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With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million
new global infections per year, it is imperative that we advance our understanding of all
factors contributing to HIV infection. While most studies have focused on the influence of
host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention.
Epigenetics involves alterations in gene expression without altering the DNA sequence.
DNA methylation is a critical epigenetic mechanism that influences both viral and host
factors. This review has five focal points, which examines (i) fluctuations in the expression
of methylation modifying factors upon HIV infection (ii) the effect of DNAmethylation on HIV
viral genes and (iii) host genome (iv) inferences from other infectious and non-
communicable diseases, we provide a list of HIV-associated host genes that are
regulated by methylation in other disease models (v) the potential of DNA methylation
as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to
serve as a robust therapeutic strategy and precision medicine biomarker against diseases
such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV,
drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa.
Furthermore, genetic therapies that are under investigation are irreversible and may have
off target effects. Alternative therapies that are nongenetic are essential. In this review, we
discuss the potential role of DNA methylation as a novel therapeutic intervention
against HIV.
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INTRODUCTION

In the nuclei of eukaryotes, the chromatin is subject to intense epigenetic events resulting in either
condensed repressive heterochromatin or transcriptionally permissive euchromatin (1). These
epigenetic events include posttranslational modifications to histones and methylation of DNA (1).
DNA methylation involves the covalent addition of methyl groups to the fifth carbon in the
nitrogenous base of cytosine (5mC) bases that are usually followed by guanine bases (CpG site) in
DNA (2–5). Methylation of CpG sites found in the cis-regulatory regions of genes is generally
associated with silencing genes (5–7). Methylation can also occur in intergenic regions, where it
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prevents the expression of potentially harmful genetic elements
(4) as well as within the gene body, where a positive correlation
with gene expression occurs (8–10).

DNA methylation is strongly involved in the physiological
control of gene expression (4). It plays a key role in normal
development (11), compaction of chromatin (12), genomic
imprinting (13), X chromosome inactivation (14) and the bulk
silencing of viral and transposable elements (15). However,
aberrant methylation patterns are associated with a multitude
of diseases [reviewed in (16–19)]. Several studies have shown
that viral infections can induce aberrant methylation patterns
within the host genome (20–22). On the other hand, the
integrated proviral genome is also influenced by the epigenetic
environment of the host (20, 23, 24). Thus virus-host interaction
induces an altered epigenetic environment that affects both the
virus and the infected host cell.

The human immune deficiency virus (HIV) is no exception to
this phenomenon. The effect of HIV infection on DNA
methylation has been characterised in HIV positive individuals
(25). These effects have been associated with accelerated aging
and abnormalities in gene expression, especially in immune
regulating genes (25–30). Furthermore, methylation of HIV
provirus by the host’s methylation machinery can control
HIV-1 transcription, replication, and persistence (31–35).

We review the current literature on viral and human genes
affected by methylation as well as address gaps in knowledge that
are yet to be explored with regards to DNA methylation and
HIV. This review will focus on five aspects: (i) the fluctuations of
host DNA methylation modifying factors post HIV infection,
(ii) the contribution of methylation on viral genes, (iii) the
contribution of human genomic methylation on HIV disease,
(iv) the influence of methylation on host genes observed in other
diseases and models, and (v) the potential of DNA methylation
as an epi-therapeutic strategy and precision medicine biomarker.
DNA METHYLATION MODIFYING
FACTORS POST HIV INFECTION

DNA methylation is not a random event. Several proteins
are involved in establishing, removing, and recognising
methylation marks at specific CpG sites within the eukaryotic
genome (4). DNA methylation is established by a family of
DNA methyltransferases (DNMTs – DNMT1, DNMT3a and
DNMT3b). DNMT1 is responsible for maintaining methylation
patterns following DNA replication (36), while DNMT3a and
DNMT3b regulate de novo methylation (37). Therefore,
alternations in DNMT expression usually leads to changes in
DNA methylation levels within cells. Previous studies have
highlighted the increase in expression of DNMTs in HIV
infected CD4+ T cells (38–41). HIV-1 was shown to induce the
expression of DNMT1 in a non-specific tissue manner, and that
overexpression of the viral genes: nef, tat and rev, induced
DNMT1 promoter activity (40, 42, 43). In regulatory T cells,
the effect of X4-tropic HIV infection demonstrated no significant
change in the expression of DNMT1 and DNMT3a, while there
Frontiers in Immunology | www.frontiersin.org 2
was a substantial increase in expression of DNMT3b (41);
however, increased expression of DNMT1, DNMT3a and
DNMT3b was observed in CEM*174 T cells with significantly
higher expression of DNMT3b (44). Similarly, HIV-1 replication
enhanced DNMT3b levels in patients receiving antiretroviral
therapy (ART) (45). The expression of DNMT3b was directly
correlated to patient HIV viral load, while an inverse relation was
observed for DNMT1 (45). Furthermore, proteomic analysis of
primary oral epithelial cells revealed significantly lower DNMT1
and DNMT3a levels in HIV patients on ART. Additionally,
DNMT activity and global DNA methylation illustrated a direct
correlation (46).

The effect of HIV on DNMTs has incited interest in its effect
on DNA demethylase enzymes. Conversion of the methyl group
from 5-methyl-cytosine are mediated by a group of ten-eleven
translocation methylcytosine dioxygenase (TET) enzymes to
generate 5-hydroxymethyl-cytosine. 5-hydroxymethyl-cytosine
can undergo further modifications such as deamination by
apolipoprotein B mRNA Editing Catalytic Polypeptide-like
(APOBEC) proteins. The expression of DNMT1 and TET1 was
found to be increased in HIV-1 infected individuals without
ART (47). Recently, the HIV-1 Vpr, which increases HIV-1
replication in macrophages, was shown to target TET2 for
degradation, exacerbating HIV-1 infection (48, 49). The status
of other TET enzymes (such as TET2 and TET3) has not been
explored in an HIV setting.

Interestingly, recent studies have highlighted the importance
of TET2 and TET3 for regulatory T cell stability and immune
homeostasis (50). The loss of TET3 gene expression may be a
pivotal contributor to locus hypermethylation (51). The effect of
the TET family in an HIV setting is vastly unexplored; thus, the
future investigation may unearth potential mechanisms of
action, as seen in non-communicable diseases (52–54).
However, much interest has been given to the cytidine
deamination functioning of APOBEC (especially APOBEC3G
and APOBEC3F). They have been shown to extensively
deaminate viral cytosine to uracil resulting in the potent
inhibition of HIV-1 infections (55, 56).

