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vaccination	 policy,8	 and	 planning	 for	 and	 responding	 to	 pandemic	
influenza,9–11	 and	 bioterrorism,12	 planning	 of	 intervention	 trials,13,14	
evaluation	of	intervention	policy	(since	evaluation	of	interventions	at	
close	 to	 full-scale	 is	 usually	 impossible),14,15	 as	 well	 as	 improving	
understanding	of	disease	natural	history,	and	examining	general	prin-
ciples	of	disease	control.16

Infectious	 disease	 epidemiology	 is	 inherently	 multidisciplinary	
because	the	transmission	of	infection	within	a	population	is	affected	
not	just	by	the	biologic	characteristics	of	the	infectious	agent	and	its	
host,	but	also	by	 the	patterns	of	contact	between	hosts	(and	vectors,	
where	relevant),	the	environment	and,	for	humans,	their	use	of	health	
services	and	response	to	public	health	interventions,	etc.	Mathematical	
models	are	used	to	characterize	the	complex	interactions	between	these	
factors	 and	 to	 enable	 information	 from	 diverse	 sources,	 including	
social	sciences,	to	be	integrated.

Importantly,	 models	 should	 not	 be	 ‘black	 boxes’,	 but	 should	 be	
clearly	described	so	 that	non-modelers	are	able	 to	assess	 the	validity	
of	the	model	and	its	use	of	data.	Modeling	is	the	process	of	formalizing	
one’s	conception	of	a	system,	and	the	exercise	should	increase	clarity;	
nevertheless,	 infectious	 disease	 transmission	 dynamics	 are	 typically	
inherently	complex.

Dynamics of Infectious Disease 
Transmission
The	defining	characteristic	of	infectious	diseases	–	that	they	are	trans-
missible	 –	 means	 that	 an	 individual’s	 risk	 of	 acquiring	 infection	
changes	 dynamically	 as	 levels	 of	 infection	 rise	 and	 fall	 in	 the	
population.

The	fundamental	measures	in	epidemiology	are	the	incidence	and	
prevalence.	Incidence	is	the	per-capita	rate	of	new	cases	arising	per	unit	
time,	and	is	usually	expressed	as	x%	of	the	population	affected	per	year	
or	x	cases	per	1000	per	year	or	x	cases	per	100	000	per	year.	Prevalence	
is	the	proportion	of	the	population	(usually	expressed	as	a	percentage	
or	number	per	1000	or	per	100	000)	that	are	cases	at	a	point	in	time.	
For	both	infectious	and	noninfectious	diseases,	prevalence	is	related	to	
incidence,	since	newly	arising	incident	cases	become	prevalent	cases.

For	infectious	diseases,	however,	incidence	is	also	related	to	preva-
lence,	since	it	is	from	prevalent	cases	that	transmission	occurs,	giving	
rise	to	incident	cases.

The	greater	the	prevalence	of	infectious	individuals	the	more	fre-
quently	 (on	 average)	 a	 person	 who	 is	 susceptible	 to	 infection	 will	
encounter	 an	 infectious	 individual,	 providing	 an	 opportunity	 for	
transmission	to	occur.

Therefore,	there	is	a	dynamic	feedback	process	in	which	incidence	
depends	 upon	 prevalence	 and	 prevalence	 depends	 upon	 incidence.	
This	 leads	 to	 infectious	 disease	 epidemics	 having	‘natural	 dynamics’,	
with	incidence	typically	rising	to	a	peak	then	declining,	in	the	absence	
of	any	intervention.

A TYPICAL EPIDEMIC
In	 a	 typical	 epidemic,	 without	 any	 intervention,	 prevalence	 rises		
initially	 as	 infection	 spreads.	 This	 causes	 an	 increase	 in	 incidence,	
which	 in	 turn	causes	prevalence	 to	 increase	even	 faster	–	 so	 the	epi-
demic	accelerates.	Consequently,	the	supply	of	susceptible	individuals	
becomes	depleted	(by	their	becoming	infected)	and	the	incidence	falls,	

The	first	mathematical	model	of	 infectious	disease	 transmission	was	
constructed	by	Bernoulli	in	17601	to	determine	the	impact	of	variola-
tion,	 a	 crude	 form	 of	 smallpox	 vaccination,	 on	 life-tables	 used	 for	
actuarial	purposes.

Models	are	tools	used	throughout	science	and	medicine	–	they	are	
used	to	interpret	results,	formulate	hypotheses	and	devise	experiments	
to	test	them,	derive	diagnoses	from	observed	signs	and	symptoms	and	
test	 results,	 and	 guide	 decision-making.	 Formulating	 models	 mathe-
matically	 facilitates	 rigorous	 analysis	 and	 allows	 quantitative	 predic-
tions	 to	 be	 made	 of	 trends	 in	 disease	 burden	 and	 the	 impact	 of	
interventions.

