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ABSTRACT Gene-by-gene interactions, also known as epistasis, regulate many complex traits in different species. With the availability
of low-cost genotyping it is now possible to study epistasis on a genome-wide scale. However, identifying genome-wide epistasis is a
high-dimensional multiple regression problem and needs the application of dimensionality reduction techniques. Flowering Time (FT) in
crops is a complex trait that is known to be influenced by many interacting genes and pathways in various crops. In this study, we
successfully apply Sure Independence Screening (SIS) for dimensionality reduction to identify two-way and three-way epistasis for the
FT trait in a Multiparent Advanced Generation Inter-Cross (MAGIC) barley population using the Bayesian multilocus model. The MAGIC
barley population was generated from intercrossing among eight parental lines and thus, offered greater genetic diversity to detect
higher-order epistatic interactions. Our results suggest that SIS is an efficient dimensionality reduction approach to detect high-order
interactions in a Bayesian multilocus model. We also observe that many of our findings (genomic regions with main or higher-order
epistatic effects) overlap with known candidate genes that have been already reported in barley and closely related species for the FT
trait.
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PISTASIS can be defined as the presence of genetic in-
teraction between two or more loci in their joint effect on
the phenotype. Epistasis is likely to play a crucial role in the
genetic variation underlying many complex traits in plants,
animals, and humans. Even though the role of epistasis
remains controversial, many studies have been devoted to
the detection of epistasis in complex traits (e.g., Shimomura
et al. 2001; Méki-Tanila and Hill 2014; Huang and Mackay
2016; Paixdo and Barton 2016).
Traditionally, quantitative trait loci (QTL) mapping studies
use biparental populations to identify QTL specific to the trait
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of interest. However, the precision of biparental QTL mapping
is low due to the limited number of recombination events
(Huang et al. 2012). Recently, Cavanagh et al. (2008) pro-
posed a Multiparent Advanced Generation Inter-Cross
(MAGIC) strategy to improve power and precision in QTL
mapping. Subsequently, many studies reported QTL for var-
ious traits identified using MAGIC populations of Arabidopsis
thaliana (Kover et al. 2009), rice (Bandillo et al. 2013), wheat
(Huang et al. 2012; Mackay et al. 2014), and barley
(Sannemann et al. 2015) for different traits. So far, studies
on epistasis from MAGIC populations are rare, despite the obvi-
ous benefits provided by multiparental populations (Ehrenreich
2017).

The single-locus model is widely used for association
mapping of both quantitative and qualitative traits. However,
most complex traits are controlled by multiple genes, and
genome-wide association studies (GWAS) using a single-locus
model may lead to less statistical power and biased effect
estimates. To overcome this, various multilocus methods
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including Bayesian least absolute shrinkage and selection op-
erator (BLASSO; Yi and Xu 2008), Elastic-Net (Cho et al
2010), empirical Bayes (Leyland and Davies 2005), and varia-
tional Bayes (Logsdon et al. 2010) methods have been pro-
posed. The general difficulty of multilocus methods is the
collinearity (interdependence) of the marker data. These same
methods can also be applied to estimate the two-way epistatic
effects of QTL if the set of markers is extended to include all
possible pairwise interaction terms as pseudomarkers (e.g., Xu
2007; Li and Sillanpaa 2012; Karkkainen et al. 2015). Although
many methods are available, two-way epistasis detection in
GWAS is still challenging because of the (i) huge number of
possible pairwise interaction terms, (ii) small sample sizes, and
(iii) the presence of many single-nucleotide polymorphisms
(SNPs) with quite small marker effects. Quantifying three-
way epistasis is even more challenging due to the computational
complexity (screening through all possible combinations) and
mathematical challenges (to separate the additive main effects
and the higher-order interactions), and the requirement to have
enough samples in each subgroup.

