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Disease Epidemiology
PETER J. WHITE

5 

vaccination policy,8 and planning for and responding to pandemic 
influenza,9–11 and bioterrorism,12 planning of intervention trials,13,14 
evaluation of intervention policy (since evaluation of interventions at 
close to full-scale is usually impossible),14,15 as well as improving 
understanding of disease natural history, and examining general prin-
ciples of disease control.16

Infectious disease epidemiology is inherently multidisciplinary 
because the transmission of infection within a population is affected 
not just by the biologic characteristics of the infectious agent and its 
host, but also by the patterns of contact between hosts (and vectors, 
where relevant), the environment and, for humans, their use of health 
services and response to public health interventions, etc. Mathematical 
models are used to characterize the complex interactions between these 
factors and to enable information from diverse sources, including 
social sciences, to be integrated.

Importantly, models should not be ‘black boxes’, but should be 
clearly described so that non-modelers are able to assess the validity 
of the model and its use of data. Modeling is the process of formalizing 
one’s conception of a system, and the exercise should increase clarity; 
nevertheless, infectious disease transmission dynamics are typically 
inherently complex.

Dynamics of Infectious Disease 
Transmission
The defining characteristic of infectious diseases – that they are trans-
missible – means that an individual’s risk of acquiring infection 
changes dynamically as levels of infection rise and fall in the 
population.

The fundamental measures in epidemiology are the incidence and 
prevalence. Incidence is the per-capita rate of new cases arising per unit 
time, and is usually expressed as x% of the population affected per year 
or x cases per 1000 per year or x cases per 100 000 per year. Prevalence 
is the proportion of the population (usually expressed as a percentage 
or number per 1000 or per 100 000) that are cases at a point in time. 
For both infectious and noninfectious diseases, prevalence is related to 
incidence, since newly arising incident cases become prevalent cases.

For infectious diseases, however, incidence is also related to preva-
lence, since it is from prevalent cases that transmission occurs, giving 
rise to incident cases.

The greater the prevalence of infectious individuals the more fre-
quently (on average) a person who is susceptible to infection will 
encounter an infectious individual, providing an opportunity for 
transmission to occur.

Therefore, there is a dynamic feedback process in which incidence 
depends upon prevalence and prevalence depends upon incidence. 
This leads to infectious disease epidemics having ‘natural dynamics’, 
with incidence typically rising to a peak then declining, in the absence 
of any intervention.

A TYPICAL EPIDEMIC
In a typical epidemic, without any intervention, prevalence rises 	
initially as infection spreads. This causes an increase in incidence, 
which in turn causes prevalence to increase even faster – so the epi-
demic accelerates. Consequently, the supply of susceptible individuals 
becomes depleted (by their becoming infected) and the incidence falls, 

The first mathematical model of infectious disease transmission was 
constructed by Bernoulli in 17601 to determine the impact of variola-
tion, a crude form of smallpox vaccination, on life-tables used for 
actuarial purposes.

Models are tools used throughout science and medicine – they are 
used to interpret results, formulate hypotheses and devise experiments 
to test them, derive diagnoses from observed signs and symptoms and 
test results, and guide decision-making. Formulating models mathe-
matically facilitates rigorous analysis and allows quantitative predic-
tions to be made of trends in disease burden and the impact of 
interventions.

Mathematical models of infectious disease transmission are increas-
ingly being used to guide public health policy. Examples include the 
control of an epidemic of foot-and-mouth disease in the UK in 2001,2 
the outbreaks of severe acute respiratory syndrome (SARS)3 and 
Middle East respiratory syndrome coronavirus (MERS-CoV),4 plan-
ning control strategies for tuberculosis (TB), human immunodefi-
ciency virus (HIV) and sexually transmitted infections (STIs),5-7 

KEY CONCEPTS
•	 Mathematical modeling of infectious diseases has a long 

history, and is increasingly used to understand transmission 
patterns, better understand natural history, plan studies and 
public health interventions, evaluate interventions, and plan for 
and respond to outbreaks and epidemics.

•	 Modeling is required to account for the ‘natural dynamics’ 
arising from the transmission process: the incidence of infection 
(the rate of new infections arising) depends upon the preva-
lence (the proportion of the population that is infectious), and 
the prevalence depends upon the incidence – there are 
dynamic feedback interactions between population-level prev-
alence of infection and individual-level risk.