Another key multifunctional epigenetic regulator associated
with HIV is methyl CpG-binding protein-2 (MeCP2), which
recognizes methylated CpG sites and modulates transcription
and chromatin structure (57, 58). The HIV gene tat is known to
induce miR-132 expression, which subsequently down-regulates
the expression of MeCP2 (59). However, Periyasamy et al. (60)
discovered that the HIV-1 tat protein downregulated miR-124,
which increased MeCP2 and its phosphorylated (Ser80) analogue
in microglial cells. Interestingly, phosphorylated MeCP2 (Ser80)
blocks miRNA biogenesis machinery, subsequently down
regulating miR-124. These contradictory observations suggest
that the effect of HIV-1 on host genes desires more
attention (60).

DNA methylation is also known to be recognized by methyl-
CpG binding domains (MBDs) and Ubiquitin Like with PHD
and Ring Finger Domains 1 (UHRF1), which recruits DNA
methylation modifying enzymes to chromatin (61, 62).
Evidence from Kauder et al. (31) showed that HIV latency is
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regulated epigenetically via methylation of proviral DNA by
DNMTs and its recognition by MBD2 (31). UHRF1 was also
shown to facilitate latency as it was recruited to the HIV-1 5’LTR
in a methylation/integration dependent fashion, where UHRF1
mediates the repression of HIV-1 gene expression (63).
CONTRIBUTION OF METHYLATION ON
VIRAL GENES

Methylation of both the HIV-1 proviral genome and host
genome facilitates the integration, replication, and latency of
HIV-1. The integration of proviral DNA into the host
chromosome is not random as it is preferentially inserted into
the euchromatin or actively transcribing regions of the host (64–
66). Once integrated, it becomes indistinguishable from the host
genome and exploits host cellular machinery for the
transcription of its genes (67). However, this also puts proviral
Frontiers in Immunology | www.frontiersin.org 3
DNA at risk for epigenetic silencing events such as DNA
methylation. In most cases, presence of methylation within the
viral DNA, which has been integrated into the host genome,
results in the reduction of new viral particles. In contrast, when
integrated viral DNA is not methylated, viral transcription and
viral production proceeds as usual (Figure 1).

The association of proviral methylation and the transcriptional
inactivation of HIV-1 was introduced as early as 1990 (68, 69).
Since then, several in vitro studies have reported that methylation
of CpG sites found within the proximal proviral promoter, located
in 5’ long terminal repeat (5’LTR), silences transcription of HIV-1
genes resulting in latency. This allows HIV to evade host immune
responses and ART (31–35). However, in vivo analysis of
methylation patterns in the 5’LTR with regards to latency is
conflicting. High methylation patterns were found in the 5’ LTR
of memory CD4+ T cells isolated from aviraemic HIV positive
individuals on long term ART therapy (32). However, in a
subsequent study, CpG sites were poorly methylated in resting
FIGURE 1 | Epigenetic silencing of HIV transcription via methylation of integrated provirus. HIV binds to host receptors, entering the cell. HIV viral RNA is converted
to single-stranded viral DNA and integrates into the host genome. HIV uses the host’s machinery to create new HIV copies (Pathway 1). However, methylation of
integrated provirus results in the downregulation of HIV viral transcription, resulting in latency (Pathway 2).
December 2021 | Volume 12 | Article 795121
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CD4+ cells from HIV infected individuals (70). Trejbalova et al.
(33) also observed low methylation levels in the 5’LTR of resting
CD4+ cells isolated from individuals on effective ART; however,
methylation levels appeared to increase with prolonged ART use
(33). A comparison of methylation levels in the 5’LTR of long
term non-progressors/elite controllers and virally suppressed
individuals on ART found that methylation was virtually absent
in individuals in the latter groups compared to the non-
progressor/elite controller groups (71). These observations
suggest that latency and ART-induced suppression might have
different methylation patterns. The apparent difference in
methylation patterns between in vivo and in vitro studies can be
attributed to the pressure of “natural” selection in HIV-1-infected
individuals. In contrast, under in vitro cell culture conditions,
HIV-1 proviral genomes are not subject to the selective pressure
exerted by host immune defence (72).

5’LTR methylation levels were also shown to associate with
the expression of HIV-1 genes. Decreasing levels of methylation
in the 5’LTR corresponded with increasing expression of HIV-1
gag in HIV-1 infected spermatozoa. Furthermore, gag protein
was expressed in 2 cell embryos transfected with infected
spermatozoa suggesting that 5’LTR methylation regulates the
expression of HIV-1 gag in the vertical transmission from sperm
to embryo (73).

Regarding methylation patterns outside the LTR, Weber et al.
(72) found that CpG sites remain in a predominantly
unmethylated state in the 5’LTR, 3’LTR and portions of HIV-1
gag, env, nef and tat genes. They also observed slight variations in
the methylation state of the HIV-1 genome in one long term
non-progressor over 11 years, although viral load and CD4+

levels remained stable (72). A recent study examined
methylation of intragenic regions of the proviral genome
across four groups of HIV infected individuals [i.e. long term
non-progressors, early combination ART (cART) treated, late
cART treated and cART naïve, acutely infected] (74). As a whole,
methylation of promoter regions was reduced in all four groups,
while high levels of methylation were observed in the intragenic
env region. In the ART naïve acutely infected group, a distinct
increase in 5’LTR and a decrease in intragenic env methylation
was observed (74). Taken together, these observations suggest
that intragenic methylation could be a late event during infection
as well as intragenic methylation was positively associated with
CD4+ counts and viral loads (74).

It is important to take into consideration the high mutation
rates of HIV (75). Based on levels of mononucleotide C and Gs,
the frequency of CpG sites within the HIV-1 genome is much
lower than one would expect. The methylation of viral CpG sites
may result in the spontaneous deamination of cytosine to
thymine which increases the mutation rate of HIV (76).
Moreover, coding regions such as the env region are highly
variable (75). It would be interesting if future studies would
evaluate whether CpG sites within these regions are lost,
retained, or gained over a period of time and whether these
mutations are beneficial or harmful to the virus.

Thus far, all studies on HIV DNA methylation have focused
only on CpG methylation; however, non-CpG methylation was
Frontiers in Immunology | www.frontiersin.org 4
reported in other retroviral infections (77, 78). The lack of
appropriate techniques that include non-CpG methylation may
be why it has not been evaluated, as most of the studies discussed
used nested PCR-based methods that exclude most non-CpG
methylation (79).