Modeling epistasis is a high-dimensional regression prob-
lem, and approaches like multifactor-dimensionality reduc-
tion (MDR) (Ritchie et al. 2001) and sure independence
screening (SIS) (Fan and Lv 2008) have been proposed to
reduce the dimensionality of the search space in these high-
dimensional regression models. The MDR approach is mainly
used to detect gene-by-gene interactions in case control stud-
ies (e.g., Ritchie et al. 2001; Cho et al. 2004; Moore 2004).
SIS operates by ordering SNPs according to their marginal
correlation with the trait and selects a given number of best
candidate SNPs. In a recent study, Karkkidinen et al. (2015)
used SIS to preselect the variables for the Bayesian LASSO
estimation of two-way epistasis in a multilocus association
model [see also the approach of Li et al. (2014)].

In Bayesian variable selection methods, hyper-parameter
selection and study of the sensitivity of results to those choices
are needed. To avoid such tedious processes and to make our
algorithm more automated, we decided to use the method
from Xu (2003) for variable selection. The method proposed
by Xu (2003) specifies a strongly informative prior, which
shrinks the effects of unimportant SNPs toward zero during
estimation and therefore produces a sparse representation of
the model. This method is also called “automatic relevance
determination,” because it expresses ignorance with respect
to scale and it is parameter-free (MacKay et al. 1994;
Figueiredo 2003; Neal 2012), in addition to also being
closely related to relevant vector machines (Tipping 2001).

Flowering Time (FT) is a key complex trait of interest in
agronomic crops and many studies have reported pairwise
gene-by-gene interactions affecting the FT in different crops
(e.g., Caicedo et al. 2004; Durand et al. 2012; Maurer et al.
2015). Unlike offspring from biparental crossing, the MAGIC
population is the result of intercrossing among multiple
(eight) founder lines and thus offers greater genetic diversity
to detect higher-order epistatic interactions. Therefore, in
this study, we used the eight-parent MAGIC barley population
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(Sannemann et al. 2015) to report the main, two-way- and
three-way-interacting QTL for the FT trait identified using
the Bayesian multilocus association model.

Materials and Methods

In our analysis, we closely follow the method from Karkkéinen
et al. (2015), where analysis is done in multiple steps so that
residuals obtained from the previous analysis step are taken
as phenotypes of the next step. Karkkéinen et al. (2015) per-
formed the dimension-reducing step in the search space of
all possible pairwise interaction terms by applying the SIS
algorithm, effectively reducing the original 280 million dis-
crete predictors to 5000 important candidates, making the
problem more suitable to multilocus modeling. The main dif-
ferences between Kérkkéinen et al. (2015) and our approach
here are the following. (i) They used a maximum a posteriori
probability estimation algorithm of extended Bayesian
LASSO while we used Bayesian analysis and Markov chain
Monte Carlo (MCMC) sampling introduced by Xu (2003)
[see also Hoti and Sillanpda (2006) and Bauer et al.
(2009)]. (ii) Instead of directly using residuals, we ran sev-
eral MCMC chains and average mean effect coefficients over
multiple chains to minimize influence of collinearity between
markers in the analysis, before forming residuals. (iii) In
addition to the pairwise epistasis analysis (running two
rounds of the algorithm), we also examined three-way
(higher order) epistasis (running three rounds of the algo-
rithm). (iv) Finally, instead of receiver operating characteris-
tic curves (which do not need any specific method to judge
QTL), we applied the following decision rule: the interactions
that “popped up” in our analysis needed to correspond to
those found in the literature or show similarity after Basic
Local Alignment Search Tool (BLAST) search to findings in
other flowering plants before we regarded them as real sig-
nals (i.e., QTL) [see Wei et al. (2014)]. However, note that
this rule may cause some bias to the results if it is applied for
traits that have not been broadly studied in any species before.

Following the innovation in Kéarkkainen et al. (2015), we use
the modified version of the SIS method of Fan and Lv (2008),
where correlations between a single pseudomarker and the
phenotype are computed one at a time and only a few highest
ones are stored in the memory. This speeds up the computation
process and saves memory because all possible pairwise and
three-way pseudomarkers are not retained in the memory.