Mathematical	models	of	infectious	disease	transmission	are	increas-
ingly	being	used	 to	guide	public	health	policy.	Examples	 include	 the	
control	of	an	epidemic	of	foot-and-mouth	disease	in	the	UK	in	2001,2	
the	 outbreaks	 of	 severe	 acute	 respiratory	 syndrome	 (SARS)3	 and	
Middle	 East	 respiratory	 syndrome	 coronavirus	 (MERS-CoV),4	 plan-
ning	 control	 strategies	 for	 tuberculosis	 (TB),	 human	 immunodefi-
ciency	 virus	 (HIV)	 and	 sexually	 transmitted	 infections	 (STIs),5-7	

KEY CONCEPTS
• Mathematical modeling of infectious diseases has a long 

history, and is increasingly used to understand transmission 
patterns, better understand natural history, plan studies and 
public health interventions, evaluate interventions, and plan for 
and respond to outbreaks and epidemics.

• Modeling is required to account for the ‘natural dynamics’ 
arising from the transmission process: the incidence of infection 
(the rate of new infections arising) depends upon the preva-
lence (the proportion of the population that is infectious), and 
the prevalence depends upon the incidence – there are 
dynamic feedback interactions between population-level prev-
alence of infection and individual-level risk.

• Population-level transmission-dynamic effects can be benefi-
cial: it is not necessary to vaccinate everyone in the population 
to prevent an epidemic: if vaccination coverage is sufficiently-
high then ‘herd immunity’ prevents epidemics occurring, which 
protects those who are not vaccinated.

• Population-level transmission-dynamic effects can be harmful: 
reducing rates of transmission through vaccination can produce 
a net increase in disease due to an increase in the average  
age at infection unless mitigating action is planned and 
implemented.

• Multiple interacting factors affect infection-transmission pat-
terns, so modeling requires many sources of data, and the 
input of professionals from multiple disciplines.

• Economic analysis of infectious disease interventions needs 
transmission-dynamic modeling to account for infections 
averted, which can be the major health benefit, and can result 
in net cost savings.

• There is no one ‘correct’ transmission-dynamic model for a 
disease: different types of models are appropriate for the same 
disease, depending upon the available data, the question 
being addressed, the time-frame of the work and other factors.

SECTION 1 Introduction to Infectious Diseases
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even	 though	 prevalence	 may	 continue	 to	 rise	 for	 a	 time.	 Eventually,	
the	fall	in	incidence	leads	to	a	fall	in	prevalence	because	infections	are	
‘lost’	from	the	population	(due	to	recovery,	death	or	emigration)	faster	
than	they	are	replaced	by	the	spreading	of	infection.	In	the	longer	term,	
the	 infectious	 agent	 may	 be	 able	 to	 persist	 in	 the	 population	 (i.e.	
become	endemic)	if	there	is	a	high-enough	rate	of	resupply	of	suscep-
tible	individuals	due	to	birth,	immigration,	recovery	from	infection	(if	
there	is	no	lasting	immunity)	or	waning	of	immunity	(if	applicable);	
otherwise	the	infectious	agent	will	go	extinct	locally.

These	 population-level effects	 have	 important	 consequences.	 For	
example,	 vaccinating	 individuals	 or	 treating	 infectious	 individuals	
benefits	not	only	the	individual	patient	directly	but	also	benefits	others	
in	the	population	indirectly	by	reducing	their	risk	of	acquiring	infec-
tion	through	the	reduction	in	the	prevalence	of	infection	in	the	popu-
lation.	 (Quarantine	 and	 isolation	 typically	 benefit	 the	 population		
more	than	the	affected	individuals.)	Vaccination	against	pneumococ-
cus	 caused	 the	 incidence	 of	 infection	 with	‘vaccine’	 serotypes	 to	 fall		
in	 those	 who	 did	 not	 receive	 the	 vaccine	 because	 they	 were	 older		
than	 the	 target	 group	 for	 vaccination,	 as	 well	 as	 in	 those	 who	 were	
vaccinated.17

It	is	important	that	economic	evaluation	of	potential	interventions	
takes	 account	 of	 infections	 averted,	 which	 benefits	 health	 and	 saves	
money	 by	 averting	 the	 need	 for	 treatment,	 by	 using	 mathematical	
models.8,14

Insights from Transmission-Dynamic 
Modeling
Importantly,	 population-level	 effects	 due	 to	 infectious	 disease	 trans-
mission	 dynamics	 mean	 there	 is	 typically	 a	 complex	 nonlinear	 rela-
tionship	between	the	size	of	an	intervention	and	the	outcome.