The variability in existing data may be due to several factors.
For instance, the integrated HIV provirus is subject to its
immediate chromatin environment; thus, different integration
sites may influence methylation status accordingly (79). Several
pitfalls arise from the amplification of HIV from bisulphite-
converted DNA: (i) the high mutation rates of actively
replicating HIV hinders designing PCR primers that can
amplify all HIV targets, (ii) longer primers are needed for
bisulphite converted DNA which can worsen the biased
amplification of variable sequences, (iii) multiple rounds of
amplification of multiple variants can introduce stochastic bias
and variable results are obtained from different methods even
when the same conditions are applied (79). There is a significant
need for an approach in which HIV amplification of the provirus
is reproducible across different primer sets and experiments.
Furthermore, attempts to establish and measure latency are
unconvincing. It has previously been shown that cell lines
harbouring viruses are not genuinely latent but are instead in
an incapacitated state (80). Thus, in vitro studies are not an
accurate measurement of methylation or latency. The
development of appropriate methods for specific assessment of
the replication-competent HIV reservoir in clinical samples and
techniques of studying DNA methylation in the context of HIV
may be helpful. Furthermore, the examination of non-CpG
methylation of the provirus should be undertaken (79).
THE CONTRIBUTION HUMAN GENOMIC
METHYLATION ON HIV PATHOGENESIS

While DNA methylation may influence the replication of HIV
and transcription of crucial HIV genes, the integration of HIV-1
DNA into the host genome is also associated with aberrant
methylation of host genes. Altered DNA methylation across the
host genome has been shown to contribute to HIV disease.
Previous studies have identified this via two different
mechanisms. The first mechanism is a non-hypothesis driven
approach which characterizes epigenome-wide methylation
patterns. The second method is a hypothesis driven approach
which measures methylation of specific/candidate genes. We will
discuss each approach more thoroughly in the two sections
which follows.

Assessing the Epigenome-Wide
Methylation Patterns of the Host
Given that methylation of specific CpG sites found in either the
promoter or gene body may impact gene expression, the use of
epigenome-wide characterisation of DNA methylation provides
a powerful approach in identifying epigenetic variations
associated with disease acquisition, severity, and predictive
outcomes (81, 82). Several high-throughput methods have been
December 2021 | Volume 12 | Article 795121
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established for the genome-wide profiling of methylation at
single-nucleotide resolution. These methods usually require the
treatment of genomic DNA with sodium bisulphite, which
deaminates unmethylated cysteine residues to uracil, leaving
methylated cysteine residues unaffected (83). The most used
techniques include whole genome-wide bisulphite sequencing
and microarrays. Whole genome-wide bisulphite sequencing
involves PCR amplification of bisulphite converted DNA
coupled with next-generation sequencing, which allows for the
methylation profiling of every cytosine in the genome (84).
Methylation arrays such as Illumina’s Infinium arrays involves
amplifying bisulphite converted DNA followed by its
hybridisation to arrays containing probes that distinguish
methylated and unmethylated cytosine and covers CpG
islands, shores, and shelves (85). Other methods include
methylated DNA immunoprecipitation, comprehensive high-
throughput arrays for relative methylation and reduced-
representation bisulphite sequencing. Most of the studies
pertaining to genome-wide methylation profiling in HIV
infected hosts use either methylation arrays or whole genome-
wide bisulphite sequencing.

The first large scale study to characterise altered DNA
methylation patterns of the host genome associated with HIV
infection was conducted on DNA extracted from whole blood
collected from 261 HIV infected and 117 uninfected individuals
(30). The epigenome-wide association study (EWAS) identified 20
CpG sites to be significantly associated with HIV infection.
Among them, 14 CpG sites were found to be hypomethylated,
and six were found hypermethylated in HIV-infected individuals.
These 20 CpG sites that were significantly associated with HIV
infection were found within genes involved in immune activation
(30). The most significant was 2 CpG sites located in the promoter
region of NOD-like receptor family CARD domain containing 5
(NLRC5), an important transcriptional regulator of the Human
Leucocyte Antigen (HLA) class-I genes and genes related to HLA
class I antigen presentation and processing, such as TAP1 b2M,
and LMP2 (86). Hypomethylation of the 2 CpG sites (cg16411857
and cg07839457) within the promoter region of the NLRC5
inversely correlated with viral load implying that DNA
methylation of NLRC5 is associated with HIV disease outcome
(30). In a recent study, similar results were observed in HIV
infected and uninfected individuals who are injectable drug users
during 6-month abstinence from drug injections. HIV infection
was associated with 49 differentially methylated (DM) CpG sites.
The top CpG sites identified were associated with immune and
viral response pathways that are associated with HIV
pathogenesis, with NRLC5 being the top-ranked gene associated
with HIV status (87). Strong evidence of differential methylation
within the MHC region (HLA-F, PSORS1C2, PSORS1C3 and
Notch4) and NLRC5 region was also observed in children with
perinatally acquired HIV. HIV was also shown to stunt B cell
development and maturation via hypermethylation of EBF4,
FOXP1 and DLL1 in perinatally infected children (29).

While studies on adult populations found that most DM CpG
sites were hypomethylated in HIV infected individuals (30, 87),
97% of DM CpG sites tend to be hypermethylated in perinatally
Frontiers in Immunology | www.frontiersin.org 5
infected children. These differences suggest childhood
acquisition of HIV alters the epigenome differently than
acquisition as an adult (29). Differential methylation also
occurs between perinatally infected and uninfected children
(44, 88). Seeing as genetic and environmental factors influence
the methylome, studies comparing the epigenetic profile of the
general population is less than ideal. The use of discordant
monozygotic twins with perfectly matched genetic profiles and
similar lifestyles eliminates potential genetic confounders when
unrelated individuals are used. Thus, variations in the
methylome could be accurately attributed to exogenous factors
such as viral infection (89). In a study conducted on a pair of 15-
year-old monozygotic twins with discordant HIV statuses,
significantly higher levels of methylated differentially
methylated regions (DMRs) were observed in the infected twin
compared to the uninfected sibling, further suggesting that HIV
infection would cause the increase of global methylation level in
perinatally infected children (44, 88). DMRs were located in
chromosomes 17, 19 and 22, which are known HIV integration
sites as they contain actively transcribing genes (44, 90, 91). It is
possible that hypermethylation of regions in these chromosomes
may be a mechanism employed by the host to suppress viral
propagation. Twenty-five hyper-methylated genes in the HIV
infected twin were validated at the transcriptional level. The
expression of 72% of genes were downregulated by more than
50% in the HIV infected twin with IGFBP6 and SATB2 being the
most significantly reduced genes. However, information on the
role of IGFBP6 and SATB2 in HIV pathogenesis is limited (44).
The use of HIV discordant monozygotic twins by Zhang et al.
(44, 88) was an admirable attempt to account for the influence of
genetic factors; however, it failed to account for environmental
effects (44, 88). Further, only a single pair of twins were used in
the study and the twins were recruited seven years after the
acquisition of HIV infection. Thus, methylation changes cannot
be used to distinguish between cause and consequence (44, 88).

