away from the

orientation most relevant to the local comparison we are

trying to quantify. Sorting out all of these caveats, it

appears that we need four local landmarks or semiland-

marks, not three: two to set a reference scale and direc-

tion, and two others to be assessed for variability of both

that scale and that direction. The appropriate geometric

reference structure, then, is a square in one specimen, and

something not quite a square in another specimen; and

our quantification is the extent to which the two parallel

edges that are the same vector in the one specimen are the

same vector in the other specimen. It is this variation—

the variation of the location of the fourth vertex of a

small quadrilateral given the prediction from the locations

of its other three vertices—that we expect to grow smaller

as the starting square grows smaller.4 In the world of

deflated isotropic Procrustes distributions, this discrepancy

grows smaller with a variance that is precisely propor-

tional to the area of the square. This is the model of self-

similarity that this paper will rely on as a null model

separating the relatively more integrated data sets from

those that are relatively more disintegrated.

With this machinery in place it is now possible to set out

the algorithms for all the figures here. Write B for the

bending-energy matrix L�1
k of Eq. (6) as computed at the

Procrustes average shape, E for the vector of nonzero

eigenvalues of B; and W for the corresponding eigenvec-

tors (the partial Warps) in matrix form. The columns of W

should be normalized to geometric length 1, so that B ¼
W diagðEÞWt: Also, write l ¼ ðP1; . . .;PkÞ for the list of

landmark locations of the mean shape (Fig. 3, upper left),

Cdist for the isotropic Gaussian distribution N
�

l; r2I2k

�

around l in digitizing space, Ddist for the analogous dis-

tribution based on observed landmark locations from some

data set, and Pdist (with mean Pmean) for the matrix of

shape coordinates arising from Gower’s generalized pro-

crustes analysis (GPA) as applied to the samples Cdist or

Ddist, whichever drives the computation at hand (Fig. 3,

upper right). Standardize these Procrustes means l as fol-

lows: when they are vectorized as lists of 2k Cartesian

coordinates ðx1; y1; x2; y2; . . .; xk; ykÞ, we require
P

xi ¼
P

yi ¼
P

xiyi ¼ 0;
P

ðx2i þ y2i Þ ¼ 1 (meaning: l is cen-

tered, its Centroid Size is 1, and it has been rotated to

4 This construction is analogous to the classical definition of

Gaussian curvature as the limit as path diameter approaches zero of

the squared failure of a square path to close on a curving surface,

divided by the area of the square. In effect we are assessing the

variance of an estimated curvature.
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principal axes horizontal and vertical). Write a ¼
P

x2i and

c ¼ 1� a ¼
P

y2i — the central moments of the mean

configuration in its principal directions. (This is a different

a from the a in the theory of self-similarity; I use the

symbol here for consistency with the earlier literature.)

Let nonaff be the operation that projects the uniform

term out of distributions like Cdist or Ddist: the operation

that partials out the projections corresponding to the two

linear combinations

ay1 cx1 ay2 cx2 . . . ayk cxk

�cx1 ay1 � cy2 ay2 . . . � cxk ayk

� �

: ð7Þ

(These are the terms uniform.x and uniform.y

drawn as deformations of the mean polygon in the second

row of Fig. 1 of the Prologue.)

Then the fundamental computations needed for all of the

data-based diagrams here, whether from empirical data or

from simulations, are as follows.

I. Partial warp scores. For each case j between 1 and n

and each partial warp index l between 1 and k � 3;

this is the quantity ðWl � PdistjÞ where the operator

j � j is taken in the ordinary sense of a dot product of

a vector of real numbers (the elements of Wl) by a

vector of complex numbers (the locations of the

shape coordinates of the jth specimen in Pdist). The

dot product can be taken with respect to the original

distribution Pdist instead of the nonaffine part

nonaff ðPdistÞ because the partial warps are ortho-

gonal to the uniform terms of Eq. (7).

II. Deflation. For any shape distribution Pdist on k

landmarks for n specimens, the bending-energy

matrix at the Procrustes mean has k � 3 nonzero

eigenvalues E with eigenvectors W ; a matrix k �
ðk � 3Þ: The deflation of the distribution Pdist

consists of replacing the observed Procrustes shape

distribution Pdist with the distribution defl where,

case by case,

defl ¼ Pmean þ
X

k�3

l¼1

ffiffiffiffiffi

E1

El

r

ðWl � PdistÞWl: ð8Þ

Here the quantities ðWl � PdistÞWl are the partial

warp scores of Algorithm I multiplied by the corre-

sponding columns of the matrix Pdist; and the

prefactor is the scaling by the inverse square root of

specific bending energy (with respect to the partial

warp of largest scale, l ¼ 1 in Eq. (8), which is

evidently left unchanged). Like the Procrustes mean

shape l, each entity of the distribution defl is con-

ventionally vectorized as 2k real numbers, but the

sum in Eq. (8) is over only k � 3 expressions, not

2k � 6, because the notation is treating the Pdist

terms as complex numbers. This is the distribution

exemplified in Fig. 3 (lower left). By construction

the uniform component of defl must be zero, as it is

zero for each of the partial warps separately. A

similar convention will apply to the modified equa-

tion (80) below.
III. Parameterization. Plots like those in Fig. 12 are log-

log regressions of the variances of the k � 3

nonaffine partial warp scores ðWl � PdistÞ on the

bending energies El warp by warp. The slope of such

a regression is compared to the fixed value of �1 to

assess whether the data structure is as expected on

the hypothesis of a self-similar random field or is

more integrated or more disintegrated than that. I

often restrict these regressions to subsets of the

relative warps thresholded for some subrange of the

larger spatial scales. For the textbook Procrustes

shape distribution Cdist; the ‘‘isotropic offset Gaus-

sian distribution,’’ this slope is expected to be zero:

to a spherical distribution in shape space corresponds

an expectation of equal variances on any suite of

orthogonal components spanning that space, regard-

less of their relation to the mean form. It is even

possible for the slope to be positive, the same way

that errors in an Ornstein-Uhlenbeck temporal pro-

cess are anti-autocorrelated; that would correspond

to the art of caricature. A slope of �1 for partial

warp variance against bending energy embodies the

model of self-similarity demonstrated in the Pro-

logue that separates our two regimes of biologically

contrasting organization, the integrated and the

disintegrated.

IV. Relative intrinsic warps. The relative intrinsic warps

(RIW’s) are the principal components of the distri-

bution defl: This means: compute the 2k � 6 non-

trivial principal components of the covariance matrix

of the deflated shape coordinate 2k-vectors defl;

expressed in the basis of the deflated partial warps

Wl

ffiffiffiffiffiffiffiffiffiffiffiffi

E1=El

p

as in Eq. (8). The technical name for

such a procedure is a relative eigenanalysis (Book-

stein and Mitteroecker 2014). These are the patterns

of an integrated deformation that emerge as a

hierarchical list, orthogonal with respect to bending

energy, of the features manifesting more bending

than expected given their specific bending energy,

which is to say, their geometric scale. If the RIW’s

are drawn using the undeflated warps Wl instead of

the deflated warps Wl

ffiffiffiffiffiffiffiffiffiffiffiffi

E1=El

p

, any modules accom-

panying the integrated analysis will be shown with

less attenuation. In the language of a neighboring

field (medical image analysis), the relative eigen-

analysis is serving as a smoothly tapered low-pass
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filter for the representation of spatial patterns of

deformation, on the assumption that a regression

slope below �1 at step III justifies a focus on the

spatial trends of largest scale (within the nonuniform

subspace).

The RIW’s here were already introduced in Section 7.5 of

Bookstein (1991) without being restricted to the integrated

transformations. There they were called ‘‘relative warps,’’

with the deflation step left unmentioned, as if obvious.

However, that version was shortly superseded by a com-

putation omitting the deflation step. The simpler compu-

tation was introduced by Kent (1994) and shortly

thereafter became more widely disseminated as a result of

its exposure in Dryden and Mardia (1998) and its en-

coding in Paul O’Higgins’s morphologika statistical

package for physical anthropologists. My original version,

the one now called ‘‘relative intrinsic warps,’’ was ac-

knowledged in a footnote in Rohlf (1993) as the case of

‘‘relative warps with a ¼ 1:’’ As far as I know, the present

paper is its first journal appearance anywhere. Part of the

problem might be that the original publication emphasized

the grid interpretation of the dominant warps one by one

rather than examining the whole sequence of their

eigenvalues as in the presentation here. Another reason for

the burial of the original suggestion was the unfortunate

decision to concentrate on the estimation of the integrated

pattern of RIW1 per se instead of on the estimation of a;
which I show here to be the more fundamental parameter

and which, as a scalar, is relatively easier to triage and

discuss.