Typically,	as	the	scale	of	an	intervention	(e.g.	vaccination	coverage	
or	 provision	 of	 treatment)	 increases	 from	 a	 low	 level,	 the	 benefits	 –	
reductions	 in	 levels	 of	 disease	 –	 accrue	 ‘faster’	 than	 the	 costs,	 until	
disease	 has	 been	 reduced	 to	 a	 low	 level	 or	 even	 eliminated;	 further	
increasing	the	intervention	further	produces	a	diminishing	incremen-
tal	 benefit.	 Vaccinating	 just	 a	 small	 proportion	 of	 the	 population	
mostly	benefits	only	those	who	receive	the	vaccine	because	it	does	little	
to	 interrupt	 transmission.	Vaccinating	 a	 large-enough	 proportion	 of	
the	population	to	achieve	‘herd	immunity’	prevents	epidemics,	provid-
ing	a	large	‘indirect’	benefit	to	those	not	vaccinated.	Another	example	
is	in	the	control	of	curable	infections	(e.g.	STIs)	through	treatment:	if	
treatment	capacity	is	 inadequate	then	there	is	a	‘vicious	circle’	where	
failing	to	control	transmission	in	the	present	results	in	more	infections	
in	the	future,	maintaining	the	inadequacy	of	treatment	capacity.6	Con-
versely,	making	a	concerted	effort	to	 increase	capacity	can	break	this	
vicious	circle	and	create	a	virtuous	circle,	where	promptly	 treating	a	
large-enough	proportion	of	infections	reduces	transmission,	reducing	
the	need	for	treatment,	leading	to	significant	cost	savings.6

However,	‘indirect’	population-level	 effects	 can	also	be	harmful.18	
Whilst	reducing	levels	of	infection	in	the	population	through	vaccina-
tion	 protects	 those	 who	 are	 not	 vaccinated	 as	 well	 as	 those	 who	 are	
vaccinated	by	reducing	the	overall	rate	of	infection,	those	who	do	still	
get	infected	are	older	on	average	when	they	get	infected	and	this	can	
lead	to	more	severe	outcomes	for	some	diseases	(e.g.	congenital	rubella	
syndrome).	 Therefore,	 vaccination	 can	 increase	 the	 overall	 rate	 of	
disease	–	either	transiently,	until	infection	is	eliminated	from	the	popu-
lation,	 if	 there	 is	 high-enough	 coverage	 –	 or	 indefinitely,	 if	 vaccine	
coverage	 is	 persistently	 low.18	 Mathematical	 models	 can	 help	 predict	
these	 effects	 and	 aid	 the	 design	 of	 strategies	 to	 mitigate	 them,	 e.g.	
ensuring	sufficient	vaccination	coverage	and	identifying	the	at-risk	age	
range.

Use of Models for Analysis of 
Epidemics and Interventions
Observing	a	decline	in	incidence	following	an	intervention	is	not	suf-
ficient	evidence	to	demonstrate	its	effectiveness.15	Conversely,	in	some	

circumstances	it	is	even	possible	to	observe	incidence	continue	to	rise	
despite	an	effective	intervention,	due	to	an	increase	in	prevalence.19

Models	can	evaluate	interventions	that	have	been	implemented	by	
allowing	comparison	with	the	‘counterfactual’	–	the	modelled	scenario	
of	what	would	have	happened	in	the	absence	of	the	intervention.14,15

Crucially,	quantitative	analysis	can	determine	if	a	putative	cause	for	
an	observed	effect	would	have	been	strong	enough	to	cause	the	effect	
–	 e.g.	 a	 modeling	 of	 the	 Ugandan	 HIV	 epidemic	 found	 that	 several	
modes	of	behavior	change	(delaying	sexual	debut,	reducing	numbers	
of	 sexual	 partners,	 increasing	 condom	 use)	 must	 have	 occurred	 to	
explain	the	observed	decline	in	prevalence.	No	single	behavior	change	
was	sufficient	to	account	for	the	observed	reduction.15

Models	can	help	set	priorities	for	empirical	research	by	determining	
the	importance	of	different	‘gaps’	in	knowledge.	This	is	done	by	testing	
the	 ‘sensitivity’	 of	 a	 model’s	 behavior	 to	 changes	 in	 the	 values	 of	
parameters	that	are	poorly	estimated	by	current	data	to	see	how	much	
they	affect	predicted	levels	of	disease	or	the	predicted	effectiveness	of	
different	interventions.	Typically,	some	parameters	are	highly	influen-
tial,	so	ideally	would	be	known	with	high	precision,	whilst	others	are	
less	influential.

Epidemiologic Data
Incidence	can	be	measured	directly	in	longitudinal	cohort	studies,	fol-
lowing	a	group	of	subjects	through	time,	or	can	be	calculated	from	a	
series	of	cross-sectional	prevalence	surveys.20	Case	notifications	from	
surveillance	systems	are	often	used	as	a	proxy	for	 incidence	(but	not	
all	 infections	 may	 be	 detected	 and	 without	 laboratory	 confirmation	
some	cases	might	be	misreported);	long-term	datasets	are	available	for	
a	 large	 number	 of	 infectious	 agents	 due	 to	 mandatory	 (notifiable)	
disease	surveillance	schemes.	Analysis	of	past	influenza	pandemics	has	
contributed	greatly	to	preparedness	for	future	pandemics	(www.who.int/
influenza/preparedness/pandemic/en/).

