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Abstract

Background: Variance in microarray studies has been widely discussed as a critical topic on the identification of
differentially expressed genes; however, few studies have addressed the influence of estimating variance.

Methodology/Principal Findings: To break intra- and inter-individual variance in clinical studies down to three levels–
technical, anatomic, and individual–we designed experiments and algorithms to investigate three forms of variances. As a
case study, a group of ‘‘inter-individual variable genes’’ were identified to exemplify the influence of underestimated
variance on the statistical and biological aspects in identification of differentially expressed genes. Our results showed that
inadequate estimation of variance inevitably led to the inclusion of non-statistically significant genes into those listed as
significant, thereby interfering with the correct prediction of biological functions. Applying a higher cutoff value of fold
changes in the selection of significant genes reduces/eliminates the effects of underestimated variance.

Conclusions/Significance: Our data demonstrated that correct variance evaluation is critical in selecting significant genes. If
the degree of variance is underestimated, ‘‘noisy’’ genes are falsely identified as differentially expressed genes. These genes
are the noise associated with biological interpretation, reducing the biological significance of the gene set. Our results also
indicate that applying a higher number of fold change as the selection criteria reduces/eliminates the differences between
distinct estimations of variance.
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Introduction

Over the last decade, microarray studies have had a profound

impact on transcriptomic research. One particularly important

clinical application of microarray technology is the identification

of differentially expressed genes, which may serve as biomarkers

for the diagnosis and prognostic prediction of tumors or other

complex diseases [1–3]. Despite many successful results, some

studies have revealed that gene lists derived from similar studies

are highly inconsistent [4–6]. Numerous investigations have been

conducted to evaluate the influence of multiple factors, such as

batch effects [7], dye effects [8], different platforms [9–13], various

experiment designs [14–16], and statistical approaches [17,18],

regarding microarray results. However, few studies have explored

the influence of different sources of variation on the identification

of differentially expressed genes from microarray analysis.

Researchers have identified two major sources of variance in

microarray studies: technical variance and biological variance

[19]. All forms of variations influenced by experimental artifacts,

such as the quality of RNA, batch effects, and experimental

parameters, belong to technical variance. A well-conceived

experimental design and execution as well as rigorous statistical

analysis can reduce the effects of technical variation. Studies have

demonstrated that loop designs are more efficient than reference

designs in two color microarrays [14,20], and many statistical

methods can be used to increase the robustness of microarray data

analysis [21,22]. Several studies have concluded that the

reproducibility of microarrays could be improved using standard-

ized protocols and carefully designed and controlled experiments

[12,13,23].

Biological variance is attributed to specimens, rather than

procedures, and can be traced to several sources. Anatomic

variance is caused by the heterogeneous distribution of cell types

within a tissue specimen collected from a single individual [24].

Individual variance is a result of various genotypes and physio-

logical states. For variation in genotypes, copy number variations

(CNVs) [25,26] and allele variations [27,28] have been shown to

influence gene expression levels. Physiological status such as

environment factors, disease state, and other variables influence

gene expression. Many researchers have reported biological
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variance in human blood [29,30], lung [31], placenta [32], retina

[33], and other tissues [34–37]. In addition, variations in gene

expression have been identified among individuals as well as

populations [38–40] and species [19,40,41]. However, the effects

of applying different levels of variances have not been well

addressed.

In this study, we used the normal human placenta as a model to

evaluate technical, anatomic, and individual variance. Each of

these types of variation should be considered in clinical studies.

The ‘‘inter-individual variable gene’’ was used as an example to

evaluate the influence of estimating variance on microarray results.

We profiled three levels of variance in human clinical studies and

addressed the importance of estimating variance on the statistical

and biological aspect for microarray studies. Our data demon-

strated that correct variance evaluation is critical in selecting

significant genes.

Materials and Methods

Specimen Collection and Processing
Eleven normal placental tissues were obtained from 9 healthy