In passing, note how the deflation protocol of Algo-

rithm II helps buffer the principal-components computa-

tions of Algorithm IV against what would otherwise be a

standard paradox of principal components analysis.

Whether the variables being analyzed are ordinary size

measures or instead shape coordinates, standard principal

components are altered when some variables are dupli-

cated or nearly duplicated. For measured lengths, this

could be as simple as including intentionally redundant

sets of distances, such as the height of the head computed

as the distance from the vertex to each of the wide range

of possible ‘‘horizontal baselines’’ offered in Martin

(1928), Figure 295. For shape coordinates, it would be the

analogous effect of landmarks that are much more densely

sampled in some parts of the anatomy than in others. The

deflation approach, in contrast, is strikingly less sensitive

to these differences of density. Closely spaced sublists of

landmarks are represented by a single dimension for their

shared information content (in effect, their own average

location) together with additional partial warps at much

greater bending energy corresponding to the displacements

between these near neighbors. Those additional

dimensions will be deflated to nearly zero weight by Al-

gorithm II. As there is in fact no rigorous protocol ac-

cording to which landmarks are to be distributed over an

anatomy (a problem that is even worse for data that are

represented by semilandmarks along curves or surfaces,

for which arbitrariness of spacing is part of the actual

definition), it’s good news that the proposed replacement

for relative warps hardly shares at all the dependence of

the Kent method on arbitrary decisions about spacing. The

situation would be the same if, when a new length mea-

sure is being considered for a factor study, it appears in

the analysis in the form of its unique variance, its value

after the regression on all of the other measures already in

the analysis; but this is not how principal component

analysis actually works. (It is, however, the version of

factor analysis named image analysis developed by

Guttman 1953.)

In three dimensions. For three-dimensional data (Carte-

sian coordinate triples), the kernel function UðrÞ is

now jrj; ordinary Euclidean distance, and otherwise for-

mulas (2)–(6) for the thin-plate spline are essentially the

same except for changes of subscripting. Explicitly, one

has

K ¼

0 jP1 � P2j . . . jP1 � Pkj
jP2 � P1j 0 . . . jP2 � Pkj

..

. ..
. . .

. ..
.

jPk � P1j jPk � P2j . . . 0

0

B

B

B

B

@

1

C

C

C

C

A

;

Q ¼

1 x1 y1 z1

1 x2 y2 z2

..

. ..
. ..

. ..
.

1 xk yk zk

0

B

B

B

B

@

1

C

C

C

C

A

;

ð20Þ

and

L ¼
K Q

Qt O

� �

; ðk þ 4Þ � ðk þ 4Þ; ð30Þ

where O is now a 4� 4 matrix of zeros. H is now
�

h1. . .hk 0 0 0 0
�t
and if we write out L�1H as a subdivided

vector
�

v1. . .vk a0 ax ay az

�t
; the thin-plate spline f ðPÞ

taking on values hi at points Pi ¼ ðxi; yi; ziÞ; i ¼ 1; . . .; k, is

now the function

f ðPÞ ¼
X

k

i¼1

viUðP � PiÞ þ a0 þ axx þ ayy þ azz: ð40Þ

This function f ðPÞ continues to have the same crucial

properties as its two-dimensional analogue. f ðPiÞ ¼ hi for

each landmark Pi. Over all the functions that interpolate the
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heights hi in that way, f has the minimum of bending en-

ergy, now the triple integral

ZZZ

R3

o2f

ox2

� �2

þ2
o2f

oxoy

� �2

þ o2f

oy2

� �2

þ2
o2f

oxoz

� �2
 

þ2
o2f

oyoz

� �2

þ o2f

oz2

� �2

Þ

ð50Þ

taken over all space. And the value of this bending energy

remains a multiple of the quadratic form

Ht
kL�1

k Hk; ð60Þ

although the matrix L�1
k is now negative semidefinite rather

than positive semidefinite.

Corresponding to this interpolant is the self-similar

deflation of the three-dimensional Procrustes shape coor-

dinates according to the spectrum of L�1
k where, owing to

the change in the kernel function U to the linear term, the

value of �a in the self-scaling equation is � 1
2
instead of

�1; and the deflation that ensues must be by the ratio of

energies E1

Ei
rather than its square root. Explicitly, for three-

dimensional data, one has

defl ¼ Pmean þ
X

k�4

l¼1

E1

El

ðWl � PdistÞWl: ð80Þ

where each multiplicand Wl is now a triplex of k-vectors

for the lth eigenvector of L�1
k in the x-, y-, and z- slots,

respectively, of the full Procrustes shape coordinate vector,

and where the square-root symbol of Eq. (8) has been

deleted. Just as Eq. (8) resulted in a nonaffine space of rank

2k � 6 for two-dimensional data, corresponding to the

annihilation of two dimensions of uniform shape change,

so Eq. (80), the variant for three-dimensional data, results in

a nonaffine space of dimension 3k � 12, versus the rank of

3k � 7 for the Procrustes shape coordinates in full. But

there is no convenient equivalent of the useful pair of

formulas in Eq. (7) for the five dimensions of uniform

transformations in the context of three-dimensional data,

and the interpretation of the RIW’s as relative eigenvectors

must be altered a bit (the reference matrix now being the

square of the bending energy matrix, not the bending en-

ergy itself).

Figure 9 shows an example of the three-dimensional

deflation protocol corresponding in its simplicity to the

scheme of Fig. 1. The ‘‘test design,’’ upper left panel, is just

a pair of pentahedra of the same shape (inspired by the

pyramids at Giza), the larger one exactly four times the

scale of the smaller. Because transformations of tetrahedra

can always be modeled as uniform, the ‘‘nonaffine

component’’ of a set of pentahedral shapes can be

parameterized as a three-vector. In the usual (offset

isotropic) Procrustes simulations this particular three-

vector is spherical for small shape variations, so we can

graph any orthogonal pair of its dimensions. In this

example, samples of 500 have been drawn from the

corresponding spherical Gaussians of low standard de-

viation in the covering R27. The remaining two figures of

the top row show the x- and y- coordinates of this nonaffine

component for the two pentahedra of the design after the

transformation to Procrustes shape coordinates. These two

dimensions are arbitrary except that, insofar as they are

orthogonal, they confirm the sphericity that follows from

the symmetries of the simulation. Before deflation, the

variance for the smaller pyramid (upper right) is four times

the variance for the larger one (upper center), correspond-

ing to the inverse of the fourfold ratio of their scales.

The test configuration of the two pentahedra has five

nontrivial eigenvalues of bending energy, corresponding to

four dimensions of deflation by ratios to the least negative

of these. Following Eq. (80), each of these ratios is applied

three times, once to the x-subscripted shape coordinates

along the direction of the eigenvector, once to the y’s, and

once to the z’s. After deflation, we repeat the extraction of

the two identically shaped pentahedra and the construction

of the nonaffine component of shape variation for each.

These three-vectors are still spherically distributed, and

now typical sectional scatterplots show the same variance

(lower row) in spite of the factor of four in scale of the

mean configuration. In other words, deflation works just as

well for three-dimensional data as for two-dimensional

data, as long as one deletes the square-root operation in

formula (8). It is a provocative thought that the difference

between analysis in two dimensions and analysis in three

might reduce to this single editorial alteration, the

elimination of the radical. It accommodates the fundamen-

tal change in the meaning of the manifold of directions

around a point between the two settings. For two-dimen-

sional data, this set of directions is a circle; in three

dimensions, it is a spherical surface instead.

Visualizing Integration: Three Examples

This section reanalyzes three extant data sets from the point

of view of the preceding concerns. One of the data sets

shows strong integration, one seems indistinguishable from

the featureless state of self-similarity, and one hints at the

possibility of disintegration within our species but self-

similarity across our clade. The landmark schemes and data

sets involved here have been published before, and all three

were reviewed in some detail in Bookstein (2014), though

not in the light of this concern for self-similarity.

Example 1 Vilmann’s rodent growth data
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The likeliest place to find integration would be a region

characterized, in Melvin Moss’s felicitous phrase, as a

‘‘functional matrix,’’ a coherent anatomical domain bal-

ancing diverse functional criteria that persist over a growth

trajectory. One such data set is the octagon of landmarks

circumscribing the developing brain in the midplanes of 21

rodents (of which the data from 18 are used here) that were

radiographed cephalometrically at ages 7, 14, 21, 30, 40,

60, 90, and 150 days after birth by the Danish morphologist

Henning Vilmann; the landmarks were digitized by Moss

himself. These data were first used to illustrate morpho-

metric techniques in Bookstein (1984) and were listed in

extenso as an Appendix to Bookstein (1991). For a diagram

of this landmark scheme, eight points on 21 growing rodent

skulls at eight ages, see Bookstein (2014), Figure 6.8.