Here, we shortly describe the model and the algorithm. Let
y; for i = 1,2..,n represent the phenotypic value of the ith
individual in a MAGIC population with n observations, then
the multilocus association model can be defined as:

p
Vi =Bo + injﬁj + ;. (@)
=1

Here, B, is the population mean, p is the total number of
markers, x; is the genotypic value of individual i at marker



Jj coded as 1 for the genotype AA and —1 for the BB, B; is QTL
effect associated with marker j, and e; corresponds to the
residual, following a normal distribution as e; ~ N(0, 02).

With genome-wide marker information, the number of
markers (p) often exceeds the number of observations (n).
In such cases, Equation 1 can become an oversaturated model
and the ordinary least-squares approach will not provide a
unique solution. So variable selection and shrinkage estima-
tion are required to obtain a unique solution for Equation
1 and the Bayesian shrinkage approach is one alternative.
A common assumption in shrinkage models is that most
of the regression coefficients B) have zero values. In
order to include pairwise interactions, Equation 1 can be
extended to

p p
Vi =Bo+ > _xiBi+ Y XaxuBu + €, 2
=1

k<l

where the regression coefficient By, is the pairwise interaction
effect of loci k and I. As the number of loci increases, simul-
taneous estimation of main effects B and the interaction
effects (By;) from Equation 2 becomes computationally chal-
lenging. Due to the extremely large parameter space of Equa-
tion 2, one needs to apply dimensionality reduction for
the variables to make the use of the multilocus epistatic
model practical. Therefore, we used SIS, which is based on
the marginal correlation with the trait, to select only a subset
of variables to be included in the multilocus epistasis associ-
ation model. For SIS, we first created the pseudomarker for
each pair of SNPs and calculated the correlation with the
response variable, then we only retained the d highly corre-
lated pseudomarkers for the epistasis search. When variable
selection is applied to both the marker main effects and in-
teraction effects (B);) in Equation 2, the interaction effects
may be masked from the main effects (Sillanpaa 2009;
Karkkiinen et al. 2015). Therefore, we first estimated the
main effects, followed by the interaction effects that were
estimated from the residual-outcome analysis (for details,
see below).

We also applied SIS to search for three-locus interactions.
For that, first we created the pseudomarkers for a set of three
SNPs and calculated the correlation with the response vari-
able; then, we retained the t highly correlated pseudomarkers
for the three-way epistasis search. To prevent masking of the
interaction effect, we estimated the main effects and two-way
and three-way interaction (pseudomarker) effects separately
using Equation 1.

The procedure for the two- and three-way epistasis
searches can be summarized as follows:

1. Estimate the marker main effects B; with the multilocus
model.

2. Calculate residuals (E1;) as E1; = y; — Zlexijﬁj.

3. Use SIS to select the most correlated d pseudomarkers
(corresponding to two-way interaction) X1j, to the
residual E1;.

4. Estimate the two-way interaction effects (81;) with the
multilocus model using E1; as the response variable.

5. Calculate the epistasis residuals (E2)) as
E2; = E1; - Y X181

6. Apply SIS to select the most correlated t pseudomarkers
(corresponding to three-way interaction) to the residual E2;.

7. Estimate the three-way interaction effects (82;) with the
multilocus model using E2; as the response variable.

Here, insteps 2 and 6, the estimates j3;, B1; were calculated
as the average over five different MCMC chains.

Bayesian estimation requires the prior specification for the
unknown parameters in the Equation 1. Following Xu (2003),
the marker effects were assigned a normal distribution with
mean zero and effect-specific variance ajz. For the effect-specific
hyper-parameters we assigned Jeffreys’ scale invariant prior,
thus,p(07)1/07 forj = 1, ... p. The prior density for the mean
Bo, is p(Bo)*1. Let B = {B;} and 0* = {07} forj=1,2,...p
be the unknown model parameters; then, the likelihood of the
observation vector y is

-n 1 & P 2
PUIB.0%) = (c3) " X e <_22 2 (yf"’o— Zw) |
90 =1 =1
(3

By Bayes theorem, the joint posterior distribution of the model
parameters is proportional to

p(B,o*|y) =p(¥|B,o*)p(B,o?). “

We applied Gibbs sampling (Geman and Geman 1984) to
draw samples from the above joint posterior distribution.
See Xu (2003) for more details about the implementation
of the Gibbs sampling algorithm. Program codes developed
during the project are publicly available and listed in Supple-
mental Material, File S1, File S2, File S3, File S4, and File S5.