While most studies have focused on variations in global DNA
methylation among uninfected and infected individuals, the
disparity has also been established in individuals with variable
levels of HIV-1 viral load. Oriol-Tordera et al. (92) evaluated
host genome methylation patterns of chronically HIV-1 infected
individuals with high (>50,000 HIV-1-RNA copies/ml) and low
(<10,000 HIV-1-RNA copies/ml) viral loads. Fifty-five DMRs
were found to differentiate individuals with high viral load from
those with low viral loads (92). Functional analysis showed genes
involved in anti-viral activity and type I interferon g (IFNg)
signalling to be hypermethylated in HIV infected individuals
with low viral loads. Of particular interest, DMRs associated with
IFNg signalling included: PARP9/DTX3L, MX1, USP18, IFI44L
and PLSCR1. In contrast, genes involved in general immune
activation, such as T cell activation and differentiation, were
found to be hypomethylated compared to individuals with a high
HIV viral load (92). Thus, the epigenetic repression of IFNg
stimulating genes may assist in achieving control of HIV.

The studies described thus far provide valuable information
on the association of aberrant methylation patterns and HIV
infection at an epigenome-wide level; however, the use of whole
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blood, which consists of various cell types, has been used in these
studies tend to be problematic. DNA methylation profiles differ
strongly by cell type; therefore, variations in cell-type
composition and proportions between samples can confound
analysis (93). Furthermore, HIV mainly affects CD4 T cells
which represents a small proportion of the tissue sampled;
thus, the variation may not be detected. HIV further destroys
CD4+ T cells levels; hence, measured epigenetic differences
between cases and controls may only reflect differences in cell
type composition and not true epigenetic differences (94). The
use of homogeneous cell populations may provide a more
accurate estimation of epigenome-wide methylation patterns
and associated differential gene expression profiles between
HIV infected and uninfected cells. CD4+ T lymphocytes are
significant targets of HIV, with their progressive death
culminating in acquired immune deficiency syndrome (AIDS).
The use of the DNMT inhibitor, 5-azacytidine (5-azaC), can
reverse T cell depletion, suggesting that DNA methylation may
impact T cell apoptosis during HIV infection (95). Zeng et al.
(96) transfected two T-cell lines (MT-2 and Jurkat cells lines)
with the T-cell-tropic HIV strain, HIV-1 pNL4-3. Whole-
genome methylation analysis found 1,428 hypermethylated and
1,227 hypomethylated DMRs in HIV infected MT-2 cell line
compared with the uninfected controls as well as 1,231
hypermethylated and 1,833 hypomethylated DMRs in HIV
infected Jurkat cells compared to uninfected control cells (96).
Hypermethylated DMRs were significantly enriched in promoter
and enhancer regions, suggesting that methylation changes are
prone to occur in coding and transcriptional regulatory regions
during HIV-1 infection (96). Hypomethylation of DMRs in 147
transcription factor binding motifs occurred in HIV infected
Jurkat cells, 94 of which overlapped with the hypomethylated
DMRs in the MT-2 cell line (96). HIV infected MT-2 cell lines,
and Jurkat cell lines contained 83 and 53 transcription factor
binding motifs found in hypermethylated DMRs. In the MT-2
cell line, five hypermethylated transcription factor binding
motifs (WT1, HIF1A, EGR1, IRF1, and MEF2C) were
associated with transcription factors that have been previously
associated in HIV-1 induced apoptosis (96). These results
suggest that the depletion of T cells during HIV infection
results from aberrant DNA methylation at the binding sites of
apoptosis-related transcription factors (96). Differences in
epigenome-wide methylation were observed in CD4+ T cells
isolated from individuals with varying degrees of control,
suggesting that methylation status differs according to the
progression of diseases state and control of infection.
Furthermore, hypermethylation of TNF was characteristic in
viremic individuals while TRIM69 and ITTGB2 were found to be
hypomethylated in elite controllers (97). While the use of a
homogenous in vitro models may provide more accurate
methylation patterns, in vitro studies are not accurate
representation of cells systems and are unable to account for
ethnic differences.

Epigenome-wide characterisation reveals that global
hypomethylation is prominent in HIV infected adults (30, 87),
whereas global hypermethylation is prominent in HIV infected
Frontiers in Immunology | www.frontiersin.org 6
children compared to uninfected children (29, 88). Top hits
include genes associated with anti-viral responses, immune
defence, immune cell development and apoptosis (29, 30, 87,
96). However, the use of PBMCs and the comparison between
unrelated, unmatched infected and uninfected individuals
confounds results and thus, it is imperative to account for
these factors. More studies should evaluate epigenetic events in
monozygotic twins with discordant statuses, or a more desirable
approach would be the longitudinal analysis of individuals pre-
and post-HIV infection.

Candidate Host Gene Methylation
While EWAS characterisation provides a holistic view of
methylation patterns during HIV infection, it is not feasible.
Thus, many researchers opt for a targeted approach by analysing
the epigenetic regulation of specific genes. The four most
common techniques used to determine the methylation status
of specific CpG sites includes: (i) methylation-specific restriction
endonucleases (MSRE) followed by qPCR using primers
surrounding the sequence of interest, (ii) pyrosequencing,
(iii) methylation-specific high-resolution DNA melting analysis
and (iv) quantitative methylation-specific polymerase chain
reaction (98). Several studies have investigated the effect of
HIV infection on specific HIV associated genes.