Analysis by the principles of this paper is the concern of

Figs. 10, 11, 12, 13, 14 and 15 here. For a different

approach to this same data set, centered on the within-age

covariances instead of the growth trajectories, see Book-

stein and Mitteroecker (2014).

At upper left in Fig. 10 we see the conventional Pro-

crustes shape coordinate plot of these octagons. There is a

substantial uniform component to the growth trajectory,

visible most clearly at the landmark Lambda: the combi-

nation of a consistent drop in overall height of the calva

relative to the cranial base length with a shearing along this

axis that reverses from the age interval 7–30 days to the

age interval 30–150 days. After this uniform component is

removed, for the reasons given in Sect. ‘‘A Theorem with

Its Corollary Algorithms’’, we see a striking pattern in-

volving relative changes of length along the upper and

lower borders of this octagon, along with an increase in the

apparent variability of IPP, the uppermost-posteriormost

landmark. The procedure of deflation (Algorithm II) seems
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Fig. 9 A simple example of the effect of deflation for three-

dimensional data. (upper left) The test design, consisting of two

square pyramids of different scales to the same apex. (upper center

and right) In an isotropic Mardia–Dryden distribution of Procrustes

shapes for this mean form, the amplitude of the nonuniform

component for the smaller pentahedron is four times that for the

larger one. (lower center and right) After deflation by Eq. (80) as per
the text, the two pentahedra show nonaffine variation of the same

amplitude in spite of the fourfold difference of their geometric scales
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to have only subtle effects on this scatterplot, in particular,

tipping the apparent orientation of variation at IPP so that

all of the little segmental summaries are more nearly

parallel. We shall see shortly that this adjustment at IPP is

serving to attenuate the single local feature manifested in

these data.

Fig. 10 Three shape coordinate

scatters for the Vilmann rodent

skull octagons. (upper left)

Ordinary Procrustes shape

coordinates. (upper right)

Without the uniform component

(consistent height reduction plus

a temporally inconsistent

shearing). (lower left) Deflated

coordinates from Algorithm II.

Landmarks: Bas Basion, Opi

opisthion, IPP intraparietal

point, Lam Lambda, Brg

Bregma, SES Sphenoethmoid

synchondrosis, ISS

intersphenoidal synchondrosis,

SOS spheno-occipital

synchondrosis. The variation in

apparent amplitudes of the

landmark-by-landmark plots is

close enough to distance from

the centroid to be captured by

the quadratic analysis in Figs.

14 and 15
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Fig. 11 The results of Algorithm I show a steady drop of variance with partial warp score for all except the last (most highly bent, smallest scale)

of these. This strongly suggests the possibility of an integrated growth gradient accompanied by a local shape feature
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To proceed further we need to examine the spectrum of

the bending-energy matrix for this octagon. Figure 11 dis-

plays each of its five nontrivial eigenvectors as a grid in the

orientation of the pooled growth trajectory. The specific

bending energies (eigenvalues E of the bending-energy

matrix) are 4.3, 6.4, 14.2, 23.4, and 35.2, which is a sufficient

range that the maneuver of Algorithm II should have (and

does have) an effect. We see a steady drop in variance across

the series of partial warps, except for the last. The question

for Algorithm III is the calibration of the speed of this fall.

The plots in Fig. 12 assess this scaling. At left is the

standard approach sketched in Algorithm III, the

specific bending energies, log scale
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Fig. 12 Two estimates of the

scaling dimension of rodent

skull growth. (left) Regression

of log partial warp variance on

log bending energy across all

five dimensions. (right)

Regression for the first four

partial warps only, plus a nugget

term for digitizing error, results

in a scaling of �2:2;
satisfactorily different from �1:
See text

 RIW 1, in deflated coordinates  RIW 1, reinflatedFig. 13 The single interpretable

relative intrinsic warp for these

rodent data. (left) In the deflated

coordinate system of Fig. 10,

lower left. (right) ‘‘Reinflated’’

back to Procrustes units. The

impression of two features, one

a large-scale integration and one

local to the IPP, leaps to the eye

in the reinflated version
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full nonaffine space versionFig. 14 Closing in on the large-

scale integrated component for

the Vilmann data. (left) Only

one principal component rises

above spherical noise for the six

dimensions of quadratic trend.

This would be strong evidence

of integration regardless of the

more sophisticated regression

evidence in Fig. 12. (right) For

the entire 10-dimensional

nonaffine shape subspace, the

first relative warp is

indistinguishable from the

quadratic (growth-gradient)

version at left (r � 0:999)
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unweighted regression of log partial warp variance on log

bending energy. The nominal slope here is �1:5; hinting at

integration rather than self-similarity, but clearly the

smallest partial warp (point 5) is an outlier from the re-

gression. We repeat the computation using only the first

four partial warps. At the same time, following a sugges-

tion of Mardia et al. (2006), we incorporate a ‘‘nugget

effect’’ for irreducible landmark-specific digitizing noise.

(This is a term for uncorrelated isotropic variance at much

smaller scale than what is involved in either the self-

similarity or the integrated models.) The fit is optimized for

a nugget variance equal to 0.001142, which is most of the

variance of partial warp 4, resulting in the considerably

better fit shown in the right-hand panel together with a

confirmation that partial warp 5 is somehow different.

In the presence of a hypothesis of integration, we can

expect a meaningful suite of relative intrinsic warps, that is

to say, relative warps of the matrix of deflated shapes (Fig.

10 lower left). An ordinary principal components analysis of

these 16 Cartesian coordinates results in a first component

explaining more than 91% of all the variance in the diagram,

with all successive dimensions patternless according to the

criterion of Bookstein (2014). It is sufficient, then, to report

only this first RIW. In the deflated coordinate system it is

indeed at large scale (Fig. 13, left), a combination of

shortening of the upper margin relative to the lower margin

with a gentle anteroposterior bending. But when we reinflate

back to the original units of Procrustes distance (right panel)

we see there is also a local feature at IPP, corresponding to

the last partial warp in Fig. 11. Thus the growth of these

skulls, strongly integrated over time (see, e.g., Bookstein

2014, Figure 7.16), is likewise strongly integrated over

space, with one exception (the twist at IPP).

This pattern is strong enough that we might expect even

a less sophisticated morphometric method to hint at it. The

left panel of Fig. 14, for instance, confirms the presence of

that single dimension of large-scale integration by an ex-

plicit principal component analysis of just the quadratic

terms in this pattern of shape variation (orthonormalized

terms in x2; xy; and y2 for each of the two Cartesian co-

ordinates of the deformed scene after the original x and y of

the uniform term have been partialled out; see Bookstein

1991, Section 7.5). We see an obvious trend from the

youngest rats to the oldest, with no evidence of a mean-

ingful second dimension. This dimension is effectively the

same as the ordinary first relative warp of the nonaffine

shape subspace for these same data (right panel); the cor-

relation between the two possible ‘‘factors of integration’’

is 0.999.

A grid diagram of this first component, Fig. 15 left, is an

adequate representation of the large-scale pattern of inte-

gration beyond the uniform term. Insofar as this formula

has the same second derivative everywhere, it could ap-

propriately be characterized as ‘‘totally integrated’’ just as

much as any uniform transformation (which has a constant

first derivative) could be. If we just compute the first

relative warp of the forms in the upper right panel of Fig.

10, forms that have not yet been deflated, we arrive at a

grid diagram (Fig. 15 right) indistinguishable from the one

at right in Fig. 13, the reinflation of the deflated analysis.

This confirms the unidimensionality of Fig. 14 and hence

the characterization of this rodent neural skull growth trend

via four conceptually distinct processes: a uniform com-

ponent that reorients itself somewhat from the first half of

this growth trajectory to the second half, together with a

single large-scale growth gradient, over which is super-

imposed a separate phenomenon local to IPP. It is com-

forting that two quite different kinds of geometric

morphometric analysis arrive at this same finding.

Our deflation approach has thereby certainly altered the

standard principal-component method, which visualizes the

same sample of growth trajectories (see Figures 7.5 and

 Vilmann data set, N=144
first (and only) quadratic component

 Vilmann data set,
 first nonaffine relative warp

Fig. 15 The large-scale quadratic (integrated) trend is indistinguish-

able from the deflated relative intrinsic warp in Fig. 13, while the first

principal component of the nonaffine shape coordinates is indistin-

guishable from the combination of this component with a local effect

at IPP, the same pattern as the reinflated first RIW from Fig. 13. The

grid on the left has the same second derivative at every point, and

hence could be considered as integrated as any uniform transforma-

tion (for which it is the first derivative that is similarly unchanging)
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7.16 of Bookstein 2014) by just two features of shape

variation that fail to attend to any aspects of scaling whe-

ther uniform, quadratic, focal, or otherwise. The first of

these features is the correlated effect of the overall vertical

compression (a uniform feature) with the quadratic trend

and IPP detail in the complementary subspace; the second,

the reversal of that direction of shear in the uniform

component from the first half to the second half of the

growth epoch. The method of principal components has no

access to the bending energy matrix and its eigenvectors,

and so cannot remark the remarkable fact that the variances

of the first four partial warps, but not the fifth, are roughly

the inverse squares of the ratios among the bending en-

ergies of the corresponding eigenvectors. (Certainly this

finding was not reported in any of the several earlier

publications on this frequently published specific data re-

source.) Nor can the principal-component approach focus

on the salience of that single feature at the far right of Fig.