individuals who underwent cesarean section without labor pain

[42]. This study was approved by the Institutional Review Board

of Chang Gung Memorial Hospital (IRB#96-0630B). Inclusion

criteria were healthy normotensive term pregnancies with

appropriate-for-gestational-age fetuses, who displayed no abnor-

mality on routine ultrasound scans. Exclusion criteria for this study

were fetal chromosomal abnormalities, pre- and postnatal

malformations or phenotypic anomalies, maternal smoking,

maternal obesity, and maternal diseases, such as autoimmune

diseases, thrombophilic conditions, and diabetes [43]. The clinical

information is summarized in Table 1. Placental specimens were

obtained from the same region of the placenta (5 cm away from

the site of cord insertion) immediately after delivery. The

approximate 2.5-cm thickness of the placental cross section was

divided into three equal parts: maternal (includes thin basal plate),

middle, and fetal (includes the chorionic plate) [32]. We analyzed

the middle part of the placental tissues in all of our placental

studies [42,44]. The tissues were snap frozen in liquid nitrogen and

stored at 280uC. The first sample group (G1) comprised samples 1

to 9 of 9 individuals. The second sample group (G2) contained 8–

1, 8–2, and 8–3, which were 3 different placental tissues taken

from the same individual. The third sample group (G3) consisted

of 2 technical replicates, 8–3_1 and 8–3_2, using the identical

RNA pool (Figure 1).

RNA Extraction and Microarray Hybridization
Total RNA was isolated as previously reported [45]. Because

the purpose of this study was to analyze variance of gene

expression that may be commonly encountered at the tissue level,

we did not isolate individual cell types from whole tissues. During

RNA extraction, 1 ml of Trizol reagent (Life Technologies,

Rockville, MD) was added to every 50–100 mg of pulverized

frozen placental tissue. Total RNA was isolated using the Trizol

reagent (Life Technologies, Rockville, MD). Total RNA was

quantified by UV absorption at 260 nm, and RNA quality was

examined using the Agilent 2100 bioanalyzer (Agilent technolo-

gies, USA). cDNA labeling was conducted using a 3 DNA Array

50TM kit (Genisphere, Hatfield, PA), according to the manufac-

turer’s protocols. In brief, 20-mg total RNA was used to perform

reverse transcription reaction with SuperScript II RNase H-

reverse transcriptase and specific primers (Invitrogen life technol-

ogies, USA). All synthesized tagged cDNA targets were then

purified using the Microcon YM-30 column (Millipore, USA). The

purified targets and fluorescent 3 DNA reagents were hybridized

to the arrays in succession. Arrays were sealed in a homemade

hybridization chamber that adapted the design provided in M-

Guide (Patrick O. Brown laboratory, Stanford University, USA).

Hybridization was performed at 65uC in a water bath for 16 h,

and arrays were washed according to the manufacturer’s protocol

(http://www.genisphere.com/pdf/array50v2_10_19_04.pdf).

Subsequently, arrays were scanned with GenePix 4100A (Axon

Instruments, USA) and images were acquired using GenePix Pro

5.0 software (Axon Instruments, USA).

Production of Microarrays
We originally ordered 9600 human cDNA clones of the

IMAGE library from Incyte Genomics (Palo Alto, Calif, USA)

and allowed sequencing at that location. Only 7334 clones passed

sequence verification by Incyte Genomics and were shipped to us.

Therefore, every clone of this 7334-clone cDNA library had an

IMAGE ID, DNA sequences, vector names, and information for

PCR primers [45]. All clones were further amplified by PCR and

purified by isopropanol precipitation in 96-well plates. The

purified DNAs were resuspended in 36SSC for spotting. A single

microarray slide (CMT-GAPsII, Corning Inc., USA) contains

7334 human cDNA probes in quadruplicate, 10 spike-in genes

(SpotReportTM-10 Array Validation System, Stratagene, USA),

and one housekeeping gene, b-actin, in 96 replicates. Each array

had 32,448 spots. The arrays were post-processed as recom-

mended in the Corning UltraGAPS Coated Slides Instruction

Manual. Microarray slides were produced in a well-controlled

Figure 1. Microarray experimental design. Three kinds of samples
were employed in this study. Individual variance was evaluated using
the first sample group (G1), comprising Samples 1 to 9 of nine
individuals. The second sample group (G2) was used to evaluate
anatomic variance. It contained Samples 8–1, 8–2, and 8–3, taken from
three different sections of placenta from the same individual. The third
sample group (G3) consists of two technical replicates, Samples 8–3_1
and 8–3_2, using an identical RNA pool for microarray hybridization to
evaluate technical variance. The expression of Sample 8–3 could be
estimated by the mean expression of Samples 8–3_1 and 8–3_2. The
mean expression of Samples 8–1, 8–2, and 8–3 represented the
expression of Sample 8.
doi:10.1371/journal.pone.0038650.g001
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environment (2862uC and 4861% humidity) and stored under

desiccation until use. The array system was assembled according

to M-Guide (Patrick O. Brown laboratory, Stanford University,

USA) and controlled using ArrayMaker, version 2.5.1 (Joseph

DeRisi laboratory, UCSA, USA) [46]. A rigorous system

commissioning was performed to guarantee the quality of the

printed arrays. Before hybridization, the slides were preprocessed

according to the instruction manual for the Corning UltraGAPS

Coated Slides, including rehydration, snap-dry, UV-crosslinking,

baking, and surface blocking. DNAs were UV-crosslinked with

300 mJ/cm2 using the Stratalinker 2400 UV Crosslinker (Strata-

gene, USA).