Data set

To validate our approach, we analyzed a barley MAGIC double-
haploid (DH) population of 533 lines using the multilocus model
for identifying the two- and three-way epistatic interactions. This
population was derived from an eight-way cross and the pheno-
typic data were collected from the research station “Poppelsdorf”
of the University of Bonn, Germany. We used the FT phenotype,
which was collected during the year 2011, with two replications
and we considered the mean over the replications for the anal-
ysis. The experiment was arranged in an augmented design and
the FT was measured in days until heading [see Sannemann
et al. (2015) for more details about the experiment]. The pop-
ulation was genotyped using an Illumina 9 k iSelect SNP chip
from TraitGenetics GmbH. After discarding the monomorphic
markers, ~3413 SNPs were available for the analysis.

Data availability

The data set used in this study can be found as Supplemental
Material (File S7 and File S8).
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Results

We estimated the main and interacting QTL in the barley
MAGIC DH population using the multilocus model. Of the
3413 SNP markers available for analysis, 1082 SNPs were
duplicated (i.e., pairwise marker correlation was nearly 1).
During the initial MCMC analysis, we found that if “signifi-
cant” SNPs are duplicated, Bayesian MCMC-based variable
selection will select only one SNP among those duplicated
ones. However, in the next MCMC run it may pick another
SNP among those duplicated SNPs. High collinearity be-
tween markers generally weakens QTL signals by attributing
arbitrary parts of every signal to the duplicated marker (e.g.,
Pasanen et al. 2015). Therefore, when we take the average
over different MCMC runs there is a possibility that the effect
may cancel out and the marker may not appear to be a pos-
itive finding. To avoid this ambiguity, we decided to remove
those duplicated SNPs and the remaining 2331 markers were
used for the final analysis. For the marker effect estimation,
we used five different MCMC chains (with different random
number generator), each having 50,000 iterations with a
burn-in period of 10,000 iterations, and only picked markers
that were constantly selected in all chains as QTL. We exam-
ined the convergence of the MCMC chain using the trace
plots and they showed rapid convergence; therefore, we de-
cided to use 40,000 iterations to obtain the posterior esti-
mates in each case.

Main effect

FT is a well-studied complex trait and many candidate genes
are already known in various plant species. Most of our
identified QTL were close to the already reported candidate
genes in barley. However, some of the main and interacting
QTL regions are not associated with any reported candidate
genes in barley. So, we looked into upstream and downstream
regions of the putative QTL and performed a BLAST search to
identify closest homologous genes for FT in other plant spe-
cies, and those findings are reported here for the unknown
QTL region. The length of the upstream and downstream
regions to be studied were decided based on the observed
linkage disequilibrium (LD) (r? > 0.8) around the putative
QTL. Main effect QTL for this population were already reported
by Sannemann et al. (2015) using a single-locus model
with binary and haplotype approaches. Unlike the previous
study, we used a Bayesian multilocus association model and
our results were close to those obtained with the haplotype
approach by Sannemann et al. (2015). We found that four
main effect QTL were common to both studies. In addition,
we found evidence in favor of three more main effect QTL.
Among these seven identified QTL, four were already known
to be involved in FT regulation and reported by many other
studies in barley (Wang et al. 2010; Maurer et al. 2015). The
four known regions of major FT genes are: (i) the region
~19.9 cM on chromosome 2H with the candidate gene pseu-
doresponse regulator (PPD-H1), which provides adaptation
to photoperiod in barley (Turner et al. 2005); (ii) location
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109.20 cM on chromosome 3H with a candidate semidwarf
SDW1 gene (Kuczynska et al. 2013); (iii) region 125.76 cM
on 5H with the candidate vernalization (VRN-HI1) gene (von
Zitzewitz et al. 2005); and (iv) location 34.34 on 7H with the
vernalization (VRN-H3) gene (Yan et al. 2006).