11 as the only feature that deviates from the smooth pattern

of loglinear dropoff of partial warp variance with

geometric scale. Both these findings, along with the de-

lineation of the uniform subspace itself, are a function of

the actual mean positions of the landmarks, information

that the conventional multivariate analyses cannot use to

interpret their covariance structure.

To be effective for reporting findings pertaining to any

integrated system, a descriptive language needs to focus on

the underlying parameters of that integration along with the

feature(s) which deviate from it in just this way. Notice, in

passing, that the scaling dimension identified here, �2:2;

does not go very far toward actually modeling the covariance

structure of this data set. The value of �2:2 describes only

the limiting slope of the plot at right in Fig. 12. Actually there

are ten parameters (nine direction cosines, along with a

variance) in the nonaffine relative warp of Fig. 14 (right) that

exhausts the dimensionality of the nonaffine modeling here.

Of those ten, six can be understood to pertain to the quadratic

growth-gradient estimate, while another three, not entirely

independent of the first six, specify the residual from this

trend at IPP (equivalently, the residual at the fifth partial warp

in Fig. 12). In any event, a count of eleven (ten plus one for

the nugget variance) is far fewer than the total of 55 coeffi-

cients that would be required to notate the general covariance

structure on these same 10 shape coordinate dimensions. The

strength of integration in this example means that the bio-

logical context here is far from ‘‘general.’’

Thus, in brief: a finding of integration is based on the

estimated slope of the log-log regression of partial warp

variance against bending energy, For that finding, the

dominant integrated shape pattern can be visualized by the

first RIW—the first relative eigenvector of the nonaffine

part of a shape coordinate configuration with respect to its

bending energy—and can be summarized by the

corresponding quadratic growth-gradient. If a representa-

tion is desired that also visualizes the associated local

modules, one might apply the same RIW formula to the

undeflated partial warps instead.

Example 2 The adult human callosal midcurve

In contrast to this rich feature analysis for one developing

mammalian neural skull, an analysis of its contents, the

mammalian brain, may show a striking lack of integration

when restricted to (a) a single anatomical component, the

corpus callosum in the midline; (b) human adult males only;

and (c) a sample heavily enriched in persons with a newly

discovered birth defect, fetal alcohol spectrum disorder

(FASD). This 40-semilandmark, 45-subject human callosal

midcurve data set was first described in Bookstein et al.

(2001). It was diagrammed, and its scientific context ex-

plained, in Bookstein (2014), Figure 7.22 and the accom-

panying text. The sample comprises the midline curve of the

corpus callosum in the brains of 15 normal Seattle adult

males together with 30 adult males diagnosed with what was

called either fetal alcohol syndrome (FAS) or fetal alcohol

effects (FAE) at the time the sample was originally gathered.

These are usually combined nowadays under the name of

FASD. All diagnoses predated our study, and none involved

any sort of brain imaging.

The callosal outlines here were traced in three dimen-

sions from a custom-designed brain MR protocol by a

novel semilandmark procedure, the symmetry curve, ex-

plained in the original reference, and thereafter were pro-

jected into two dimensions for this and all earlier analyses.

They are thus planar 40-gons of semilandmarks spaced

roughly inversely to averaged curvature while tracing both

sides of a C-shaped arc. Hence toward the high-energy

(small-scale) end of its spectrum, the spacing of specific

bending energies is not the discrete spectrum of Fig. 12 but

the more nearly continuous spectrum of the analogous

Fourier analyses. As Fig. 16 shows, in this example the

scaling of log partial warp variance against log bending

energy is remarkably close to the slope of �1 that char-

acterizes pure self-similarity (that is, absence of spatial

features at any scale), and if we concentrate on only the

larger-scale aspects, the first few partial warps, the slope is

almost exactly �1: (The apparent nonmonotonicity for the

first pair is likely an artifact of the close spacing of the first

two specific bending energies.) Corrected for spatial au-

tocorrelation, then, we are looking at precisely the spatial

equivalent of Brownian motion. Any apparent large-scale

features of these curves could have arisen just as well from

the chance concatenation of analogously variable aspects

of shape (e.g., indentations of the outline, or relative

twisting of the centerline) at any or every smaller scale.

These arcs no more show statistically meaningful patterns

of trend than the equivalent ‘‘trends’’ of a random walk do
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(see Bookstein 2014, pp. 45–51 and 473–474). Whether

the language be biopsychiatric or neuroradiological, it is

not worth attempting to interpret the principal components

of this shape. Properly analyzed, these outlines show no

evidence of any large-scale integration. Instead, the scaling

of their features is self-similar. This is not to say that the

actual amplitude of their shape variation (the intercept of

the linear fit in Fig. 16) is not sometimes of interest, but

that the assessment of ‘‘how different’’ any pair of these

shapes is, or what a discriminant function might look like

that separates two groups of different average shapes, is

going to be determined by the spacing of those (semi)-

landmarks in a manner that leaves the realm of biological

explanation (here, the mechanisms by which alcohol in-

terferes with the migration of glia in the embryonic brain)

for the realm of medical image analysis per se. A finding of

self-similarity, in other words, constrains the language one

ought to use to report the shape variations within a sam-

ple—it decouples the estimates of net dissimilarity from

the language of biological processes.

Figure 17 confirms this diagnosis by direct display of the

first six ordinary relative warps (principal components) of

the 45 outlines (above) and then the first six RIW’s of the

deflated data set (below). The first ordinary relativewarp (top

row, left) combines a substantial component of shear with a

thinning all along the arch (see Bookstein et al. 2002, Fig-

ure 7). Note that the shearing pertains to a uniform compo-

nent of shape, whereas the thinning does not. This first RW is

correlated with a bidirectional pattern of divergent psycho-

metric profiles for these subjects, one inwhich problemswith

executive function are emphasized, the other emphasizing

motor problems. But otherwise neither set of relative warps

appears biologically suggestive when examined closely

enough. In particular, each ‘‘component’’ of the deflated data

set appears to be an arbitrary combination of features at

mixed scale from all over the arch, including arch bending,

height increases at one end or the other, flattening of the

bulbs at one end or the other (genu or splenium), and res-

pacings along the central segment. The haphazard mixing of

all these features corresponds closely to what one would

expect from independent realizations of a formally self-

similar process (compare the simulations at right in Fig. 4).

One might refer to the variation here as ‘‘writhing’’ rather

than expressing any inducible morphogenetic pattern.

We make little neuroteratological progress, then, by at-

tempting to interpret these randomly rotating mixtures as

‘‘factors of midcurve callosal shape’’ that might hint at stable

extended patterns of spatially varying dependence on a pre-

natal alcohol dose. In the actual empirical scientific context

generating these data, the natural history of the fetal alcohol

diseases, the damage is characterized instead by the greater

variance of the fetal alcohol subgroup’s outlines in the sub-

stantial majority of local shape features that might be

imagined here. A suitable quantity would be analogous to the

parameter for step size in the case of a random walk, or

temperature or viscosity in the case of Brownian motion.

Such language, while far from the biometric rhetoric of group

mean differences and t tests customary in neuroradiology and

neuropsychiatry, nevertheless converts easily into quadratic

discriminations (likelihoods based on differences of covari-

ance matrices as well as means; see Bookstein 2014, Sec-

tion 8.1) by which the shape of this outline can be used as

evidence of fetal alcohol damage in adults who are encoun-

tered in the course of other societal functions. An application

to mitigation in the course of the penalty phase of aggravated

murder proceedings in American courtrooms is outlined in

Bookstein and Kowell (2010).

I noted above that the method of deflation serves as a

remedy for one nagging issue in the design of a landmark

scheme, the problem of uneven spacing. We see from
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Fig. 16 Output of Algorithm III

for the callosal midcurve data.