The surface expression of C-C chemokine receptor type 5
(CCR5) influences HIV-1 acquisition and disease progression by
facilitating HIV-1 viral entry into T cells (99, 100). A common
determinant of CCR5 expression is specific polymorphisms in
open reading frames and cis-regulatory regions of CCR5 (101).
One such polymorphism is a 32 base pair deletion in the open
reading frame of CCR5 (CCR5-D32). Individuals homozygous
for the CCR5-D32 mutation cannot produce complete CCR5
proteins; thus, their T cells surface is devoid of the receptor,
providing them with protection against HIV (102, 103).
However, polymorphisms do not account for the variation in
CCR5 expression between subsets of T cells and altered
expression upon T cell activation (104–106). In vivo and ex
vivo analysis by Gornalusse et al. (107) showed that methylation
levels within the CCR5 gene might account for these variations
(107). Sorted T cells with highermethylation contentwithin the cis-
region ofCCR-5 correlated with lowCCR5 surface levels. CpG sites
in the regulatory region ofCCR5weremostlymethylated in naïve T
cells, whereas hypomethylation was prevalent in memory T cells
(107). In vitro activation of naïve T cells was associated with
demethylation of CCR5 and concomitant increase in CCR5
expression. These results were confirmed in a cohort of
individuals with primary HIV infection and two cohorts of
individuals with untreated chronic infection. However, viral load
suppressionduringARTwas associatedwith increasedmethylation
in CCR5-cis regions and low CCR5 levels during primary infection
(107). Furthermore, the authors demonstrated that specific CCR5
haplotypes contain polymorphism, which may remove CpG sites,
resulting in cis-regions resistant to undergoing activation-induced
demethylation and are thus constitutively expressed. Therefore,
CCR5 surface levels andHIV susceptibility depend on both genetic
and epigenetic mechanisms (107).
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Genetic variations in the HLA region are known to influence
host control of HIV infection (108, 109). HLA molecules present
intracellularly derived peptides to immune cells, which elicits
immune response upon recognising pathogenic peptides (110).
Several previously discussed EWAS have identified differential
methylation within the HLA loci in HIV positive individuals (29,
86). The elevated levels of the class I HLA-A molecules are
associated with higher HIV viral load and poor HIV control. In
contrast, low expression of HLA-A is associated with improved
control of viremia and slower progression to AIDS (111).
Methylation of the HLA-A promoter results in the reduced
expression of HLA-A (112). Moreover, allelic lineage-specific
methylation patterns within the HLA-A promoter region are
inversely related to HLA expression. Increased DNAmethylation
levels correlated significantly with reduced HLA-A expression
levels (112). Gross et al. (26) found that an entire HLA locus had
notably reduced methylation levels in HIV infected individuals
compared to uninfected individuals (26). Furthermore, several
differentially methylated markers were found surrounding a
single nucleotide polymorphism (SNP), rs2395029, within the
HLA region (26). This variant is predictive for the presence of
HLA-B*5701 and is common in HIV positive non-progressors.
Further examination of this locus in neutrophils and CD4+ T
cells found that the gene body of HLA Complex P5 (HCP5) was
differentially methylated in neutrophils, and the methylation
level of HCP5 correlated with CD4+:CD8+ T cell ratio (26).
Thus, methylation dynamics plays a critical role in HIV control
through its regulation of the HLA system (26, 111, 112).

A specialised subset of CD4 T lymphocytes known as
regulatory T cells or Tregs plays an essential role in suppressing
hyperactive immune responses that may occur during the course
of HIV infection (113). However, Tregs are also susceptible to
HIV infection as they contain receptors that participate in viral
entry (114, 115). The maintenance of Treg functioning is heavily
dependent on the surface expression of Forkhead Box Protein 3
(FOXP3) (116). In vitro transfection of Tregs with HIV-1 was
shown to impair Treg functioning through the methylation of
CpG sites found in FOX3P regulatory regions (41). However, in
vivo analysis of FOXP3 promoters from Tregs isolated from
PBMCs and colon mucosa of chronic HIV infected patients
was demethylated, resulting in the increased expression of
FOX3P (117). In both studies, FOX3P promoter methylation
was associated with altered levels of DNAmethylation regulating
enzymes (41). High levels of DNMT3B were associated with the
elevated methylation in the in vitro study while a significant
reduction in DNMT1, DMAP1, METTL7B, and METTL1 was
responsible for the reduced methylation in the in vivo
study (117).

DNMTs were also shown to influence interferon-gamma
(IFNg) levels (38). INFg, a cytokine produced by type 1 T
helper cells, CD8+ cytotoxic T cells and natural killer cells,
facilitates inflammation and regulates antigen presentation and
macrophage differentiation upon viral infections (80). High
levels of DNMTs in HIV infected T helper cells were shown to
induce methylation at the SnaBI site in INFg promoters resulting
in low levels on IFNg (38) The aberrant expression is due to
Frontiers in Immunology | www.frontiersin.org 7
methylation silencing and may play a role in the gradual loss of
type 1 helper cell response seen in AIDS patients.

HIV positive women have an increased risk of developing
cervical cancer and precursor lesions [cervical intraepithelial
neoplasia (CIN)] (118–120). Hypermethylation and subsequent
silencing of tumour suppressor genes result in gene silencing and
represents an essential step for cervical cancer development (121,
122). Methylation levels of the tumour suppressor EPB41L3 were
significantly higher in HIV seropositive women with moderate
grade neoplasia compared to HIV seronegative women (123).
Methylation levels of microRNA-124–2 (miR-124–2), was
significantly associated with HIV positive women with low,
moderate and severe grade neoplasia compared to HIV
negative women (124); however, no association was found
between the methylation content of the tumour suppressor
genes CADM1, MAL RARB, DAPK1 and PAX1 in HIV (124,
125). The methylation of ASCL1, LHX8 and ST6GALNAC5 was
significantly higher in HIV seropositive women with low to
moderate grade neoplasia than HIV seronegative women.
However, methylation levels were comparable between HIV
seropositive and HIV seronegative women with high-grade
neoplasia (126).

Most recently, Singh et al. (127) found that methylation levels
within the gene promoter of the host anti-viral restriction factor,
bone marrow stromal cell antigen 2 (BST2 or tetherin) was
associated with BST2 expression and HIV disease state.
Methylation levels were significantly elevated in all nine CpG
sites within HIV infected individuals compared to the uninfected
group. Within the HIV positive group, CpG promoter
methylation of BST2 was further evaluated across four different
time points (pre-infection, 3-months. 12-months and 36-months
post-infection). An inverse correlation between BST2
methylation and expression was observed at all time points.
Furthermore, in an in vitroHIV replication assay, treatment with
the DNA hypomethylation drug, 5’-Aza-CdR corresponded with
an increased expression of BST2 and lower viral load, suggesting
that controlling regulation may be an important strategy in
controlling HIV infection (127).