We also detected two clear QTL signals on chromosome 2H
atlocation 29.01 cM [this region has already been reported by
Alqudah et al. (2016)] and 33.49 cM. LD analysis for this
region showed that these two markers are in high LD, and
so we consider this as one QTL region. Since this region has
not been previously implicated in FT regulation, we obtained
the overlapping protein sequence at 29.01 ¢cM on 2H from
Ensembl Plants (www.plants.ensembl.org) for the barley ge-
nome and performed a protein BLAST (pBLAST) search
against the National Center for Biotechnology Information
protein database (https://www.ncbi.nlm.nih.gov/protein/).
The pBLAST showed > 92% similarity with the gene “CBL-
interacting protein kinase 3 (CIPK3)” in various flowering
plants. Kim et al. (2003) showed that CIPK3 regulates abscisic
acid regulation in Arabidopsis. Abscisic acid is known to be
involved in variety of physiological processes in plants like
seed dormancy (Gonzilez-Garcia et al. 2003), leaf senes-
cence (Zhao et al. 2016), and responses to abiotic stresses
(Fyjii and Zhu 2009). We also performed a pBLAST search as
mentioned above for the other two unknown regions, 102.7
cM on 4H and 42.49 cM on 7H, which were found as QTL in
our analysis. pBLAST search for the region 102.7 cM on 4H
showed high similarity with the gene “Cycloartenol-C-24-
methyltransferase (SMT1)” in different flowering plants.
SMT1 plays a key role in sterol biosynthesis, and studies have
already reported the influence of sterols on plant develop-
ment (Carland et al. 2010), embryogenesis (Clouse 2000),
and hormone signaling (Lindsey et al. 2003) in Arabidopsis.
We also calculated the LD for the region between the two
QTL on 7H and found that they are not in LD. The associated
SNP at 42.49 cM on 7H was located in the gene “GAMYB-
binding protein (GBP3),” and Gubler et al. (1995) previously
identified gibberellin-specific transcriptional regulator
GAMYRB in barley aleurone cells. Kaneko et al. (2004) reported
that mutations in the rice GAMYB gene retard the growth and
development of anthers. Millar and Gubler (2005) reported
that A. thaliana genes MYB33 and MYB65, which have high
sequence similarity to the barley GAMYB gene, are regulated by
microRNA, and they facilitate anther development. Thus, we
believe that this gene is involved in the FT regulation of the
MAGIC population. Figure 1 shows the main effect QTL on the
corresponding chromosomes. Additionally, we also show the
marker effects estimated using a Bayesian multilocus associa-
tion model in Figure 2, which indicates that the model can
clearly separate the QTL signals in the data.

Two-way epistatic interactions

To investigate the two-way epistasis, we first applied the SIS
and selected 1000 pseudomarkers most correlated with the
residuals to estimate the interaction effects with the multi-
locus model. We found six major two-way-interacting QTL,
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QTL regions found in this study are marked in red.

including the main effect regions on 2Hat 29.01 and 33.49 cM,
suggesting that these regions are involved in the same in-
teraction. However, due to the high LD between those
markers, we consider them to be spurious epistatic signals
due to LD rather than any real epistatic finding (cf. Wood et al.
2014; Kérkkéinen et al. 2015). The photoperiod response
gene [PPD-HI region (19.9 ¢cM on 2H)] was involved in
two epistasis interactions, with the region 1.93 cM on 4H
and 87.87 cM on H1. Here, the region ~2 cM on 4H has been

already reported by Maurer et al. (2015) as a main effect QTL
in their study. pBLAST search for the overlapping gene at
87.87 cM on H1 showed high similarity with “Tubby-like
F-box protein 8 (TULP8),” a member of the TLP gene family,
which is composed of 11 members (AtTLP1-11) in Arabidop-
sis. The plant-specific transcription factor LEAFY (LFY) plays
an important role in flower formation in Arabidopsis and LFY
is a target of AtTLP8 (William et al. 2004; Winter et al. 2011).
Also, the region ~161.80 cM on 5H is involved in two
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Figure 2 Marker effects estimated in days as posterior means for the flowering time trait with the Bayesian multilocus association model plotted against
the corresponding markers in the barley Multiparent Advanced Generation Inter-Cross population.