The regression slope is

indistinguishable from �1:0 for

the first ten partial warps,

making moot any thought of

proceeding with Algorithm IV

(relative intrinsic warps),

let alone ordinary principal

components of shape. The

anomalous ordering of the first

two partial warp variances does

not alter any of the

interpretations in the text
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Example 2 that this method of deflation applies verbatim to

data sets of semilandmarks without any alteration at all, and

in this new context the corresponding property of being

relatively independent of spacing is even more attractive.

Indeed, by virtue of its intentional downweighting of local

shape feature variance in proportion to the squared span of

the underlying list of landmarks, themethod explicitly solves

the main problem that otherwise bedevils semilandmark-

based morphometrics even today: how to weigh the relative

information content of landmarks, curves, and (in three di-

mensions) surfaces for analysis of principal components and

other patterns of variation. No matter how many semiland-

marks there are, and whatever their spacing, the deflation

method automatically reduces all but two dimensions’ worth

of the full space of shape coordinates to a commonweighting

by inverse bending energy. One can then explore integration

independent of most of these well-known pitfalls of semi-

landmark analysis by principal components.

Example 3 Human and anthropoid skulls

For an example of potentially greater evolutionary in-

terest I turn to a small data set of 22 Homo sapiens skulls

and 7 others that have been analyzed before as a core ex-

ample of the way a physical anthropologist ought to se-

quence her morphometric computations: Weber and

Bookstein (2011), Chapter 4. Before that, this 22-specimen

or 29-specimen data set of midsagittal cranial landmarks

was described in Bookstein et al. (2003), and it is dia-

grammed not only in the Weber–Bookstein textbook but

also in Bookstein (2014), Figure 6.8. The sample of H.

sapiens comprises 5 human children, 16 human adults, and

the Mladeč skull. There are also four Neanderthals (Ata-

puerca, Guattari, Petralona, and Kabwe), ‘‘Mrs. Ples’’ (STS

5), and two chimpanzees, one of each sex.

As Fig. 18 shows, when the data set is restricted to the

recent humans alone it not only shows no integration but

actually hints at an excess of spatially uncorrelated local

features—the finding called disintegration above—in spite

of the wide age range (age 2 years through adult) that should

seemingly permit any growth-gradients to have substantial

leverage. The analysis here argues, in effect, that no principal

components of this form in samples of any size are likely to

be particularly meaningful. For instance, to arrive at a slope

near the privileged value of �1 it is necessary to restrict the

regression to an unpersuasively short list of features. (Figure

18, right, suggests this dimensionality might be as low as

three.) This would correspond to a similarly short list of

features remarked verbally (features characterized by terms

like ‘‘globularity’’ or ‘‘bimaxillary protrusion’’).

As in Example 2, this slope serves not only as a finding

(the empirically based estimate of an informative pa-

rameter) but also as a constraint on the language of re-

porting—a ‘‘meta-finding,’’ as it were. This count of three

dimensions of features is too few to be apposite to the wide

range of arguments about evolutionary adaptations and

functions of this structure reviewed in recent texts such as

Lieberman (2011). Hence the morphometric analysis of

human skull form is not likely to be informative about its

biological causes or effects over samples of ‘‘typical’’

forms like these. The finding, in other words, is a caution

about language (a caution, incidentally, that is widely ig-

nored all across paleoanthropology).5

Fig. 17 Confirmation of the self-scaling nature of the callosal

midcurve data. (above) The first six ordinary relative warps of these

40-gons. (below) The same for the deflated shapes. These patterns are

uninterpretable in any coherent morphogenetic context. They thereby

illustrate the proposition of the text that while the ordinary principal

components of Procrustes shape coordinates privilege large-scale

phenomena over phenomena at smaller geometric scale (top row)

even when applied to the description of self-similar shape distribu-

tions, the relative intrinsic warps (bottom row) do not do so

5 For a data set to be considered disintegrated according to the

classification here, the variances of warps at the largest available

spatial scales must fall short of what the null hypothesis of

selfsimilarity would assign to them given the variances of the patterns

at smaller spatial scales. Thus an alternative way of phrasing the

finding is to note that the largest-scale patterns of shape variation seem

to be canalized. Even the first principal component of a data set could

accommodate this description. Maximizing variance as a multiple of

the squared length of a vector of loadings in Procrustes shape space is

no guarantee of morphogenetic or phylogenetic meaning, any more

than the first principal component of a vector random walk in time has

to be meaningful (Bookstein 2013)—the data set must first be found to

be integrated.
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Exploring this morphospace further, we now restore the

seven additional specimens (four Neanderthals, Mrs. Ples,

and the male and female chimpanzees) that were part of this

data set when it was originally published. In a didactic

context, ordinary relative warp analysis shows that the three

non-Homo forms do not inform us about the meaningfulness

of ordinations within Homo, and likewise that the Nean-

derthals are not helpful as regards making sense of the 22 H.

sapiens per se. A reanalysis by these methods of integration,

Fig. 19, immediately confirms that judgment. A scaling di-

mension of �1 over the six highest scales cannot be argued

to rule out a hypothesis of self-similar variability, meaning,

in this context, that the differences between taxa and the

differences within taxa, being at different morphological

scales, are quite unrelated, so that principal components

analysis of such a pool cannot be expected to tell us much

about actual evolutionary or ontogenetic processes. Such a

conclusion is consistent with a current literature that em-

phasizes genomic distance and other quantities consistent

with models of neutral drift, especially the recent turn to

such genomic analyses for more reliable information about

the origins of the larger human groups (see, e.g., Pääbo

2014). In this context, so different from the domain of epi-

genetic explanations, the model of neutral drift in mor-

phospace becomes more powerful as the computed slope of

the log-log plots here comes closer to the value of �1:0 for

self-similarity. In other words, neutral drift might be char-

acterized by principal components having no particular

meaning or spatiotemporal stability. It is the absence of

meaningful principal components that renders the ex-

amination of evolutionary distances reducible to the Pro-

crustes formulation.

The inference that samples like these afford no insights

into the spatial organization of anatomical variation can be

confirmed by the plots in Fig. 20, which share the design of

those in Fig. 11 for the rodent skull data. We see a falloff of

partial warp variance with increasing bending energy (de-

creasing spatial scale), but without a sharper quantitative

scalpel, such as the scatterplots just proceeding, we cannot

tell if this rate of decline is rapid enough to support any

claim that principal components are likely to be

biologically meaningful. For these six partial warps, the

falloff of partial warp variance with specific bending en-

ergy is precisely in keeping with the new null hypothesis of

shape self-similarity, strongly implying that examination of

ordinary principal components of shape is unlikely to yield

any insights. Such a prophylactic might well eliminate the

majority of applications of principal components that are

seen in today’s physical anthropology journals and major

conferences, applications in which the extracted principal

components are diagrammed as thin-plate splines without

any acknowledgement of the possibility that their patterns

are mainly a matter of the distribution of landmarks over

the average form. It would be interesting to learn what the

founders of that method, like W. W. Howells, would think

about this supersession of their concerns with factor ana-

lyses, scree plots, and the like. In any event, the process of

deflation can drastically alter all of the usual tabular and

graphical outputs of these classical analyses. For more on

the role that principal components have hitherto played in

evolutionary anthropology, especially as regards functional

arguments, see the discussion in Bookstein (2015a).

Discussion

The previous section’s three examples span a realistic

range of empirical possibilities, from the mildly disinte-

grated (the features of the 22-specimen H. sapiens data set,

Example 3, with slope a ¼ �0:56) to the clearly integrated

(growth of the Vilmann rodent skull octagons, a ¼ �2:2

for the model with a local feature and also a nugget effect).
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3
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Extending this range in the direction of more integration

would probably require the sort of biomechanical con-

straint that applies across whole extended rigid compo-

nents, such as the patterns of anthropoid scapular form

studied by Oxnard (1973).

I was not able to locate data that generated a value of

this slope a any closer than -0.56 to zero, its value for the

isotropic offset Gaussian shape distributions that drive

most textbook presentations today. Greater extents of dis-

integration probably require contexts with a substantial

component of sheer digitizing error, such as the isotropic

offset Gaussian distribution itself (Fig. 3, upper right). It

would appear that the case of a ¼ 0 is thus not suitable as a

biological null hypothesis, since it is practically never en-

countered in real data sets. The provenance of a realistic

null does not appear to characterize any of the currently

popular approaches to ‘‘testing’’ integration. Among the

candidates that do not meet this very reasonable criterion

are Mantel tests comparing empirical distance or dis-

similarity matrices to simplified models, and permutation

tests of landmark rearrangements that do not correspond to

noise processes having anything to do with the factors

known to oversee organismal shape variation. But this

manuscript is not the place for a sustained critique of that

other literature.