•	 Population-level transmission-dynamic effects can be benefi-
cial: it is not necessary to vaccinate everyone in the population 
to prevent an epidemic: if vaccination coverage is sufficiently-
high then ‘herd immunity’ prevents epidemics occurring, which 
protects those who are not vaccinated.

•	 Population-level transmission-dynamic effects can be harmful: 
reducing rates of transmission through vaccination can produce 
a net increase in disease due to an increase in the average  
age at infection unless mitigating action is planned and 
implemented.

•	 Multiple interacting factors affect infection-transmission pat-
terns, so modeling requires many sources of data, and the 
input of professionals from multiple disciplines.

•	 Economic analysis of infectious disease interventions needs 
transmission-dynamic modeling to account for infections 
averted, which can be the major health benefit, and can result 
in net cost savings.

•	 There is no one ‘correct’ transmission-dynamic model for a 
disease: different types of models are appropriate for the same 
disease, depending upon the available data, the question 
being addressed, the time-frame of the work and other factors.

SECTION 1 Introduction to Infectious Diseases
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even though prevalence may continue to rise for a time. Eventually, 
the fall in incidence leads to a fall in prevalence because infections are 
‘lost’ from the population (due to recovery, death or emigration) faster 
than they are replaced by the spreading of infection. In the longer term, 
the infectious agent may be able to persist in the population (i.e. 
become endemic) if there is a high-enough rate of resupply of suscep-
tible individuals due to birth, immigration, recovery from infection (if 
there is no lasting immunity) or waning of immunity (if applicable); 
otherwise the infectious agent will go extinct locally.

These population-level effects have important consequences. For 
example, vaccinating individuals or treating infectious individuals 
benefits not only the individual patient directly but also benefits others 
in the population indirectly by reducing their risk of acquiring infec-
tion through the reduction in the prevalence of infection in the popu-
lation. (Quarantine and isolation typically benefit the population 	
more than the affected individuals.) Vaccination against pneumococ-
cus caused the incidence of infection with ‘vaccine’ serotypes to fall 	
in those who did not receive the vaccine because they were older 	
than the target group for vaccination, as well as in those who were 
vaccinated.17

It is important that economic evaluation of potential interventions 
takes account of infections averted, which benefits health and saves 
money by averting the need for treatment, by using mathematical 
models.8,14

Insights from Transmission-Dynamic 
Modeling
Importantly, population-level effects due to infectious disease trans-
mission dynamics mean there is typically a complex nonlinear rela-
tionship between the size of an intervention and the outcome.

Typically, as the scale of an intervention (e.g. vaccination coverage 
or provision of treatment) increases from a low level, the benefits – 
reductions in levels of disease – accrue ‘faster’ than the costs, until 
disease has been reduced to a low level or even eliminated; further 
increasing the intervention further produces a diminishing incremen-
tal benefit. Vaccinating just a small proportion of the population 
mostly benefits only those who receive the vaccine because it does little 
to interrupt transmission. Vaccinating a large-enough proportion of 
the population to achieve ‘herd immunity’ prevents epidemics, provid-
ing a large ‘indirect’ benefit to those not vaccinated. Another example 
is in the control of curable infections (e.g. STIs) through treatment: if 
treatment capacity is inadequate then there is a ‘vicious circle’ where 
failing to control transmission in the present results in more infections 
in the future, maintaining the inadequacy of treatment capacity.6 Con-
versely, making a concerted effort to increase capacity can break this 
vicious circle and create a virtuous circle, where promptly treating a 
large-enough proportion of infections reduces transmission, reducing 
the need for treatment, leading to significant cost savings.6

However, ‘indirect’ population-level effects can also be harmful.18 
Whilst reducing levels of infection in the population through vaccina-
tion protects those who are not vaccinated as well as those who are 
vaccinated by reducing the overall rate of infection, those who do still 
get infected are older on average when they get infected and this can 
lead to more severe outcomes for some diseases (e.g. congenital rubella 
syndrome). Therefore, vaccination can increase the overall rate of 
disease – either transiently, until infection is eliminated from the popu-
lation, if there is high-enough coverage – or indefinitely, if vaccine 
coverage is persistently low.18 Mathematical models can help predict 
these effects and aid the design of strategies to mitigate them, e.g. 
ensuring sufficient vaccination coverage and identifying the at-risk age 
range.