While DNA methylation is an epigenetic modification,
candidate gene methylation may be influenced by variations in
the DNA sequence. Several studies have mapped the interactions
between genetic differences and variations in DNA methylation
across numerous tissue and cell types (128–131). The
methylation quantitative trait loci showed that up to 48% of
inter-individual variation in DNA methylation was related to
CpG sites that were associated with nearby single nucleotide
polymorphisms (SNPs) found in cis regulatory regions (132,
133). SNPs located near or in CpG sites found in the promoter
region of genes can either produce or remove CpG site
methylation, leading to an alteration in the expression of the
genes (Figure 2A). DNA methylation can also differ among
alleles of a given gene. This is referred to allele-specific
methylation (Figure 2B). For example, the promoter region of
HLA-A*24 (highest HLA-A expressing lineage) and -A*03
(lowest HLA-A expressing linage) contain a similar number of
CpG sites; however, only one CpG site was found methylated in
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the promoter of the HLA-A*24 lineage, while most CpG sites
were found to be methylated in the HLA-A*03 linage (112). The
influence of genetic variation on promoter methylation of
specific host genes in relation to HIV pathogenesis has yet to
be investigated. As discussed in this section, we, however, do
know that increased promoter methylation generally lowers
mRNA expression of specific genes affecting HIV disease
progression (Figure 2C).
METHYLATION CONTROLLED HOST
GENES OBSERVED IN OTHER DISEASES
AND MODELS

With only a few studies evaluating the influence of HIV on the
methylation of specific host genes, further examination is
essential (26, 38, 41, 107, 117, 123, 125, 126). Henceforth, we
discuss potential host genes whose methylation status should be
investigated with regard to HIV. These genes have been
previously shown to associate with HIV disease and were
shown to be controlled by DNA methylation in conditions
other than HIV. Based on the principle that these genes have
been regulated by DNA methylation for a particular disease
association, we assume that they may also be regulated similarly
in an HIV setting.

For instance, the co-receptor C-X-C chemokine receptor type
4 (CXCR4), like CCR5, mediates the entry of HIV into host cells.
Frontiers in Immunology | www.frontiersin.org 8
Low surface expression of CXCR4 confers with reduced viral
entry, while increased expression is associated with the elevated
viral entry. Therefore alternations of CXCR4 expression has a
significant influence on HIV progression (134, 135). DNA
methylation has been shown to regulate CXCR4 expression in
pancreatic cancer (136), sporadic breast cancer (137), and
primary myelofibrosis (138).

Another example is the host restriction factor, sterile alpha
motif and histidine/aspartic acid domain-containing protein 1
(SAMHD1) which limits HIV reverse transcription by depleting
the intracellular pool of deoxynucleotide triphosphates (139,
140). De Silva et al. (141) used CD4+ T cell lines as a model to
identify mechanisms that regulate SAMHD1 gene expression.
The results indicated that the SAMHD1 promoter contains a
CpG island proximal to the initiation codon of the SAMHD1
gene, which, upon DNA methylation, leads to transcriptional
repression in certain CD4+ T cell lines (142). Regarding disease
association, reduced levels of SAMHD1 expression corresponded
with SAMHD1 promoter methylation in lung cancer (143) and
patients with Sezary syndrome (141).

The tumour suppressor, p53 and its downstream gene, p21,
were shown to hinder early-stage replication of HIV-1 (144).
p21, a cyclin dependant kinase, promotes cell cycle arrest by
downregulating G1/S transition (144, 145). p21 is also shown to
regulate SAMHD1 in HIV-1 infection (145). Epigenetic
alterations, including promoter DNA methylation and histone
deacetylation, have long been established as crucial mechanisms
of carcinogenesis (146–148). p53 promoter methylation leads to
A

B

C

FIGURE 2 | Factors that contribute to human genomic methylation on HIV disease. (A) SNPs found in regulatory gene regions can create or abolish CPG sites,
which in turn may affect methylation and gene expression. In the genomic sequence, if C is followed by a G, the C can be methylated; however, when the SNP is
mutated from a G to a T, it removes the CpG site and methylation cannot occur (B) DNA methylation can also differ among alleles of a given gene. The number of
methylated CpG sites on each allele can affect expression accordingly (C) Increased promoter methylation generally results in decreased mRNA gene expression,
which is specifically observed within the HIV setting for the following genes CCR5, BST2, HLA-A, FOX3P and IFNa. Since expression variability of these genes are
directly linked to HIV pathogenesis, a change in methylation levels have shown to alter HIV disease progression. Higher levels of methylation for CCR5 and HLA-A
results in slower HIV disease progression, however, higher levels of methylation for BST2, FOX3P and IFNa results in faster disease progression.
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downregulation of p53 in several cancers (149–151). Loss of p21
has been shown to occur in colorectal cancer (152). Additionally,
the p21 gene is frequently methylated and is an essential factor in
predicting the clinical outcome of acute lymphoblastic leukaemia
patients (153). The loss of p21 expression was commonly
observed in lung cancer and malignant pleural mesothelioma,
and aberrant methylation was one of the mechanisms of
suppression of p21 (154).

Methylation of several other host factors such as CCR2,
CCL2, CXCR6, CCL5, TSG101, PD-1, PD-L1, TIM3, LAG-3,
CTLA-4, TRIM22, DC-SIGN (CD209), IL-10, IL-32, IRF1,
Perforin, ICAM-1, and PCSK9 could potentially play a role in
HIV disease. Table 1 provides a list of host factors associated
with HIV pathogenesis which should be examined in future
methylation studies. Although these disease-methylation
associations have been shown in other diseases, it is yet to be
proven in HIV disease. Based on the principle that these genes
have been regulated by DNA methylation for a particular disease
association, we assume that they may also be regulated similarly
in an HIV setting. These listed genes may be potential host gene
targets that may provide an alternative approach towards
precision medicine or personalised therapeutic interventions
against HIV and other diseases.
DNA METHYLATION: A VALUABLE TOOL
FOR EPI-THERAPEUTICS AND
PRECISION MEDICINE

‘The Berlin patient’ and ‘the London patient’ were the first two
individuals reportedly “cured” of HIV. They both received a stem
cell transplant containing the CCR5 D-32 mutation to treat their
leukaemia which consequentially eliminated the virus from their
bodies (221, 222). Such cases provided proof that HIV-1 can be
eradicated in those already living with the virus. Given that this
approach is not feasible for most people living with HIV, other
therapeutic strategies are essential. Furthermore, recent studies
have shown that early treatment with ART, is ineffective against
returning the altered DNA methylation profile of HIV positive
individuals during acute infection (223). Therefore, there is a
need for epigenetic strategies for the treatment of HIV.