Serological	 studies	often	provide	valuable	data,	particularly	when	
complemented	 by	 clinical	 investigations	 (e.g.	 see	 http://consise.tghn	
.org/)	–	for	example	in	informing	on	the	proportion	of	infections	that	
are	symptomatic,	since	it	is	typically	only	symptomatic	infections	that	
are	detected	in	surveillance	systems.21

Reproduction Numbers
The	key	measure	of	an	infectious	agent’s	ability	to	spread	in	a	popula-
tion	is	the	reproduction	number	(sometimes	called	the	net	reproduc-
tion	 number	 or	 effective	 reproduction	 number),	 R(t),	 which	 is	 the	
mean	number	of	new	infections	caused	by	a	typical	infected	individual	
in	the	population	of	interest.22	(Note	that	‘(t)’	indicates	that	the	value	
can	 change	 with	 time	 –	 see	 below.)	 A	 related	 quantity	 is	 the	 basic	
reproduction	number	R0,

18	which	 is	defined	as	 the	mean	number	of	
new	infections	caused	by	a	typical	infected	individual	in	a	population	
of	wholly	susceptible	individuals,	i.e.	R0	is	what	the	value	of	R(t)	would	
be	if	the	population	were	totally-susceptible.	It	is	important	to	under-
stand	 that	 R(t)	 is	 specific	 to	 the	 particular	 infectious	 agent	 in	 the	
particular	 population	 at	 the	 particular	 time,	 and	 can	 be	 changed	 by	
interventions.	 R(t)	 depends	 upon	 the	 average	 rate	 of	 transmission	
from	an	infectious	individual	and	the	average	duration	of	infectious-
ness.	An	epidemic	requires	that	R(t)>1,	so	that	the	prevalence	of	infec-
tion	 increases	 because	 more	 than	 one	 new	 infection	 arises	 from	 the	
average	 infected	person	before	 that	person	 is	‘lost’	 from	the	 infected	
population.	In	the	typical	epidemic	described	above,	depletion	of	the	
‘supply’	of	susceptible	 individuals	causes	R(t)	 to	fall,	even	though	R0	
does	not	change.	 In	 fact,	R(t)	 falls	even	as	 incidence	rises;	 the	 initial	
increase	in	incidence	is	driven	by	the	increase	in	prevalence,	with	the	
proportionate	 increase	 in	 prevalence	 being	 greater	 than	 the	 propor-
tionate	 reduction	 in	 transmission	 from	 the	 average	 prevalent	 case,	
caused	by	the	reduction	in	the	number	who	remain	susceptible.

Public	 health	 interventions	 aim	 to	 reduce	 and	 maintain	 R(t)	
below	 1,	 which	 may	 be	 achieved	 by	 reducing	 the	 average	 infectious	
period	(e.g.	 through	treatment	or	 isolation)	or	 the	transmission	rate	
(e.g.	by	closing	schools	and	workplaces	to	combat	SARS	or	influenza,	

http://www.who.int/influenza/preparedness/pandemic/en/
http://www.who.int/influenza/preparedness/pandemic/en/
http://consise.tghn.org/
http://consise.tghn.org/
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The	population	can	also	be	stratified	by	age,	sex,	co-morbidities,	or	
other	characteristics	of	interest.

Representations	of	contact	patterns	within	populations	vary	in	the	
level	of	detail	used	(in	part	determined	by	the	model	structure),	from	
simple	homogeneous	mixing,	to	dividing	the	population	into	smaller	
aggregate	 groups	 (e.g.	 age	 categories	 or	 geographically	 distinct	 sub-
populations),	 to	 having	 separate	 households,	 or	 even	 having	 explicit	
networks	of	contacts	between	discrete	individuals	(e.g.	sexual-contact	
networks).	 Models	 can	 also	 represent	 movement	 patterns,	 e.g.	 com-
muting	to	work,	or	air	travel	within	and	between	countries.

Models	 can	 be	 deterministic,	 meaning	 that	 they	 do	 not	 explicitly	
represent	randomness	arising	 from	the	probabilistic	nature	of	 trans-
mission	and	other	events,	or	stochastic,	meaning	that	they	do.22	Deter-
ministic	models,	which	represent	expected	‘average’	behavior,	are	more	
common	because	they	are	simpler	and	less	computationally	demand-
ing	to	analyze,	but	stochastic	models	are	more	appropriate	to	analysis	
of	 outbreaks,	 emergence	 of	 novel	 strains	 (e.g.	 with	 antibiotic	 resis-
tance),	or	patterns	occurring	in	small	populations	because	they	capture	
the	expected	variance	due	to	random	events.

EXAMPLE COMPARTMENTAL MODEL  
OF INFLUENZA
For	a	directly	transmitted	pathogen	such	as	influenza,	where	acquired	
immunity	(to	a	particular	strain)	is	lifelong,	the	host	population	can	
be	 represented	 by	 three	 compartments	 containing	 the	 number	 of		
Susceptible,	 Infected	(and	 infectious)	and	Recovered	(immune,	non-
infectious)	individuals.	In	this	example,	the	latent	period	is	ignored,	so	
individuals	become	 infectious	as	 soon	as	 they	become	 infected.	This	
so-called	‘Susceptible–Infected–Recovered’	(or	‘SIR’)	model	approach	
was	first	developed	by	Kermack	and	McKendrick	in	1927,26	elaborated	
upon	 by	 Anderson	 and	 May,18	 and	 now	 forms	 the	 basis	 for	 many	
modern-day	models	of	epidemics.