interactions, one with the region 130.01 ¢cM on H1 and the
other ~66.78 cM on 6H chromosome. pBLAST search for the
overlapping gene on region 161.80 cM on 5H showed > 90%
similarity with the gene “ycf20-like protein (ycf20)” in other
flowering plants. In Arabidopsis, it is known that the ycf20-
like gene affects the thermal dissipation of excess absorbed
light (Jung and Niyogi 2010). The region ~130.01 ¢cM on H1
is known to have the candidate barley clock gene HVELF3,
which influences the flowering pathway and leads to the
early flowering phenotype in barley (Zakhrabekova et al.
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2012). A pBLAST search for region 66.78 ¢cM on 6H showed
high similarity with the gene “tryptophan-aspartic acid (WD)
repeat-containing protein” in other species, and WD repeats
act as sites for protein—protein interaction in Arabidopsis (Van
Nocker and Ludwig 2003). QTL regions with the barley ver-
nalization genes VRN-HI (125.76 cM on 5H) and VRN-H3
(34.34 cM on 7H) also showed high signals for two-way
epistasis and are known to play a crucial role in FT regulation
in barley (Yan et al. 2006). Figure 3 represents the ge-
netic map of the major two-way epistatic QTL, which are



i

connected by red lines, and the chromosomes are arranged
circularly with the cytobands marked in the inner ring of the
plot. The circular plot was created using Circos software
(Krzywinski et al. 2009). Additionally, for comparison pur-
poses, we also performed a standard a two-dimensional
whole-genome scan using PLINK software (Purcell et al.
2007). Unlike our multilocus approach, PLINK uses a two-
locus model for epistasis searching and will report all the
markers that are in high LD with a putative two-way-
interacting QTL region as significant markers. Therefore, the
PLINK epistasis search provided many significant interaction
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Figure 3 Genetic map of the barley Multiparent Advanced Generation Inter-Cross population with the epistatic interactions. The chromosomes are
shown with different colors and the markers in blue lines. The two-way-interacting QTL are connected with red lines and the candidate genes associated
with the regions are also shown. Here, “2015" is the region reported by Maurer et al. (2015)

pairs, and many of these pairs were proximal SNPs that are in
high LD to the putative region. The PLINK analysis also pro-
vided many significant interactions on the same chromo-
some, so we removed those SNP pairs from the result. We
used a relatively stringent P-value of (1071°) (Murk and
DeWan 2016) to consider the pairs of SNP-SNP interactions
as significant and the results are provided in File S6. Four of
our five two-way-interacting QTL were also detected by
PLINK analysis, except the interaction involving region H1
at 130.01 cM. We think that the observed differences in the
identified pairwise interactions are likely due to fundamental
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differences (in the Models and Methods) between the two
approaches.

Three-way epistatic interactions

To detect three-way epistasis, we used a set of 1000 most-
correlated pseudomarkers as predictors to explain the two-
way corrected residuals in the multilocus model. We also
found high collinearity among the pseudomarkers con-
structed for the three-way epistasis. Therefore, after the
Bayesian analysis, we additionally applied an F-test to test
the significance of the three-way interaction with the
null hypothesis (Hp) that a particular three-way interac-
tion is zero. The F-statistic was calculated by comparing
model Y:M1+M2+M3+(M1:M2)+(M2:M3)+(M1:
Ms) against the alternative model Y = M; + My + M3+
(M1 ZMz) + (Mz 2M3) + (M1 ZM3) + (M1 : Mo 2M3). Here,
M;,i =1,2,3 represents the trio found using the Bayesian
multilocus analysis, M; : M; is the two-way interaction term,
and M7 : M : Ms is the three-way interaction term. We used
a significance level of P = 107>, to decide whether a trio of
markers is significant and found three major three-way-
interacting QTL.