Even a cursory glance at the shapes in Fig. 4 that arise

from the isotropic offset Gaussian shows their irrelevance

for organismal biological questions. If landmark perturba-

tions from a mean form were indeed independent from

landmark to landmark, the form you are studying would not

have been regulated; it (your ancestor, if the study is about

the evolution of H. sapiens) would have died before

growing into that configuration. (Thus you would not be

encountered in the fossil record, either.) Although the
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of the first few partial warps.
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Fig. 20 Analysis of the first six partial warp scores for the full

29-specimen data set shows a steady fall of variance with partial warp

index consistent with the regressions in Fig. 19. The pattern is

monotone whether or not the outlying forms (Mrs. Ples and the two

chimpanzees) are considered. Such a decline is not consistent

with total disintegration, but the distinction between self-similarity

and integration requires the more quantitative approach of Algo-

rithm III
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offset isotropic Gaussian for landmarks in two- or three-

dimensional space (the archetypical disintegrated distri-

bution) is the mathematical equivalent of stasis in time, it is

not the scientific equivalent—owing to the way that or-

ganismal development is actually regulated, it is never

seen, and so is not a process of any interest to the organ-

ismal biologist. Then, obviously, it cannot function as a

null model should—it has no chance of serving as a

meaningful analysis of any situation involving living or-

ganisms. It is pointless to report the rejection of hypotheses

of pure noise when we are actually interested in delineating

the factors accounting for correlations of landmark loca-

tions from region to region across an entire organismal

form. The symmetries of that pure noise model are so

distant from the factors of any real organismal course as to

be irrelevant to their visualization or explanation.

Hence the totally disintegrated models found in the

current morphometric literature seem far less congenial to

biological explanations than the self-similar model intro-

duced here. The hypothesis of self-similarity, in fact, has

been shown to be consistent with data from two of the three

exemplary data sets reviewed above. By contrast, when

integration proves to be present, as in the rodent skull

example, our purpose is to describe its features, at what-

ever scales they are manifested. The appropriate compar-

ison for the growth gradient unearthed in the rodent data is

not against the null of isotropy, but against the much more

apposite null of self-similarity, and, when even that subtler

null is found not to fit, the further comparison of the

variance on partial warp 5 with the scaling dimension of

the preceding four partial warps, the comparison that

confirms the local effect at IPP. In this data set, both of the

comparisons meet the ‘‘interocular trauma test’’ (Bookstein

2014)—both ‘‘hit you between the eyes.’’ There is no need

for any further statistical computations. Rather, the bi-

ologist, dismissing the morphometrician with thanks, can

proceed straight to the stage of a biometric interpretation,

the way Vilmann and Moss always wanted to go.

Approximations are available that replace the formal

construction of the self-similar distributions (as in Fig. 4)

with more graphical versions easier to teach and digest.

One such explicit generative model, originally published in

Bookstein (2007), is diagrammed in Fig. 21. A 13-land-

mark template reminiscent of graph paper is parcellated

into successively smaller compartments within each of

which the variability is represented by one ‘‘new’’ land-

mark varying with circular symmetry at a variance that

shrinks with the size of its compartment. Regarding the

prototype in Fig. 21, for instance, the first four landmarks

are the outer corners of the square that jointly delimit a

Procrustes shape space of the four dimensions shown in the

middle row of Fig. 8 (Bookstein 1991). The fifth landmark,

at the center of the square, is perturbed with circular

symmetry around the location imputed to it by the defor-

mation of the square, with a variance that is half that of the

corners of the square. Then the midpoints of the edges of

the square follow, independently in this simulation, each

perturbed around its imputed location with variance re-

duced by a further factor of one-half, and so forth. If we

stop at the 13-landmark stage, lower right, the resulting net

deformation (graphed of course as a thin-plate spline) ap-

pears to have discrete features at a satisfying range of

spatial scales. If this were a summary of some experimental

or evolutionary phenomenon, we would be able to report it

and speculate on its causes or effects using a language of a

hierarchy of scales rather as we did for the real example of

the rodent skull data. (If the goal were to simulate the

rodent data in particular, the variance would drop faster

than the areas of the cells, and there would be some di-

rectional information injected, too.) When the mean land-

mark positions involve such artificial symmetries,

parcellations like this can be extended indefinitely, and you

can see how they are self-similar, or nearly, by explicit

design.

Figure 22 shows a sampling of forms produced from

multiple runs of this hierarchical procedure for different

settings of the amplitude of the initial perturbations (along

with all that follow). Now each deformation of the template

seems to suggest a short list of one or two specific features

of that deformation, a circumstance entirely contrary to that

of the analogous offset isotropic shape distribution (recall

Fig. 4). Taken as a whole, the models of a sample such as

this are (nearly) self-similar in the sense used here. But as

samples of 1 they have features that could well be worth

reporting, as for purposes of classification or medical di-

agnosis. In other words, if you encountered just one of

these grids in real data (or anywhere else outside the

context of this specific simulation) the issue would not be

to test it ‘‘against a null of isotropy,’’ because isotropy is

not a tenable theory of morphogenesis. Instead the task

would be to describe its features—what gradient(s) it bears,

and at what spatial scale(s). That these descriptors might

prove unstable in larger samples should not vitiate their

relevance for the description of the individual grid.

What about the uniform term? Prior to deflation we

sequestered the uniform dimension of shape variation, a

total of two degrees of freedom, on the grounds that it has

zero bending energy regardless of its amplitude, and thus

could not be made commensurate with the rest of the

Procrustes shape space in terms of an inverse bending

energy. Of course, that uniform term has a magnitude of its

own derived from the original geometry of the Procrustes

tangent space, a magnitude that derives from the two-di-

mensional projection onto this subspace already set out in

Eq. (7). One could reasonably wish that those last two (or,

rather, first two) degrees of freedom ought to be
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incorporated somehow in plots like those here. And they

can be, as long as it is understood that, like point 5 on the

right side of Fig. 12, they have been omitted from the

computation of the scaling dimension. Specifically, one can

plot a point corresponding to ‘‘partial warp 0’’ on the other

end of the abscissa of analyses like these, and use the

Procrustes amplitude of the corresponding term to (per-

haps) shift the upper limit of the ordinate in this same plot.

Its exact abscissa is indeterminate, of course. If there is a

linear fit with slope steeper than �1; one might locate it at

a fictive bending energy corresponding to the amplitude of

this uniform variation, and interpret it as the ‘‘scale’’ of the

corresponding ‘‘bending.’’ For these Vilmann data, the

uniform term has variance 1.74 times that of partial warp 1,

and so would be plotted ðlog 1:74Þ=2:2� 0:252 to the left

of the point labelled 1 in Fig. 12 (right), where it would

appear likewise to lie fairly close to the nugget-modified

regression line.

It would be tempting to presume that for data sets with

high negative scaling dimension, like the Vilmann rodent

neurocrania, one ought to expect a high correlation be-

tween the first relative intrinsic warp and this uniform term.

But this Vilmann example actually rebuts that expectation.

As the text noted, the uniform term has two dimensions,

one of which reverses over developmental time, even

though the nonaffine term has only one dimension, which

does not reverse. In terms of our ad-hoc modification of

Fig. 12, this means that the point corresponding to the

vertical compression of the uniform term stands for only

one dimension, not two, and so should be plotted twice as

far to the left of the point for partial warp 1 as we just

indicated. In this position it falls well below the fitted curve

in its vicinity. That is because, as we have seen, only one of

its components appears to be integrated with the nonaffine

part of shape, not two. The relation between a dimension of

strong nonaffine integration and the two dimensions of

uniform transformation is thus a matter of empirical in-

vestigation, not theorems. For data that resemble our other

two examples—the self-similarity of the callosal mid-

curves, or the mild disintegration of the human skulls—

there is no finding of integration to be extended to this

uniform subspace, and thus no pooled analysis to be put

forward.

The dependence of the isotropic Mardia–Dryden model

for Procrustes shape coordinate covariances (Figs. 1 or 3)

upon the mean Procrustes configuration has not gone
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Fig. 21 For templates that are close to grids in their spacing, approximately deflated deformations may be constructed serially from a

parcellation into cells involving one new landmark each with isotropic variance that is linearly scaled to the area of its compartment
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unremarked in earlier critiques of geometric morphomet-

rics. The explicit effect of a small change in mean shape on

the ‘‘totally disintegrated’’ covariance structure was set out

as a relative eigenanalysis in Bookstein (2009), but the

resulting ‘‘corrections’’ still fail to take realistic spatial

autocorrelations into account. These hitherto-unformalized

features of all known organismal data sets have been a

particular concern of Philipp Mitteroecker in several recent

articles, e.g., Mitteroecker (2009) or Mitteroecker et al.