A	simple	SIR-type	model	(see	Figure	5-1),	can	be	applied	to	data	
from	an	outbreak	of	influenza	in	a	boarding	school	in	England.27	Since	
the	outbreak	is	short-lived,	the	population	is	regarded	as	‘closed’:	no	
one	 enters	 or	 leaves,	 and	 there	 was	 no	 mortality	 due	 to	 infection.	
(Often,	one	has	to	consider	immigration,	emigration,	birth	and	death	
–	 and	 if	 the	 infection	 being	 modeled	 causes	 mortality	 then	 Infected	
individuals	 have	 an	 additional	 disease-induced	 mortality	 rate	 to	 be	
considered.)	 Additionally,	 there	 is	 only	 one	 age	 group	 –	 models	 of	
influenza	 in	 the	 general	 population	 typically	 distinguish	 age	 groups,	
due	to	differences	in	social	contact	rates,	immunity	due	to	past	expo-
sure	to	flu	strains,	and	risk	of	severe	illness	if	infected.

Each	 compartment	 has	 a	 state	 variable	 ‘keeping	 track’	 of	 the	
number	of	individuals	in	that	compartment,	which	can	change	through	
time.	In	this	case,	the	state	variables	are	X(t)	for	the	Susceptible	indi-
viduals,	Y(t)	for	Infected	individuals	and	Z(t)	for	Recovered	individu-
als,	where	‘(t)’	indicates	that	the	values	can	change	with	time.	The	total	
population	 size	 is	N(t),	where	N(t)	=	 X(t)	+	 Y(t)	+	 Z(t).	The	model	
consists	of	a	set	of	differential	equations	describing	the	rates	that	indi-
viduals	flow	between	different	compartments	as	they	become	infected,	
recover,	die	(not	applicable	here),	etc.	The	net	rate	of	change	in	X(t)	is	

or	 promoting	 condom	 use	 and	 reductions	 in	 numbers	 of	 sexual		
partners	 to	 combat	 STIs)	 or	 using	 vaccination	 or	 prophylaxis	 to	
‘remove’	people	from	the	susceptible	population.	Generally,	the	higher	
the	value	of	R0,	the	harder	an	infection	will	be	to	control.	In	a	homo-
geneous	population	(one	where	everyone	has	the	same	average	risk	of	
acquiring	and	transmitting	infection)	the	relationship	between	R0	and	
R(t)	is	R(t)	=	R0×s	where	s	is	the	proportion	of	the	population	that	is	
susceptible.	To	prevent	an	epidemic	by	vaccination	requires	that	s	be	
reduced	so	that	R(t)	<1	(i.e.	that	s	be	reduced	below	1/R0),	hence	the	
greater	the	value	of	R0	the	smaller	s	must	be.	The	critical	vaccination	
threshold	is	the	proportion	of	the	population	that	must	be	successfully	
immunized	to	prevent	an	epidemic;	for	childhood	infections	such	as	
measles,	which	have	high	 typical	R0	 values,	 this	 is	 typically	>90%	or	
even	>95%.

There	 are	 various	 ways	 to	 estimate	 R0	 and	 R(t),	 depending	 upon	
the	available	data.4,18,22,23	 It	 is	 important	 to	 realize	 that	R0	alone	does	
not	provide	complete	information	on	the	transmission	dynamics	of	an	
infectious	agent.3,16	A	highly	infectious	agent	that	spreads	rapidly	but	
has	a	short	infectious	period	could	have	the	same	R0	as	another	infec-
tious	 agent	 that	 is	 much	 less	 infectious	 but	 has	 a	 longer	 infectious	
period	–	the	latter	would	tend	to	spread	more	slowly	but	for	longer.

Structure of Models of Infectious 
Diseases
All	models	of	 infectious	disease	 transmission	use	a	 simplified	 repre-
sentation	of	the	key	features	of	the	natural	history	of	the	infection,	and	
of	 the	 patterns	 of	 contact	 through	 which	 transmission	 occurs.18,22,23	
The	 design	 of	 the	 model	 used	 is	 determined	 by	 the	 question	 being	
addressed,	the	availability	of	data,	computing	resources	available,	speed	
of	analysis	required,	and	other	factors	–	there	is	no	‘right’	model	for	a	
particular	disease.