Microarray Data Analysis
The logarithm of the ratios for all valid spots on each array was

normalized by locally weighted linear regression (LOWESS).

Descriptions of Microarray Data Preprocessing can be found in

our previous studies [47]. The normalized log ratios were then

processed gene-by-gene using a log linear model [47,48]. This

model describes the normalized log ratio as follows:

log2(R=G)~czli{ljze

where c represents the relative labeling efficiency between dyes, li

is log2 (expression of sample i/mean expression of all samples) for

one specific cDNA clone, with
P9
i~1

li~0, and e is the random error

with mean 0 and variance s2. s represents the estimated variance

for one specific cDNA clone. For each clone, li and s are

estimated from the observed data by using the least squares

method as l̂l and ŝs. When the data had been processed using the

log linear model, 5501 genes could be calculated in the model

without singularity. l8{3 is estimated by

l̂l8{3~ l̂l8{3 1zl̂l
8{3 2

h i.
2. l8 is estimated by

l̂l8~ l̂l8{1zl̂l8{2zl̂l
8{3

h i.
3. A further description of the statis-

tical model can be found in Methods S1. We had developed a

Web tool for loop-design microarray data analysis [49]. All of the

front-end analyses of our microarray data were conducted using

this public available Web tool. The microarray data of this work

are MIAME compliant and have been deposited in the GEO of

NCBI (accession number: GSE27646).

Differential Expression and Averaged Fold Change
Differential expression is log2 (fold change of 2 samples) for one

specific cDNA clone and is denoted as d(i,j,x)~l^
i(x){l^

j(x),
where x is the index denoting clones and i,j denoting samples.

Differential expression profiles in Figure 2a are the histograms of

data set S1:li

^

(x){ lj

^

(x), S2:l8{i

^

(x){ l8{j

^

(x), and

S3:l8{3{1

^

(x){ l8{3{2

^

(x), which are the set of all d(i,j,x) when

x runs over all clones and (i,j) runs over all possible pairs in G1, G2,

and G3, respectively. For S1, i and j range from 1 to 9. For S2, i

and j range from 8–1 to 8–3. For S3, i and j are 8–3_1 and 8–3_2,

respectively. Moreover, averaged fold change is estimated by.

2
mean

i,j
(Dd(i,j,x)D)

;

where mean
i,j

() denotes the mean over absolute expression

differences of all possible sample pairs (i,j) for clone x. It is the

indicator of fold change for individual variance.

Statistical Test
We designed a test statistic,

D(x)~
Xn

i,j

d i,j,xð Þ
ŝs

� �2

;

to describe the variation of gene expression between samples. The

summation runs on every dual-color microarray experiment

(represented by an arrow in Figure 1), where x is the xth clone, i

is for the sample represented by the tail of the arrow, j is for the

Table 1. Clinical information of pregnancy outcomes (n = 9).

Clinical parameter Mean ± SD* Range of this group Reference range

Maternal age (y) 32.663.7 25 , 36 NA

Gravida# 2.661.1 1 , 4 NA

Para& 1.260.8 0 , 2 NA

Maternal Hemoglobin (g/dL) 10.861.8 8.6 , 13.5 12 , 16

Mean cell volume of RBC (fL) 8367.6 72 , 92 80 , 100

Systolic blood pressure (mmHg) 117.1611.4 102 , 136 90 , 140

Diastolic blood pressure (mmHg) 62.4610.3 50 , 78 50 , 90

Gestational age (week) 38.360.9 37 , 39 38 , 40

Neonate body weight (g) 31336345 2520 , 3580 2430 , 3900

Apgar score% (1 min) 9.060.5 8 , 10 .7

Apgar score% (5 min) 9.960.3 9 , 10 .7

#indicates the number of times the mother has been pregnant, regardless of whether these pregnancies were carried to term. A current pregnancy, if any, is included in
this count.
&indicates the number of viable (.20 wks) births. Pregnancies consisting of multiples, such as twins or triplets, count as ONE birth for the purpose of this notation.
%is a simple and repeatable method to quickly and summarily assess the health of newborn children immediately after birth.
*is standard variation.
doi:10.1371/journal.pone.0038650.t001
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sample represented by the head of the arrow, and n is the number