(2012). When irregularities of landmark spacing are of

particular concern or when the distribution of semiland-

marks is incommensurate with that of the proper land-

marks, Huttegger and Mitteroecker (2011) suggested that

the corresponding descriptors should be limited to those

that were ‘‘affinely invariant,’’ that is, techniques like

relative eigenanalysis that are robust against uniform

changes of the parameter space. Notice that, according to

Eq. (7), the Procrustes mean form is present explicitly in

the uniform term of Procrustes shape space via both its

actual coordinates (the coefficients xi and yi there, which

vary from form to form) and its principal moments a and c;
which are functions only of the mean form. The present

paper’s suggestion that that variation be sequestered for

separate treatment might prove a more satisfactory com-

promise in practice. In a context of positive covariance

matrices, such as those arising from interlandmark dis-

tances in the presence of a dominant size factor, the need

for a method that permitted simultaneous findings at mul-

tiple scales (e.g., integration along with modularity) was

already set out as a desideratum of a modified geometric

morphometric toolkit in Mitteroecker and Bookstein

(2007). The deflation technique in this paper might speak

to all of these concerns of Mitteroecker’s except, intrigu-

ingly, the concern for phenomena at the very largest scale

(the scale of zero bending energy), the uniform term itself.

The model of self-similarity, as it separates the domains

of integration and disintegration, aligns with several dis-

tinctions that the reader may have encountered before. The

overall growth gradient and the single feature local to

IPP that characterize the rodent data set relate to the

Fig. 22 Examples of these simulations circumvent all of the obvious

artificialities of the equivalent Procrustes (isotropic) distributions.

They are much more likely to sustain a short list of biologically

comprehensible features consistent with evolutionary or developmen-

tal explanations. All are both integrated and modular by explicit

construction; those notions are not opposites in any morphometrically

useful sense. Far left: the starting form (a regular grid). Center left to

right: samples of these deformations along a steadily increasing list of

self-similar amplitudes
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self-similar models as directional drift and punctuation,

respectively, relate to the neutral drift models that exem-

plify classical random walk. Just as time series having a

trend show variance over time that grows faster than lin-

early with time interval, so do growth-gradients show

variances of partial warps that grow more rapidly than the

reciprocal of bending energy over an analogous range of

spatial scales. We have thus arrived at an analysis of spa-

tiotemporal phenomena that generalizes the existing toolkit

of purely temporal processes whenever the spatial domain

can be represented by discrete landmark configurations in

the usual morphometric way. We can even imagine a cross-

classification of the spatial by the temporal, with joint

models (or findings) that might announce a static self-

similarity, a trend in the parameter of disintegration, or (the

form likeliest to be of interest in evo-devo studies) a

temporal trend or phylogenetic pattern for features that are

found to be integrated already, like the combination of a

growth-gradient with a local parietal rearrangement that

characterized Vilmann’s rodent skulls.

The self-similar transformations are likewise a close

spatial analogue of the Felsenstein (2004) version of phy-

logenetically independent contrasts once they are scaled to

unit time interval by dividing by the square root of diver-

gence time. The formal reason for the division is the same

in both domains: to test the plausibility of a model of pu-

tatively independent dimensions all having the same vari-

ance, so that the pooled covariance structure ought to be

spherical. In the isotropic Procrustes model, the shape co-

ordinates themselves are distributed spherically within

their subspace, but that is not the subspace of biologically

meaningful feature extractions. Similarly, in the Felsen-

stein approach, it is not the species means per se that

comprise the substrate of independent identically dis-

tributed samples, but the contrasts, which are the analogue

of our deflated partial warps here. Thus ‘‘it has not escaped

our notice,’’ as the sly trope goes, that the entire machinery

of deflation introduced here via a presumption of inde-

pendent samples of specimens or rodent neurocranial

growth trajectories could be translated unchanged into a

context of phylogenetic inference. A follow-up manuscript

on this theme is currently in progress.

Another contextualization of this multiscale approach is

as a generalization of what we already do with bilateral

asymmetry by following the protocol of Mardia et al. 2000

for landmark data. This treatment rotates the entire de-

scriptor space from the a-priori Procrustes basis to a con-

siderably altered one explicitly incorporating the

biologist’s prior knowledge of which landmarks are un-

paired, which paired, and, for the paired landmarks, which

are on the left and which on the right. The expectation is

that the variance of the side-to-side contrasts in this new

basis will be much less than the variance of their original

and mirrored averages, justifying the separate reports of a

‘‘symmetrization’’ together with terms for fluctuating and

directional asymmetry to which we have become accus-

tomed over the last several years. The model is thus a

truncated version of the model of self-similarity here, with

only two subspaces instead of arbitrarily many and usually

with only one parameter (FA, fluctuating asymmetry,

treated as a scalar sum of squares) for modeling variance in

a spherical (directionless) way within that subspace of

smaller variance.

That bilateral symmetry can be imagined a discretiza-

tion of a spatial scaling analysis may be a variant of the

effectiveness, in many studies of dynamical systems, of

segregating its responses to perturbations into two dis-

tinctive domains, a ‘‘fast’’ and a ‘‘slow,’’ differing sub-

stantially in their temporal characteristics. The appeal of

principal components for studies of evolutionary trends

presumes, in effect, that the large-scale features of spatial

configuration are also those of the largest scale in evolu-

tionary time—the ones for which change is easiest to ex-

plain in terms of selection. But, as Charles Oxnard (1967)

noted a long time ago, the aspects of shape associated with

function and the aspects associated with longterm taxo-

nomic change are more often orthogonal than parallel.

There is an extended discussion of the relation between

principal components and functional morphology in

Bookstein (2015a).

Beyond morphometrics, any parameterization that

makes explicit the spatial scaling of descriptive models

may articulate to diverse other current themes of statistical

data analysis in the natural sciences. Centering a null

model nearer to the typical data set certainly adds both

statistical and descriptive power in a great range of con-

texts. My examples entailed an unusual version of this

strategy in which a subclass of covariance matrices was

highlighted as an explicit function of the mean shape even

though that mean itself was estimated in the usual fashion.

The null of self-similarity matches the typical assignment

of shape feature extraction in the same way that the ana-

logous null model of independent increments sharpens the

analysis of trends into the study of autoregressive pro-

cesses. By invoking self-similarity one can circumvent the

otherwise daunting truism that every physical instrument

(in our case, every imaging device) has a finite aperture of

signal sensitivity (Koenderink 1990). Whenever one of the

log-log plots exemplified here proves to have a well-

characterized slope, one can explicitly model the expected

effect of a change in that aperture. This might well be a

useful insight into a variety of current extensions of brain

imaging into the realms of smaller spatial scale—for image

types such as diffusion tensors or the ‘‘connectome,’’ a

probability model confirmable at larger spatial scales might

support a useful extrapolation downward to smaller spatial

Evol Biol (2015) 42:395–426 423

123



scales even in the absence of actual microdata on the same

specimens. Other domains would privilege other null

construals of a scaling dimension. Biomechanical proper-

ties (such as strain) often vary as a different scaling of form

(see the sketches in Bookstein 2013a), and scaling analyses

of trabecular bone translate into the arithmetic of finite

strain analysis under the heading of homogeneity studies.

This sort of modeling is also reminiscent of the power laws

we use to assess and then normalize scaling effects in

studies that range from branching structures of watersheds,

through bronchial or vascular trees, to social media and the

Internet.

More abstractly, one generally salient principle instan-

tiated in this essay may be the way it conflates a parametric

modeling task (the subspace of covariance matrices that are

in fact self-similar for a particular mean shape) with a

correspondingly disciplined mode of discourse (the rejec-

tion of all claims that individual features have been iden-

tified except insofar as they deviate from that implied

regression). For the interpretation of a covariance structure

to depend explicitly on the mean form however indepen-

dently estimated is certainly an uncommon aspect of

Gaussian modeling strategies; for the analysis of that same

covariance structure to have a null that is not reducible to

any easily parameterized subspace of the Wishart space is

equally atypical. Other fields might well have equivalents

of this dependency, for instance, the way invoking a

technique quite similar to kriging in environmetrics allows

one to predict the expected density of air pollutants at lo-

cations in-between the ones sampled, in a manner that

greatly rewards care in the spatial relationships of the

sampling locations themselves (Cressie and Wikle 2011),

or the way that interpretations of intelligence or achieve-

ment test scores depend partly on the prior knowledge of

the item pools from which the actual test items were drawn

(Lord and Novick 1968). For such choices to have em-

pirical consequences, there needs to be a formalism for the

space of possible measurement vectors just as much as a

formalism for the design of the samples of specimens

considered; and those measurement vectors may have a

representation that echoes our approach to landmark loca-

tions and spacing. In other words: where geometric mor-

phometrics shows its sturdiest ties with biology is in the

understanding of how landmark locations can arise from

properties of the growing or functioning organism and how

the phrasing of those connections depends on details of the

landmark schemes driving the explanations.