Important	characteristics	of	the	natural	history	include	the	incuba-
tion	period	(the	time	from	the	point	of	infection	until	the	appearance	
of	symptoms)	and	the	latent	period	(the	time	from	infection	to	becom-
ing	infectious).	These	vary	greatly	(from	days	to	years,	depending	upon	
the	infection)	and	either	can	be	 longer	than	the	other.	For	SARS	the	
latent	period	is	longer	than	the	incubation	period,	with	people	becom-
ing	unwell	before	they	become	infectious;	for	HIV	the	opposite	is	the	
case	(ignoring	brief	seroconversion	symptoms),	but	for	pulmonary	TB	
they	can	be	the	same,	with	people	becoming	infectious	at	the	time	they	
become	unwell.

In	 modeling	 there	 is	 a	 trade-off	 between	 complexity/realism	 and	
the	 ability	 to	 understand	 the	 model’s	 behavior.	 Since	 even	 simple	
models	can	have	complex	dynamics	it	is	important	to	make	the	model	
as	simple	as	possible,	whilst	still	capturing	the	essential	features	of	the	
infection.	For	example,	for	genital	Chlamydia trachomatis	the	incuba-
tion	period	is	often	omitted	from	models6	because	it	is	short	relative	
to	the	 infectious	period	–	and	so	has	 little	effect	on	the	dynamics	of	
infection	–	while	HIV’s	incubation	period	is	long	compared	with	the	
symptomatic	 late-stage	 period	 and	 so	 it	 is	 usually	 incorporated	 into	
models.24	In	the	case	of	TB,	most	people	with	infection	never	develop	
infectious	disease	 (they	 remain	 latently	 infected)	and	so	models	dis-
tinguish	 between	 these	 states.25	 Modeling	 of	 HIV	 and	 of	 TB	 have	
been	 reviewed	 by	 Johnson	 and	 White7,	 and	 White	 and	 Garnett25,	
respectively.

All	 models	 of	 infectious	 disease	 transmission	 need	 to	 represent	
changes	 in	 the	 infection	 status	 of	 persons	 in	 the	 population,	 but	
models	 vary	 in	 how	 they	 represent	 the	 population	 and	 patterns	 of	
contact	 within	 it.	 Most	 commonly,	 the	 population	 is	 represented	 in	
aggregate,	with	the	population	notionally	assigned	to	‘compartments’	
representing	different	infection	states	and	the	model	‘keeping	track’	of	
changes	over	time	in	numbers	of	individuals	in	each	of	these	different	
states	 (see	 example	 below	 and	 Figure	 5-1).	 However,	 other	 types	 of	
model	represent	each	person	in	the	population	as	a	discrete	individual,	
and	are	able	to	‘track’	each	individual’s	history,	as	well	as	individual-
level	 variation	 in	 different	 traits	 –	 these	 models	 are	 typically	 very	
computationally	demanding.

Figure 5-1  Susceptible–infected–recovered  (SIR)  model.  The  population  is 
notionally divided  into  three compartments according  to whether  they are Sus-
ceptible to  infection,  Infected (and infectious) or have Recovered from infection 
and  are  immune.  Individuals  who  become  infected  move  from  the  Susceptible 
compartment to the Infected compartment; the process of recovery subsequently 
moves them from the Infected compartment to the Recovered compartment. The 
parameters β  and  γ  affect  the  rate  of  transmission  of  infection  and  the  rate  of 
recovery, respectively. 

Susceptible, X(t)
β γ

Infected, Y(t) Recovered, Z(t)
(Immune)

Susceptible–Infected–Recovered (SIR) model
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susceptible	(i.e.	when	Y(t)	=	1	and	X(t)	=	N(t);	we	ignore	the	fact	that	
really	X(t)	=	N(t)	–	1	because	one	person	is	infected,	because	we	assume	
that	N(t)	is	large)	is:

β β βX t Y t

N t

N t

N t

( ) ( )

( )

( )

( )
= ⋅ =1

The	average	infectious	period	is	the	reciprocal	of	the	average	recovery	
rate	(the	faster	people	recover,	the	shorter	their	infectious	period),	i.e.	
1/γ.	Therefore	R0	=	β/γ.	The	estimated	values	from	fitting	to	data	were	
β	=	1.97day−1,	γ	=	0.47day−1	(corresponding	to	a	mean	infectious	period	
of	2.12	days),	so	R0	=	1.97day−1/0.47day−1	=	4.18.

Emergency Preparedness and 
Response
The	huge	growth	in	international	travel	and	in	population	densities	in	
many	 cities	 offers	 new	 challenges	 in	 controlling	 the	 spread	 of	 newly	
emerging	infections.	Infectious	disease	transmission	dynamic	model-
ing	 is	 now	 widely	 used	 for	 emergency	 preparedness	 and	 response.	
SARS,	MERS-CoV	and	pandemic	influenza	are	used	as	examples.