Recently, Shrivastava et al. (224) developed a zinc finger
protein (ZFP-362) that specifically targeted the HIV-1
promoter region. The ZFP-362 fuses to active domains of
DNMT3A and induces a long-term stable epigenetic repression
of HIV-1. This suppression was found to be driven by DNA
methylation (224). Like ART, this intervention may repress viral
transcription and control viral replication in HIV positive
individuals; however, it is ineffective against latent HIV
reservoirs. Thus, efforts have mainly been focused on targeting
the latent HIV-1 reservoir responsible for viral persistence and
strengthening immunological defences against HIV. Many
researchers are adopting the “shock and kill” approach to
targeting HIV. This strategy involves the forced reversal of
HIV latency (shock) followed by the robust elimination of
infected cells by viral or host immune-mediated cytolysis (kill).
Frontiers in Immunology | www.frontiersin.org 9
Therefore novel approaches for the development of latency-
reversing agents (LRA) are needed (225). Much interest has
been given to the development of epi-LRA – agents that disrupt
latency by interfering with the epigenetic silencing mechanism of
the 5’LTR (226). In the instance of methylation of 5’LTR, the use
of DNMT inhibitors have been considered (31).

Bouchat et al. (227) found that the DNMT inhibitor, 5‐AzaC,
combined with histone deacetylase inhibitors panobinostat or
romidepsin, was potent in reducing HIV-1 latent reservoirs in
ART-treated patients (227). The 5-AzaC analogue, 5-aza-2′
deoxycytidine (5‐AzadC), alone and in combination with
TNFa and prostratin, significantly increased HIV gene
expression through altered methylation levels (31, 227). Both
5-AzaC and 5-AzadC, commercially known as Vidaza® and
Dacogen®, respectively, have been approved by the FDA to
treat myelodysplastic syndrome and in phase II clinical trials
for chronic myelomonocytic leukaemia (227–229). Treatment
with either 5-AzaC or 5-AzadC was shown to increase the overall
survival of patients with higher-risk myelodysplastic syndromes
and prolong time to leukaemia transformation and death
compared to conventional care regimens (230–232). According
to clinicaltrials.gov, 389 clinical trials are actively investigating 5-
AzaC and 5-AzadC as interventions for various cancers and
conditions. These include: ependymoma, breast cancers,
lymphomas, osteosarcoma, and pancreatic cancer, as well as
other conditions such as immune thrombocytopenia, sickle cell
disease, myelofibrosis, and COVID-19. Therefore, the inclusion
of DNMT inhibitors with ART could represent a significant step
towards the elimination of the latent HIV-1 reservoir and
clearance of virus from infected patients.

Other novel technologies, such as Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR), have great
potential in eradicating viral genomes from infected individuals
by editing genes as well as the methylation levels associated with
HIV. Ebina et al. (233) successfully excised the latently integrated
provirus from the host genome and restricted transcriptionally
active provirus using the CRISPR/Cas9 approach (233). CRISPR-
Cas9 editing of the host genome has also been investigated as an
intervention against HIV. Silencing of CCR5 and CXCR4 genes by
CRISPR have already been shown as effective towards a functional
cure for HIV-1 infection (234–236). While the conventional
CRISPR approach may have revolutionised genetic therapies, it
permanently switches off host genes and may have unwanted
consequences such as off-target gene mutations (237, 238).
Therefore, approaches that edit the epigenome rather than the
genome may be a more suitable and safer strategy. CRISPR-based
epigenome technologies involve the fusion of inactivated Cas9
(dCas9) with DNA methyltransferase or demethylase enzymes,
allowing for manipulating methylation levels at specific CpG sites.
Because this approach targets the epigenome and uses inactivated
Cas9, it will enable reversible editing and prevents the formation of
double-strand breaks (239–241). Therefore, this approach may be
ideal in prospective studies that evaluate host gene regulation as a
treatment strategy against HIV (240).

As the medical field rapidly moves towards precision medicine
and theragnostic approaches, DNA methylation profiling can play
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a tremendous role in these strategies. DNAmethylations can serve
as biomarkers for diagnosis, prognosis, monitoring and predicting
treatment response and disease outcome (242). Due to its dynamic
and stable nature, it is more reliable and suitable than genetic and
protein-based biomarkers. Methylation levels can be easily
Frontiers in Immunology | www.frontiersin.org 10
measured in circulating cell-free DNA, which is the preferable
method in clinical settings as it is minimally invasive (243). Several
DNA methylation-based in vitro diagnostic tests have been
developed and commercialised for profiling DNA methylation
(241). Tests may be specific for a disease such as Epi proColon® 2.0
TABLE 1 | HIV-associated host genes that are regulated by methylation in other diseases or in vitro models.

Gene Role in HIV-1 pathogenesis Citation Disease or in vitro models in which DNA
methylation is established

Citation

Viral entry
CXCR4 Facilitates viral entry (134,

135)
Pancreatic cancer, Sporadic breast cancer,
and primary myelofibrosis

(136–
138)

CCR2 Minor HIV co-receptor which mediates viral entry (155,
156)

Human monocytic cells (157)

CCL2 A ligand of CCR2 which upregulates CXCR4 expression on CD4+ T cells, thus
facilitating viral entry. Facilitates transmigration of HIV infected leukocytes across the
blood-brain barrier

(158,
159)

Gout, Small cell lung cancer, Raw264.7
macrophages

(160–
162)

CXCR6 HIV co-receptor which mediates viral entry (163,
164)

Hepatosplenic T–cell lymphoma, and Systemic
Sclerosis

(165,
166)

CCL5
(RANTES)

Ligand for CCR5. It suppresses infection of R5 strains of HIV-1 by blocking CCR5 (167,
168)

Ageing and childhood obesity-associated
asthma

(169,
170)

HIV restriction factor
SAMHD1 Restricts HIV replication (139,

140)
Lung cancer and Sezary syndrome (142,

143)
P53 Restricts HIV replication (144) Ovarian cancer, breast cancer, hepatocellular

carcinoma and colon cancer
(149–
151)

p21 Restricts HIV replication (144,
145)

Colorectal cancer, lung cancer and malignant
pleural mesothelioma and acute lymphoblastic
leukemia

(152–
154)

TSG101 Inhibits HIV budding (171) Cervical cancer (172)
Immune checkpoint molecules
PD-1 Immune checkpoint molecule expressed on exhausted T cells, inhibit productive HIV

infection, thereby facilitating the establishment of latent HIV infection.
(173,
174)

Colorectal cancer, breast cancer, head and
neck squamous cell carcinoma,
myelodysplastic syndrome and prostate
cancer

(175–
179)

PD-L1 Ligand for PD-1. Immune checkpoint molecule expressed on exhausted T cells,
inhibit productive HIV infection, thereby facilitating the establishment of latent HIV
infection.