Yet extensions and intellectual analogies of this flavor

are more speculative than the explicit morphometric ex-

amples put forward in this essay. It is my hope that the

publication of the initial algorithm here will launch an

injection of explicit geometrical modeling into a current

toolkit for integration studies that is seriously lacking in

tools competent to handle most contemporary morpho-

metric hypotheses. We need methods that exploit the ex-

plicit quantitative geometry of the observed mean

configuration of landmarks so as to condition our inter-

pretation of their covariance structure on their spacing.

Furthermore, in my judgment, the trichotomy of integra-

tion–self-similarity–disintegration should replace the cur-

rently fashionable polarity of integration ‘‘versus’’

modularity. Those two terms do not lie in the proper bio-

metric relationship to serve as opposite polarities in this

way—no hypothesis lies between them, and both can apply

in the same data set. (The pattern of the Vilmann data is

obviously a long way into the integrated regime, and yet it

clearly shows patterns at two scales, local and global. This

data example is thereby both integrated and modular.) An

analogous transition occurred in multivariate statistics

nearly ninety years ago when the field was stimulated to

move from the Gaussian (ellipsoidal) model for joint dis-

tributions of data vectors to John Wishart’s celebrated

model of 1928 for the higher-dimensional distribution of

the covariance matrices that summarize those same mul-

tivariate Gaussian vectors. From this transition arose most

of today’s language for assessing the sampling variability

of principal components and factors in otherwise unstruc-

tured variable sets. See, in general, Bookstein (2015b),

Chapter 4. We are still building on that Wishart foundation

today. But the suites of variables we exploit in morpho-

metrics are no longer unstructured lists, and that additional

(spatial) structure changes everything.

For studies where each variable arrives with some ac-

companying spatial information, the way geometric mor-

phometrics exploits the vector of all the shape coordinate

means, we need likewise an operation that breaks the

nonbiological symmetries of Procrustes shape space in

favor of a scheme explicitly incorporating the mean land-

mark configuration as part of its algebra. The approach

here, specifically, its deflation step, meets that requirement.

(I am not claiming that it is unique. Other approaches to

multiscale analysis of anatomical images have been ex-

plored, for instance, Seiler’s (2012) hierarchical subdivi-

sion of the human mandible, that may, after suitable

modifications, be applicable to landmark data as well.) The

Wishart model required new mathematics, or, rather,

mathematics imported from other branches of science than

morphometrics. The enrichment I am suggesting here

likewise required new mathematics, in this case, the rein-

terpretation of the properties of the thin-plate spline set out

by Kent and Mardia in their great paper on kriging. Cor-

responding to this algebraic transition there needs to be a

family of descriptive terms matching the contrasts char-

acterizing the actual empirical context in which questions

arise. This paper suggests that such a context should be the

apparent amplitude (variance) of shape features as a
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function of geometric scale, divided into two unbounded

regimes (integration or disintegration) separated by the

dividing submanifold of self-similarity, which is a proper

point hypothesis as regards the regression slope that is

being estimated. The self-similar models are the appro-

priate null models here just as the low-dimensional models

(such as the single-factor models) are the appropriate null

models for covariance matrix studies. But there is far more

information available in landmark-based morphometrics

than mere covariances. Whenever patterns of shape change

are different from landmark to landmark or from direction

to direction, the methods that refer only to covariance

structures fail to lead to appropriate biological insights.

In short, morphometrics is not just a matter of inter-

specimen distances, whether according to the Procrustes

formula or any other. Far more information is encoded in

our conventional landmark data structures than what is

tapped by the conventional toolkit of Procrustes shape

coordinates. It is high time that the information from the

mean shape be made accessible to the pattern analysis of

how shape coordinates vary around their mean and the

biological implications of these patterns for growth, form,

or evolution. The technique of deflation introduced here is

one such explicit invocation of the mean shape for pur-

poses of organizing the further morphometric analysis of

shape spaces, and surely there will be further contributions

along these lines in the years to come. The great philoso-

pher of science Karl Popper referred to the two principal

themes of natural science, determinacy and indeterminacy,

as ‘‘clocks and clouds.’’ In a famous lecture published as

Popper (1966) he pointed out the intentionally sly men-

dacity of this dichotomy: all clocks are clouds, all clouds

are clocks. The applied mathematics by which the infor-

mation in clouds is to be parameterized as covariances

requires principles of scaling not only for ‘‘clocks,’’ the

numéraire of evolutionary time, but also for ‘‘clouds,’’ the

atlases that authorize us to oversee the mensuration of

space. An extension of morphometric scaling from the

temporal to the spatial domain will very likely accelerate

all the ways we retrieve information about biological pro-

cess from the extended organismal images that supply our

primary phenetic data resource.
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K., & Seidler, H. (2003). Cranial integration in Homo: Singular

warps analysis of the midsagittal plane in ontogeny and

evolution. Journal of Human Evolution, 44, 167–187.

Bookstein, F. L., & Kowell, A. P. (2010). Bringing morphometrics

into the fetal alcohol report: Statistical language for the forensic

neurologist or psychiatrist. Journal of Psychiatry and Law, 38,

449–473.

Bookstein, F. L., & Mitteroecker, P. M. (2014). Comparing covari-

ance matrices by relative eigenanalysis, with applications to

organismal biology. Evolutionary Biology, 21, 336–350.

Bookstein, F. L., Sampson, P. D., Streissguth, A. P., & Connor, P. D.

(2001). Geometric morphometrics of corpus callosum and

subcortical structures in the fetal-alcohol-affected brain. Ter-

atology, 64, 4–32.

Bookstein, F. L., Streissguth, A. P., Sampson, P. D., Connor, P. D., &

Barr, H. M. (2002). Corpus callosum shape and neuropsycho-

logical deficits in adult males with heavy fetal alcohol exposure.

NeuroImage, 15, 233–251.

Evol Biol (2015) 42:395–426 425

123



Cressie, N. (1991). Statistics for spatial data. Hoboken: Wiley.

Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal

data. Hoboken: Wiley.

Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis.

Hoboken: Wiley.

Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer

Associates.

Guttman, L. (1953). Image theory for the structure of quantitative

variates. Psychometrika, 18, 277–296.

Huttegger, S. M., & Mitteroecker, P. M. (2011). Invariance and

meaningfulness in phenotype spaces. Evolutionary Biology, 38,

335–351.

Huxley, J. S. (1932). Problems of relative growth. London: Methuen.

Kent, J. T. (1994). The complex Bingham distribution and shape

analysis. Journal of the Royal Statistical Society, Series B,

Methodological, 56, 285–299.

Kent, J. T., & Mardia, K. V. (1994). The link between kriging and

thin-plate splines. In F. P. Kelly (Ed.), Probability, statistics, and

optimization (pp. 325–339). Hoboken: Wiley.

Koenderink, J. (1990). Solid shape. Cambridge: MIT Press.

Lieberman, D. E. (2011). The evolution of the human head.

Cambridge, MA: Belknap Press of Harvard University Press.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental

test scores. Reading, MA: Addison-Wesley.

Mardia, K. V., Bookstein, F. L., Kent, J. T., & Meyer, C. R. (2006).

Intrinsic random fields and image deformations. Journal of

Mathematical Imaging and Vision, 26, 59–71.

Mardia, K.V., Bookstein, F. L., & Moreton, I. J. (2000). Statistical

assessment of bilateral symmetry of shapes. Biometrika, 87,

285–300.

Martin, R. (1928). Lehrbuch der Anthropologie in systematischer

Darstellung (2nd ed.). Stuttgart: Gustav Fischer Verlag.

Mitteroecker, P. M. (2009). The developmental basis of variational

modularity: Insights from quantitative genetics, morphometrics,

and developmental biology. Evolutionary Biology, 36, 377–385.

Mitteroecker, P. M., & Bookstein, F. L. (2007). The conceptual and

statistical relationship between modularity and morphological

integration. Systematic Biology, 56, 818–836.

Mitteroecker, P. M., Gunz, P., Neubauer, S., & Müller, G. B. (2012).

How to explore morphological integration in human evolution

and development? Evolutionary Biology, 39, 536–553.

Nei, M. (2007). The new mutation theory of phenotypic evolution.

Proceedings of the National Academy of Sciences, 104,

12235–12242.

Olson, E. C., & R. L. Miller (1958). Morphological Integration.

Chicago: University of Chicago Press.

Oxnard, C. E. (1967). The functional morphology of the primate

shoulder as revealed by comparative anatomical, osteometric and

discriminant function techniques. American Journal of Physical

Anthropology, 26, 219–240.

Oxnard, C. E. (1973). Form and pattern in human evolution. Chicago:

University of Chicago Press.
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