PANDEMIC INFLUENZA
Retrospective	modeling,	particularly	of	pandemic	influenza,	has	been	
used	to	better	understand	the	behavior	of	epidemics	and	the	effective-
ness	 of	 interventions	 to	 inform	 scenario	 modeling	 for	 planning	
responses	to	epidemics	of	novel	pathogens,	with	different	characteris-
tics,	and	to	determine	the	appropriate	size	of	antiviral	stockpiles,	and	
capacity	of	intensive	care	facilities.9,10

In	 real-time	 during	 an	 epidemic,	 modeling	 is	 used	 for	 purposes	
such	as:21

1.	 Estimation	 of	 severity	 at	 the	 individual	 level,	 including	 what	
proportion	 of	 infections	 will	 be	 symptomatic	 cases,	 and	 what	
proportions	 of	 those	 will	 be	 medically	 attended,	 hospitalized,	
admitted	 to	 intensive	 care,	 and	 what	 proportion	 will	 die.		
These	proportions	are	typically	age-dependent,	and	affected	by	
co-morbidities.

2.	 Estimation	of	the	expected	ultimate	size	of	the	epidemic	and	its	
trajectory,	 based	 on	 the	 initial	 growth	 rate	 and	 accumulating	
surveillance	data.3,11,28	(Although	R0	varies	amongst	populations,	
similarities	between	populations	mean	that	early	estimates	from	
one	location	can	be	informative	for	others.)

3.	 Estimation	of	the	likely	impact	of	different	intervention	options,	
and	evaluation	of	interventions	that	are	being	implemented.

SEVERE ACUTE RESPIRATORY  
SYNDROME (SARS)
SARS	is	caused	by	a	coronavirus	(SARS-CoV)	normally	found	in	wild	
animals	such	as	the	palm	civet	cat	and	Chinese	ferret	badger.3,29	Early	
cases	are	thought	to	have	involved	zoonotic	infection,	with	subsequent	
genetic	 changes	 enabling	 greater	 human-to-human	 transmission,	
which	accounted	for	the	vast	majority	of	cases	in	the	global	pandemic	
of	 2002/3.	 SARS	 spread	 quickly	 from	 China	 to	 other	 parts	 of	 Asia,	
Europe,	the	Americas	and	elsewhere,	infecting	>8000	individuals	in	29	
countries	and	killing	at	 least	774	people.	Transmission	was	 linked	to	
close	 contact	 with	 cases,	 mostly	 in	 hospital,	 affecting	 healthcare	
workers	or	patients.3,30

Models	of	SARS	transmission	provided	estimates	of	the	key	epide-
miological	parameters	and	showed	how	spreading	was	controlled	by	
effective	intervention.	Reproduction	number	estimates	from	before	the	
WHO	global	alert,	 for	Hong	Kong,	Vietnam,	Singapore	and	Canada,	
respectively,	were	3.6,	2.4,	3.1	and	2.7,	and	after	were	0.7,	0.3,	0.7	and	
1.31	The	reduction	in	the	reproductive	number	in	each	country	reflects	
the	 effectiveness	 of	 control	 measures	 such	 as	 quarantine	 and	 travel	
restrictions	in	curbing	the	epidemic.

Estimating	the	case-fatality	ratio	(CFR)	of	newly	emerged	patho-
gens	is	difficult	as	defining	true	cases	can	be	problematic.32	The	CFR	
may	 be	 overestimated	 if	 many	 subclinical	 infections	 go	 uncounted.	

described	 by	 the	 differential	 equation	 dX(t)/dt,	 etc.	 In	 this	 example,	
there	are	two	processes:	infection	and	recovery.

The	number	of	people	becoming	 infected	per	day	depends	upon	
the	 force of infection	 (the	risk	per	Susceptible	 individual	of	acquiring	
infection	per	day)	and	the	number	of	Susceptible	individuals	available	
to	 become	 infected,	 X(t).	 The	 force	 of	 infection	 depends	 upon	 the	
prevalence	of	infection,	Y(t)/N(t),	and	the	transmission	parameter,	β,	
which	 is	a	combination	of	 the	rate	of	contact	between	people	 in	 the	
population	and	the	probability	of	transmission	upon	contact	between	
an	 Infected	 person	 and	 a	 Susceptible	 person.	 Therefore,	 the	 force	 of	
infection	 is	 βY(t)/N(t)	 and	 the	 transmission	 rate	 is	 X(t)βY(t)/N(t),	
which	 is	 conventionally	 written	 as	 β X(t)Y(t)/N(t).	 Since	 infection	
transfers	 people	 from	 the	 Susceptible	 compartment	 (X(t))	 to	 the	
Infected	compartment	(Y(t)),	the	term	β X(t)Y(t)/N(t)	appears	nega-
tively	in	dX(t)/dt	and	positively	in	dY(t)/dt.	(Note	that	the	transmis-
sion	 parameter,	 β,	 does	 not	 change	 with	 time;	 changes	 in	 the	 daily	
infection	rate	are	due	to	changes	in	Y(t)/N(t)	and	X(t).)

The	number	of	people	recovering	per	day	depends	upon	the	per-
capita	rate	of	recovery,	γ,	and	the	number	of	people	who	are	Infected,	
Y(t),	 and	 is	γ Y(t).	Since	 recovery	 transfers	people	 from	the	 Infected	
compartment	(Y(t))	to	the	Recovered	compartment	(Z(t)),	the	term	γ 
Y(t)	 appears	 negatively	 in	 dY(t)/dt	 and	 positively	 in	 dZ(t)/dt.	 (Note	
that	 the	 per-capita	 rate	 of	 recovery,	 γ,	 does	 not	 change	 with	 time;	
changes	in	the	daily	recovery	rate	are	due	to	changes	in	Y(t).)