The regions on 6H at 53.75, and 88.73 and 124.29 cM on
2H, showed the most significant three-way interaction. The
region ~53 ¢cM on 6H is known to have the CO (CONSTANS)
gene HYCO7, and the CO (CONSTANS) gene has a crucial
role in the regulation of flowering by photoperiod in Arabi-
dopsis (Griffiths et al. 2003), whereas the region 88.73 cM on
6H is known to have the candidate gene CONSTITUTIVELY
PHOTOMORPHOGENIC1 (HvCOP1), which is required for
the UV-B response in Arabidopsis (Oravecz et al. 2006). How-
ever, on 2H at 124.29 cM, we did not find any reported can-
didate gene, and on pBLAST search we found that this region
colocalizes to the gene TIFY3. This gene is involved in the
jasmonate signaling pathway in different flowering plants
and jasmonates play a key role in flower development (Cai
et al. 2014; Yuan and Zhang 2015; Li et al. 2017). In barley,
the region 5H (119.8-125.8 cM), spanning VRN-HI and
PHYTOCHROME C PHYC, is known to play a crucial role in
FT under long-day photoperiod (Chen et al. 2014). In our
analysis region, 119 cM on 5H showed significant interaction
with the region 113.24 ¢cM on 6H and 97.30 cM on 7H.
PBLAST search for the region on 6H (113.24 ¢cM) found that
this region colocalizes with the gene Cytochrome P450 (cyt
P450) and cyt P450 enzymes catalyze many reactions in plant
metabolism (Bolwell et al. 1994; Frank et al. 1996). Addition-
ally, cyt P450 enzymes are involved in the promotion of flower-
ing following vernalization (Burn et al. 1993; Dennis et al.
1996). The region on 7H at 97.30 ¢cM showed > 95% similarity
with gene G-type lectin S-receptor-like serine/threonine pro-
tein kinase (GsSRK), which is known to be a positive regulator
of plant tolerance to salt stress (Sun et al. 2013). The region
88.73 cM on 6H with the candidate gene HvCOP1 was in-
volved in two significant three-way interactions. In the second
significant three-way epistasis, it showed interaction with the
regions on 7H (119.54 cM) and 4H at 115.22 cM. pBLAST
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search for the SNP from the region 115.22 cM on 4H showed
high similarity with the gene B-tubulin TUBS8. Previously,
Yoshikawa et al. (2003) reported anther-specific expression
of TUBS in rice. Finally, the pBLAST search for the SNP from
the region 119.54 cM on 7H showed > 90% similarity with the
gene protein kinase 1b (APK1b) in Arabidopsis. Elhaddad et al.
(2014) have shown that APK1b is predominantly expressed
in guard cells and affects light-induced stomatal opening
in Arabidopsis. Figure 4 represents the genetic map of the
major three-way epistatic QTLs and the chromosomes are
arranged circularly with the cytobands marked in the inner
ring of the plot.

Discussion

During the past decade, many statistical methods have been
developed to identify epistatic interactions in GWAS. How-
ever, genome-wide detection of epistasis is still statistically
and computationally challenging. In this study, we apply an
efficient dimensionality reduction approach to model two-
and three-way epistasis in a Bayesian multilocus model.
Results from our case study demonstrate that our strategy
detects already reported main QTL along with new potential
QTL regions. Additionally, we were also able to identify novel
two- and three-way-interacting regions involving already
reported candidate genes.