Use of Models for Analysis of 
Epidemics and Interventions
Observing a decline in incidence following an intervention is not suf-
ficient evidence to demonstrate its effectiveness.15 Conversely, in some 

circumstances it is even possible to observe incidence continue to rise 
despite an effective intervention, due to an increase in prevalence.19

Models can evaluate interventions that have been implemented by 
allowing comparison with the ‘counterfactual’ – the modelled scenario 
of what would have happened in the absence of the intervention.14,15

Crucially, quantitative analysis can determine if a putative cause for 
an observed effect would have been strong enough to cause the effect 
– e.g. a modeling of the Ugandan HIV epidemic found that several 
modes of behavior change (delaying sexual debut, reducing numbers 
of sexual partners, increasing condom use) must have occurred to 
explain the observed decline in prevalence. No single behavior change 
was sufficient to account for the observed reduction.15

Models can help set priorities for empirical research by determining 
the importance of different ‘gaps’ in knowledge. This is done by testing 
the ‘sensitivity’ of a model’s behavior to changes in the values of 
parameters that are poorly estimated by current data to see how much 
they affect predicted levels of disease or the predicted effectiveness of 
different interventions. Typically, some parameters are highly influen-
tial, so ideally would be known with high precision, whilst others are 
less influential.

Epidemiologic Data
Incidence can be measured directly in longitudinal cohort studies, fol-
lowing a group of subjects through time, or can be calculated from a 
series of cross-sectional prevalence surveys.20 Case notifications from 
surveillance systems are often used as a proxy for incidence (but not 
all infections may be detected and without laboratory confirmation 
some cases might be misreported); long-term datasets are available for 
a large number of infectious agents due to mandatory (notifiable) 
disease surveillance schemes. Analysis of past influenza pandemics has 
contributed greatly to preparedness for future pandemics (www.who.int/
influenza/preparedness/pandemic/en/).

Serological studies often provide valuable data, particularly when 
complemented by clinical investigations (e.g. see http://consise.tghn	
.org/) – for example in informing on the proportion of infections that 
are symptomatic, since it is typically only symptomatic infections that 
are detected in surveillance systems.21

Reproduction Numbers
The key measure of an infectious agent’s ability to spread in a popula-
tion is the reproduction number (sometimes called the net reproduc-
tion number or effective reproduction number), R(t), which is the 
mean number of new infections caused by a typical infected individual 
in the population of interest.22 (Note that ‘(t)’ indicates that the value 
can change with time – see below.) A related quantity is the basic 
reproduction number R0,

18 which is defined as the mean number of 
new infections caused by a typical infected individual in a population 
of wholly susceptible individuals, i.e. R0 is what the value of R(t) would 
be if the population were totally-susceptible. It is important to under-
stand that R(t) is specific to the particular infectious agent in the 
particular population at the particular time, and can be changed by 
interventions. R(t) depends upon the average rate of transmission 
from an infectious individual and the average duration of infectious-
ness. An epidemic requires that R(t)>1, so that the prevalence of infec-
tion increases because more than one new infection arises from the 
average infected person before that person is ‘lost’ from the infected 
population. In the typical epidemic described above, depletion of the 
‘supply’ of susceptible individuals causes R(t) to fall, even though R0 
does not change. In fact, R(t) falls even as incidence rises; the initial 
increase in incidence is driven by the increase in prevalence, with the 
proportionate increase in prevalence being greater than the propor-
tionate reduction in transmission from the average prevalent case, 
caused by the reduction in the number who remain susceptible.

Public health interventions aim to reduce and maintain R(t) 
below 1, which may be achieved by reducing the average infectious 
period (e.g. through treatment or isolation) or the transmission rate 
(e.g. by closing schools and workplaces to combat SARS or influenza, 

http://www.who.int/influenza/preparedness/pandemic/en/
http://www.who.int/influenza/preparedness/pandemic/en/
http://consise.tghn.org/
http://consise.tghn.org/
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The population can also be stratified by age, sex, co-morbidities, or 
other characteristics of interest.

Representations of contact patterns within populations vary in the 
level of detail used (in part determined by the model structure), from 
simple homogeneous mixing, to dividing the population into smaller 
aggregate groups (e.g. age categories or geographically distinct sub-
populations), to having separate households, or even having explicit 
networks of contacts between discrete individuals (e.g. sexual-contact 
networks). Models can also represent movement patterns, e.g. com-
muting to work, or air travel within and between countries.

Models can be deterministic, meaning that they do not explicitly 
represent randomness arising from the probabilistic nature of trans-
mission and other events, or stochastic, meaning that they do.22 Deter-
ministic models, which represent expected ‘average’ behavior, are more 
common because they are simpler and less computationally demand-
ing to analyze, but stochastic models are more appropriate to analysis 
of outbreaks, emergence of novel strains (e.g. with antibiotic resis-
tance), or patterns occurring in small populations because they capture 
the expected variance due to random events.