The	equations	of	the	model	are:

dX t

dt

X t Y t

N t

( ) ( ) ( )

( )
= −β

dY t

dt

X t Y t

N t
Y t

( ) ( ) ( )

( )
( )= −β γ

dZ t

dt
Y t

( )
( )= γ

N t X t Y t Z t( ) ( ) ( ) ( )= + +

This	 model	 is	 deterministic,	 i.e.	 random	 (stochastic)	 events	 are	 not	
considered.	This	is	a	common	simplification	that	makes	it	much	easier	
to	gain	insight	into	the	fundamental	dynamics	of	transmission	because	
the	effects	of	random	chance,	which	cause	fluctuations	 in	the	graph,	
are	omitted.	This	model	was	fitted	to	data	from	an	outbreak	of	influ-
enza	in	a	boarding	school	in	England27	(Figure	5-2)	to	estimate	values	
of	β	and	γ.

R0	 is	 the	 mathematical	 product	 of	 the	 transmission	 rate	 from	 a	
single	 infected	 individual	 in	a	wholly	susceptible	population	and	the	
average	 infectious	 period.	 The	 algebraic	 expression	 for	 R0	 depends	
upon	 the	 particular	 model.	 For	 this	 model,	 the	 rate	 of	 transmission	
from	 a	 single	 infected	 individual	 when	 the	 population	 is	 wholly	

Figure 5-2  Example  output  of  a  Susceptible–Infected–Recovered  (SIR)  model 
applied to data from an outbreak of influenza. Model parameters were adjusted 
to fit the number of Infected individuals, Y(t), to the observed data. 
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Future Research
There	 is	 increasing	 integration	 between	 infectious	 disease	 modeling	
and	empiric	research	in	the	field	and	laboratory.	Models	can	be	used	
to	help	set	research	priorities	by	determining	which	gaps	in	knowledge	
are	most	important	epidemiologically,	and	help	in	the	design	of	trials.13	
Increases	in	computing	power	make	it	possible	to	develop	increasingly	
sophisticated	 simulation	 models	 and	 to	 use	 them	 in	 real-time	 to	
analyze	outbreaks	to	determine	whether	interventions	are	working	and	
to	guide	policymakers	in	their	response.	DNA	fingerprinting	and	now	
whole-genome	 sequencing	 are	 being	 used	 to	 identify	 ‘transmission	
clusters’	of	individuals4,33	and	the	developing	field	of	‘phylodynamics’34	
synthesizes	 evolution	 and	 transmission	 dynamics.	 Another	 area	 of	
research	 is	 characterizing	 contact	 patterns	 between	 individuals	 in		
more	 detail35	 since	 this	 has	 important	 consequences	 for	 patterns	 of	
transmission.
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Alternatively,	in	epidemics	where	patients	are	hospitalized	for	lengthy	
periods	 before	 recovering	 or	 dying,	 a	 naïve	 real-time	 CFR	 estimate,	
dividing	number	of	deaths	by	numbers	of	cases,	will	initially	underes-
timate	CFR,	as	patients	will	be	recorded	as	cases	before	their	outcome	
is	known,	and	then	the	CFR	will	apparently	rise	over	 time	as	deaths	
occur	 and	 are	 recorded;	 in	 the	 2003	 SARS	 epidemic	 this	 apparently	
increasing	CFR	was	wrongly	 interpreted	as	 indicating	an	 increase	 in	
virulence.3

Mathematical	modeling	identifies	some	key	properties	that	enabled	
SARS	to	be	contained	effectively,	in	contrast	to	influenza.	The	genera-
tion	time	for	influenza	(4–6	days)	is	much	shorter	than	for	SARS	(8–12	
days),3,16	 meaning	 influenza	 will	 spread	 much	 quicker.	 Furthermore,	
SARS	transmission	occurs	after	the	patient	becomes	symptomatic16	–	
making	 it	 feasible	 to	 use	 isolation	 to	 reduce	 transmission	 –	 whilst	
influenza	can	be	transmitted	in	the	absence	of	symptoms.

MIDDLE EAST RESPIRATORY SYNDROME 
CORONAVIRUS (MERS-CoV)
MERS-CoV	was	first	detected	in	2012,	having	apparently	arisen	from	
an	animal	reservoir.	To	date	there	has	been	limited	human-to-human	
transmission;	 modeling4	 suggests	 that	 medical	 intervention	 reduces	
transmission	and	that	currently	R(t)	is	most	likely	<1,	although	prior	
to	 medical	 intervention	 R(t)	 might	 be	>1,	 suggesting	 that	 the	 virus	
might	 have	 pandemic	 potential	 if	 human	 cases	 are	 not	 detected	
efficiently.
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