We also found that the main difficulty in the use of Bayesian
multilocus mapping for epistasis searches in MAGIC popula-
tions was the high collinearity (due to the close physical
linkage and presence of nearly perfect duplicates) among
the markers as well as among pseudomarkers, which created
inconsistencies in the results from different MCMC chains. If
we presume that a marker (A) is a proxy to strong QTL and that
markers A and B are highly similar to each other, then only one
of these markers will be selected to the model, and the
selection is based on the MCMC starting values. This phe-
nomenon causes unwanted instability in the results from
different MCMC chains and the final QTL findings may look
ambiguous. On the other hand, in a single-locus model, both
markers A and B may easily appear as significant QTL, and
having two QTL peaks implies stronger evidence. Additionally,
collinearity due to high LD causes problems in SIS by selecting
many representative markers close to a putative QTL region.
Hence, we emphasize the importance of a quality control step
(to remove the duplicates and high-LD markers) before using
Bayesian multilocus models with SIS for epistasis searches. In
our algorithm, stable performance of the method was also
increased by comparing and utilizing estimates from five
different MCMC chains. This, combined with carefully made
quality control, appears to be helpful and can yield more
meaningful results that are replicable.

Computational complexity is another issue that deserves
some attention when multilocus association models are ap-
plied to main effect and epistasis searches. In this study, the
total computation time was ~90 min for the analysis of the
main effects by running 50,000 MCMC iterations in an Intel
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Figure 4 Genetic map of the barley Multiparent Advanced Generation Inter-Cross population with the three-way interactions. The chromosomes are
shown with different colors and the markers in blue lines. The trios of three-way-interacting QTL are connected with lines using the same color and the

candidate gene associated with the region is also shown.

8 core processor central processing unit (CPU) with 32 GB
random-access memory (RAM). The SIS for the two-way
pseudomarkers took ~5 min on the same computer. Compu-
tation time for the two-way epistasis search with 1000 pseu-
domarkers and the same number of iterations was ~15 min.
However, the time taken to complete the three-way SIS
was ~92 hr, and the estimation of three-way interaction
effects with 1000 pseudomarkers took ~15 min. The three-
way SIS with 2331 markers needed to go through all
(2331 X 2330 X 2329)/3 ~ 4 billion combinations.

Another interesting point we would like to raise is the
applicability of the permutation test in multilocus models (Xu
2003). We found that the phenotype permutation test highly
depends on the collinearity in the marker data when the
multilocus model is applied for association (results are not
shown). The upper confidence limit for the permutation test
seems to be really high when high between-marker depen-
dency exists. So, as an alternative to permutation, we suggest
using the estimates from many MCMC chains with different
starting values, and considering the markers that appear in
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all chains and those previously reported in the literature as
the significant ones (Wei et al. 2014).

Finally, we note that the marker coding has been identified
as having an influence on epistatic QTL findings (He et al.
2015; He and Parida 2016; Martini et al. 2017). When deal-
ing with MAGIC populations, some researchers defined the
numeric codes of genotypes using the identical-by-descent
(IBD) approach (Wei and Xu 2016) rather than the iden-
tical-by-state (IBS) approach, as in our study. The IBD ap-
proach is primarily applied for main effects, because
considering epistasis in an eight-parent MAGIC model re-
quires 8 X 8 = 64 possible interaction effects just for a pair
of loci. In contrast, using the IBS approach and our assump-
tions, it is much easier to handle the interactions because only
one interaction effect is then needed for a pair of loci. We
modeled the interactions between markers as the product of
the genotype values and the traditional SNP coding (—1 and
1) that we used might not be able to detect all the epistatic
interactions. The SIS approach seeks interactions marginally
and therefore one may ask if some interactions are missed,
because they do not show sufficiently large signals in SIS
analysis. It is true that we may miss interaction signals whose
marginal associations are not large enough, but on the other
hand, applying SIS for residuals (which loosely do something
similar to joint modeling) should partly alleviate this. Also,
doing whole analysis multiple times, by varying the number
of selected SIS candidates in each analysis, may give some
information about sensitivity of the results. However, our
results suggest that the dimensionality reduction based on
SIS to the residuals is able to detect some of the strong sig-
nificant higher-order interactions in the real data set. In con-
clusion, we have illustrated that SIS dimensionality detection
can be efficiently combined with Bayesian shrinkage-based
variable selection and be successfully applied in real MAGIC
populations for three-way epistasis searches, which is other-
wise computationally challenging if one goes through all pos-
sible combinations by enumeration.
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