of sample pair i,j. We used the sampling permutation method to

describe the D quantity when considering three levels of variance

(Methods S1). D1, D2, and D3 are the results of 10 million times

the sampling permutation of
Xn

i,j

S1

ŝs

� �2

,
Xn

i,j

S2

ŝs

� �2

,

and
Xn

i,j

S3

ŝs

� �2

, for taking n data from S1, S2, and S3 at one

time. The corresponding p values of the D quantity are determined

using the smoothed curve of the probability density in Figure 2b.

The criterion of the p value for the statistical test in this study is a

false discovery rate (FDR) of 5%.

Functional Enrichment Analysis
Gene Ontology (GO)-based functional enrichment analysis is

used to measure gene enrichment in annotation terms for the

inter-individual variable genes. The significance score in Table 1

is –log (EASE Score), where the EASE Score is a modified

Fisher exact p value [50] obtained by DAVID. The GO terms

passed the criteria, EASE Score ,0.1, and at least 2 genes in

each GO term are considered for further comparison. Only 11

mutual GO terms exist for all selection criteria, and these are

shown in Table 2.

Results

Demographics of Studied Subjects
Analyzed placental tissues were collected from 9 healthy

pregnant women, whose clinical information is listed in Table 1.

All the pregnant women were free of hypertension, diabetes

mellitus, preterm labor, and other medical diseases. All neonates

were born at term and with normal body weight and healthy vital

Figure 2. Profiles of the three kinds of variance. (a) The distribution of the differential expression for the three forms of variance. The

differential expression for the three forms of variance was estimated by S1:li

^

(x){ lj

^

(x), S2:l8{i

^

(x){ l8{j

^

(x), and S3: l8{3{1

^

(x){ l8{3{2

^

(x) for
any possible pair of i and j, respectively. (b) D1, D2, and D3 are the probability density distributions of D quantity using permutation method using
the data series S1, S2, and S3 when considering individual, anatomic, and technical variance respectively.
doi:10.1371/journal.pone.0038650.g002
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signs that were evaluated with Apgar scores at 1 min and 5 min

after delivery, as used previously [42–44].

The Profiles of 3 Levels of Variance
We used a loop design in a microarray analysis of normal

placental tissues to investigate technical, anatomic, and individual

variance in microarray data. Figure 1 is a schematic representation

of the interwoven loop hybridization design performed in this

study. We selected 11 normal placental tissues from 9 women with

term pregnancies, who underwent Cesarean section prior to the

onset of labor, to avoid variations caused by labor pain.

Microarray data were obtained from 3 sample groups to estimate

individual, anatomic, and technical variance. The first sample

group (G1) comprised Samples 1 to 9, samples of 9 individuals.

The second sample group (G2) contained Sample 8–1, 8–2, and 8–

3, which were 3 different placental regions taken from the same

individual. The third sample group (G3) consisted of 2 technical

replicates, Sample 8–3_1 and 8–3_2, obtained from the same

RNA pool. Differential expression profiles in Figure 2a are log

(fold change) between samples in 3 sample groups (G1, G2, and

G3) and it is the histogram of data series S1, S2, and S3,

respectively. These results were presented as distributions of the

fold changes of G1, G2, and G3. The results indicate a progressive

narrowing of distribution curves from S1 to S3, revealing that

individual difference produced a greater degree of relative

variability in gene expression than that of the anatomic or

technical difference.

A test statistic, D quantity, was designed to measure the

variation in gene expression between samples. Figure 2b shows the

probability density profiles of the D quantity, D1, D2, and D3,

representing 3 levels of variability. These profiles were generated

by applying permutation methods using the data series S1, S2, and

S3, indicating extreme differences in the 3 levels of variance.

Case Study: Inter-individual Variable Gene
In this study, inter-individual variable genes, of which the

expression varies highly between individuals, were used to evaluate

the importance of estimating variance. When defining inter-

individual variable genes according to D quantity, variations in

gene expression were set at a level exceeding that of anatomic

variance. Therefore, when anatomic variance was considered in

the significance test, Pa is the p value of the D quantity determined

the D2 curve in Figure 2b. When anatomic variance is not

considered in the experimental design, technical variance,

evaluated by technical replication, is commonly used for the

significance test. Pt is the p value of the D quantity determined by

technical variance (D3 curve in Figure 2b).