(180) Colorectal cancer, Non-small-cell lung
carcinoma, and acute myeloid leukaemia

(175,
181, 182)

TIM3 Suppress effector functions of activated T cells in chronic uncontrolled viral infection
with HIV-1.

(183) Colorectal cancer, breast cancer and gastric
cancer

(175,
179, 184)

LAG-3 Immune checkpoint molecule, induces immune exhaustion and facilitates HIV
latency

(185,
186)

Colorectal cancer, breast cancer, clear cell
renal cell carcinoma, melanoma

(175,
179, 187,

188)
CTLA-4 Downregulates T cell functioning and associated with HIV disease progression (189) Colorectal cancer, breast cancer, rheumatoid

arthritis, myasthenia gravis, head and neck
squamous cell carcinomas

(175,
179,

190–192)
Other
TRIM22 Inhibits HIV transcription and promotes HIV latency (193) Hepatitis B virus, Systemic lupus

erythematosus
(194,
195)

DC-SIGN
(CD209)

Recpetor found on dendritic cells which binds to gp120 of HIV and facilitate the
dissemination of HIV

(196,
197)

Dendritic cells (198)

IL-10 Increases post-HIV infection by inhibiting HIV-1 specific T-cell responses (199) Rheumathoid arthritis, Behçet’s disease (200,
201)

IL-32 Induces hostile cytokine environment that hinders HIV fusion and replication (202,
203)

Hek293 (in vitro), Juvenile idiopathic arthritis,
Influenza A

(204–
206)

IRF1 activating the transcription of HIV genome during the early stage of HIV replication (207,
208)

Paediatric obstructive sleep apnea (209)

Perforin Associated with slow HIV progression. Mediates the killing of HIV-infected cells by
CD8+ T-cells

(210,
211)

CD4 and CD8 T cells, systemic lupus
erythematosus, chronic fatigue syndrome,
multiple sclerosis

(18,
212–214)

ICAM-1 promotes HIV-mediated syncytia formation and viral spread. (215) Autoimmune thyroid diseases, and primary
bladder carcinoma.

(216,
217)

PCSK9 Mediates HIV-Associated Dyslipidemia Coronary artery disease, Congenital Aortic
Valve Stenosis Type 2 Diabetes and Metabolic
Syndrome

(218–
220)
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CE, which detects methylated Septin9 to diagnose colon cancer and
Bladder EpiCheck®, which measures changes in methylation of 15
genes associated with bladder cancer (244, 245). The utilisation of
the EpiSign assay has been well established in clinical diagnostic
laboratories and uses genome-wide methylation patterns to
diagnose up to 42 rare neurodevelopmental Mendelian
syndromes (246, 247). Many of the commercialised clinical
DNA methylation assays implement practical and cost-effective
assays such as qPCR and microarrays. The use of DNA
methylation-based biomarkers for precision medicine has been
extensively studied with regards to cancer; however, its application
has great potential in other diseases, including HIV. For instance,
DNA methylation has been shown to be a potentially effective
prognostic biomarker for predicting risk and type of HIV-
associated lymphomas and HIV associated cognitive
impairment; however, these results are yet to be translated to a
clinical setting (94, 248). There is still a lot to be investigated
regarding the epigenetic signature of HIV for precision medicine.
Future studies should focus on using well-characterised clinical
cohorts to evaluate methylation profiling as a biomarker for
predicting HIV disease course, development of HIV associated
comorbidities, monitoring patient response to ARVs and
personalised therapy.

The Epi-therapeutic interventions, either through LRA or
CRISPR technologies and DNA methylation in precision
medicine and theragnostics, provides a novel and powerful
approach against HIV. However, there is much-needed research
to be done to translate these approaches into a clinical setting.
CONCLUSION AND FUTURE
PERSPECTIVES

Since the beginning of the HIV epidemic, the impact of host
genetic variations on HIV susceptibility and disease outcomes
has attracted a vast amount of attention, while epigenetic
changes have long been neglected. This review provided a
comprehensive overview of the intricate interplay between
DNA methylation and viral and host genome. Once integrated,
the HIV viral genome is subject to the intense epigenetic
environment of the host genome. This includes silencing of
HIV transcription via DNA methylation. Integration of the
proviral genome also induces aberrant methylation of the host
genome, influencing HIV disease progression. Several host
genes involved in viral entry, anti-viral responses and
immune defences are altered by DNA methylation in HIV
infected individuals.

However, many of the studies discussed are limited by the
study designs used. Many of the studies discussed failed to account
for the influence of genetic and/or environmental factors on
promoter methylation. Another drawback of most studies
reviewed is the type of sample that was used. The type of
sample selected for a study involving DNA methylation is
crucial as methylation patterns differ substantially according to
cell type (93). Studies using mixed cell samples such as whole
blood or PBMCs need to account for cell type composition and
Frontiers in Immunology | www.frontiersin.org 11
variation in the methylation patterns of different cells. Some
studies have tried to account for account for cell type
heterogeneity by transfecting homogenous T cell lines (95–97).
However in vitro studies are not accurate representation of cells
systems and are unable to account for ethnic differences. Increased
susceptibility to HIV and varying responses to ARVs have been
noted amongst different ethnic groups [extensively reviewed in
(249)]. Disparities regarding DNA methylation have also been
observed between diverse ethnic populations, including
Caucasians, Hispanics, Middle Eastern, and African populations
and may serve as a biomarker for underlying ethnic health
disparities between human populations (250). Thus far, very
little is known about the contribution of DNA methylation on
ethnic differences to HIV acquisition, disease and treatment
outcomes. Seeing that aberrant methylation patterns have been
associated with HIV and that the rate of incidence differs amongst
different ethnic groups, it is vital ethnic differences are taken into
consideration when conducting studies and clinical trials therefore
researchers should also take ethnicity into consideration (249,
250). The results of trials on one ethnic group may not necessarily
be applicable to another ethnic, therefore researchers should also
take ethnicity into consideration. We believe that the ideal model
for epigenetic studies related to HIV disease are sorted PBMCs or
CD4+ T cells that are isolated form a prospectively obtained
longitudinal cohort consisting of different ethnic groups.
Admittedly, it will be challenging to recruit and maintain such a
cohort, nonetheless, more accurate and useful information can be
gained from such a study design.

There is still a lot of gaps in knowledge regarding the
relationship between methylation and HIV. But once we have
a complete picture, the knowledge gained will contribute
substantially to understanding HIV disease. Moreover, the use
of epigenetic interventions such as DNMTs inhibitors as LRA,
CRISPR editing, and methylation biomarkers may revolutionise
our fight against HIV and the AIDS pandemic.
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