Figure 3a plots averaged fold change versus 2 corresponding

p values (Pa and Pt) for each gene. When FDR 5% was set as

significant, 2 groups of significant genes were obtained. The

2 corresponding cutoff p values are indicated by red arrows in

Figure 3b. Averaged fold change was used as another criterion to

select inter-individual variable genes. In this study, the 4 averaged

fold changes, from 1.2 to 1.5 (the gray arrows in Figure 3b), served

as further criteria for the identification of inter-individual variable

genes.

We investigated sets of inter-individual variable genes generated

according to distinct selection criteria (different averaged fold

changes and corresponding p values) to evaluate the effects of

differing levels of variance. Figure 3c shows the number of

significant genes identified using 2 variance criteria, Pt and Pa (the

red arrows in Figure 3b), with different averaged fold changes (the

gray arrows in Figure 3b). When a higher averaged fold change

was used, the influence of variance underestimation decreased, as

shown by the number of significant genes (Figure 3c), but it paid

by reducing the number of selected genes. The difference was

eliminated when the cutoff value of averaged fold change was set

to greater than 1.3.

To evaluate the influence of variance underestimation on

biological prediction, the gene lists identified using the criteria in

Figure 3c underwent functional enrichment analysis for gene

ontology (GO) using DAVID bioinformatics resources 6.7 [50].

Among all significant genes listed in Figure 3c, only 11 common

GO terms were identified. Table 2 shows enrichment analysis

results of the 11 GO terms for the significant genes listed when

applying anatomic and technical variance with the averaged fold

change criteria 1.2 and 1.3. The enrichment results of averaged

fold change set at 1.4 and 1.5 were not listed because 2 significant

gene lists based on anatomic and technical variance were the

same. A significance score was defined as -log (p value), where the

p value represented the significance of each GO term, according

to a modified Fisher exact test in DAVID bioinformatics resources

6.7. Hence, a higher significance score represents a higher

significance for the result.

For the same GO term, the significance score for the gene set,

the p value of which was deduced by applying anatomic variance,

was usually higher than that defined by technical variance

(Table 2). This suggests that the lists of significant genes based

on technical variance might include ‘‘noisy’’ genes, which reduced

the significance of the GO terms.

Discussion

Even as simple as a single cell, its physiology are governed by

various networks, each comprising multiple signaling gene

products, which interact through positive and negative feedbacks,

as we showed previously [51]. Complexity theory, also known as

chaos theory (http://en.wikipedia.org/wiki/chaos_theory), has

Table 2. Significant score of Gene Ontology terms for the
significant gene sets determined by distinct significant
criteria.

Gene Ontology terms 1.2 fold1 1.3 fold1

Tech¥ Ana# Tech¥ Ana#

GO:0005576,extracellular region 8.7 9.3 4.9 4.6

GO:0005615,extracellular space 7.8 8.5 4.8 5.0

GO:0006952,defense response 7.4 8.1 5.3 5.5

GO:0044421,extracellular region part 6.4 7.2 4.2 4.4

GO:0007565,female pregnancy 2.8 3.0 2.2 2.3

GO:0009617,response to bacterium 2.4 2.6 1.6 1.6

GO:0050832,defense response to fungus 2.4 2.4 3.1 3.1

GO:0031640,killing of cells of another
organism

2.3 2.4 3.0 3.0

GO:0001906,cell killing 1.8 1.9 2.5 2.6

GO:0009620,response to fungus 1.8 1.9 2.5 2.6

GO:0042445,hormone metabolic process 1.3 1.4 2.3 2.3

The number in the table is the significant sore for GO terms. The significant
score is –log (EASE Score) where EASE Score is a modified Fisher Exact P Value
obtained by DAVID.
1The criteria of averaged fold change.
¥The significant score is evaluated by technical variance.
#The significant score is evaluated by anatomic variance.
doi:10.1371/journal.pone.0038650.t002
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been developed (http://sbs-xnet.sbs.ox.ac.uk/complexity/

complexity_home.asp) to better describe the emergent phenom-

enon of the cell. Clinical studies investigating the clinical outcomes

of individuals [52] often derive results full of noise, which can be

further grouped into intra- and inter-individual variance. There-

fore, devising analytical approaches to dissect these confounding

factors is critical.

In this study, we first collected placental tissues only from

carefully selected healthy term pregnancies, avoiding any potential

effects from maternal or fetal diseases. For a single organ, different

regions may have distinctly specialized functions, leading to

variations in gene expression [31,32]. However, this type of

variation differs between organs. The anatomic variance identified

in this study was the heterogeneous distribution of cell types within

a tissue specimen [53], prevalent in general clinical studies.

Therefore, all tissues in this study were obtained from the same

regions and same layer of the placenta to avoid biological variance

among different regions of the placenta [32]. We did not isolate

fetal trophoblasts from maternal endothelial cells in each placental

tissue because we attempted to analyze the intra- and inter-

individual variance directly from clinical tissues. To achieve this

goal, we used a loop-designed method to increase the statistical

power of microarray data analysis.

We used a test statistic, D quantity, in this study to describe

variations in gene expression between samples. The permutation

method was employed to describe the characteristics of the 3 levels

of variability. Permutation analysis is frequently adopted for

microarray studies [54–59] because distributional assumptions

(e.g., normal) using microarray data are often questionable [54]. A

non-parametric approach considering factors such as non-uniform

distributions could exhibit the characteristics of data more

appropriately. The profiles shown in Figure 2 illustrate the

differences in the 3 levels of variability, demonstrating that the

evaluation of the correct variance must be considered in the

experimental design to define statistically significant genes.

For the selection of significant genes, the results of phase I of the

MicroArray Quality Control (MAQC) project suggest that the

inter-platform reproducibility of enriched KEGG pathways and

GO terms was markedly increased when fold-change ranking in

addition to a non-stringent p value cutoff were used as the selection

criteria [60]. Thus, we used a non-stringent p value, FDR 5%, with

averaged fold change as the selection criteria. However, the

relationship between the stringency of fold change and biological

significance remains controversial. We compared the use of

4 averaged fold changes as criteria to identify the common GO

terms of all selection criteria. Pan et al. suggested that the

robustness of biological conclusions derived from microarray

analysis should be routinely assessed by examining the validity of

the conclusions using a range of threshold parameters [61]. Hence,

common GO terms are representative functions for inter-

individual variable genes. In this manner, the influence of variance

underestimation could be evaluated by using the significant scores

Figure 3. The scatter plot of averaged fold change and p values, and the selection of inter-individual variable gene. (a) The scatter
plot of log2 (averaged fold change) and –log (p value). Pa is the p value determined by applying anatomic variance. Pt is the p value determined by
applying technical variance. (b) The enlarged area of the rectangle in (a). The red arrows indicate the corresponding p value of FDR 5%. The gray
arrows indicate the averaged fold change criteria: 1.2, 1.3, 1.4, and 1.5. (c) The number of inter-individual variable gene selected by the criteria of FDR
5%, evaluated by technical and anatomic variance (The red arrows in Figure 3b), and distinct averaged fold changes (The gray arrows in Figure 3b).
doi:10.1371/journal.pone.0038650.g003
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of the common GO terms. The significant scores of the canonical

pathways had been used to access distinct selection criteria [62].

The identification of inter-individual variable genes through

different variance levels demonstrates the importance of estimating

variance from the statistical and biological viewpoints. From the

statistical aspect, the impact of variance underestimation includes

non-statistically significant genes in the gene list (Figure 3c). From

the biological aspect, significant scores of GO terms were used to

evaluate the gene sets from distinct criteria. Table 2 shows a

summary of biological evidence for evaluating gene sets with

different significance criteria. It also shows that significant gene

sets with accurate evaluation of variance provided more accurate

biological interpretations. Our results also suggest that applying a

higher cutoff point of fold change reduced, or even eliminated, the

influence of variance underestimation. This may be a solution to

overcome the difficulties associated with the identification of

significant genes when the estimation of precise variance has not

been considered adequately in the experimental design, although it

paid by reducing the number of the final gene list.

This study demonstrated the importance of estimating variance.

Different types of biological variance should be considered,

depending on the objectives of a particular study. For example,

when using tumor and normal tissues collected from the same

individual to study the signature of a cancer [63], anatomic

variance should be considered. In clinical studies seeking to

identify biomarkers for cancer classification, in which the subject

of the experiment is of the same race, individual variance should

be considered. When experimental subjects of clinical studies

include individuals from different races, inter-population variance

should be considered. Different sampling contributes different

levels of variance, and such factors should be considered in the

experimental design and statistical model. Our results indicate that

‘‘noisy’’ genes are falsely identified as differentially expressed genes

when the level of variance is underestimated, and applying a

higher fold change as the selection criterion reduces/eliminates the

differences between distinct estimations of variance.
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