EXAMPLE COMPARTMENTAL MODEL  
OF INFLUENZA
For a directly transmitted pathogen such as influenza, where acquired 
immunity (to a particular strain) is lifelong, the host population can 
be represented by three compartments containing the number of 	
Susceptible, Infected (and infectious) and Recovered (immune, non-
infectious) individuals. In this example, the latent period is ignored, so 
individuals become infectious as soon as they become infected. This 
so-called ‘Susceptible–Infected–Recovered’ (or ‘SIR’) model approach 
was first developed by Kermack and McKendrick in 1927,26 elaborated 
upon by Anderson and May,18 and now forms the basis for many 
modern-day models of epidemics.

A simple SIR-type model (see Figure 5-1), can be applied to data 
from an outbreak of influenza in a boarding school in England.27 Since 
the outbreak is short-lived, the population is regarded as ‘closed’: no 
one enters or leaves, and there was no mortality due to infection. 
(Often, one has to consider immigration, emigration, birth and death 
– and if the infection being modeled causes mortality then Infected 
individuals have an additional disease-induced mortality rate to be 
considered.) Additionally, there is only one age group – models of 
influenza in the general population typically distinguish age groups, 
due to differences in social contact rates, immunity due to past expo-
sure to flu strains, and risk of severe illness if infected.

Each compartment has a state variable ‘keeping track’ of the 
number of individuals in that compartment, which can change through 
time. In this case, the state variables are X(t) for the Susceptible indi-
viduals, Y(t) for Infected individuals and Z(t) for Recovered individu-
als, where ‘(t)’ indicates that the values can change with time. The total 
population size is N(t), where N(t) = X(t) + Y(t) + Z(t). The model 
consists of a set of differential equations describing the rates that indi-
viduals flow between different compartments as they become infected, 
recover, die (not applicable here), etc. The net rate of change in X(t) is 

or promoting condom use and reductions in numbers of sexual 	
partners to combat STIs) or using vaccination or prophylaxis to 
‘remove’ people from the susceptible population. Generally, the higher 
the value of R0, the harder an infection will be to control. In a homo-
geneous population (one where everyone has the same average risk of 
acquiring and transmitting infection) the relationship between R0 and 
R(t) is R(t) = R0×s where s is the proportion of the population that is 
susceptible. To prevent an epidemic by vaccination requires that s be 
reduced so that R(t) <1 (i.e. that s be reduced below 1/R0), hence the 
greater the value of R0 the smaller s must be. The critical vaccination 
threshold is the proportion of the population that must be successfully 
immunized to prevent an epidemic; for childhood infections such as 
measles, which have high typical R0 values, this is typically >90% or 
even >95%.

There are various ways to estimate R0 and R(t), depending upon 
the available data.4,18,22,23 It is important to realize that R0 alone does 
not provide complete information on the transmission dynamics of an 
infectious agent.3,16 A highly infectious agent that spreads rapidly but 
has a short infectious period could have the same R0 as another infec-
tious agent that is much less infectious but has a longer infectious 
period – the latter would tend to spread more slowly but for longer.

Structure of Models of Infectious 
Diseases
All models of infectious disease transmission use a simplified repre-
sentation of the key features of the natural history of the infection, and 
of the patterns of contact through which transmission occurs.18,22,23 
The design of the model used is determined by the question being 
addressed, the availability of data, computing resources available, speed 
of analysis required, and other factors – there is no ‘right’ model for a 
particular disease.

Important characteristics of the natural history include the incuba-
tion period (the time from the point of infection until the appearance 
of symptoms) and the latent period (the time from infection to becom-
ing infectious). These vary greatly (from days to years, depending upon 
the infection) and either can be longer than the other. For SARS the 
latent period is longer than the incubation period, with people becom-
ing unwell before they become infectious; for HIV the opposite is the 
case (ignoring brief seroconversion symptoms), but for pulmonary TB 
they can be the same, with people becoming infectious at the time they 
become unwell.

In modeling there is a trade-off between complexity/realism and 
the ability to understand the model’s behavior. Since even simple 
models can have complex dynamics it is important to make the model 
as simple as possible, whilst still capturing the essential features of the 
infection. For example, for genital Chlamydia trachomatis the incuba-
tion period is often omitted from models6 because it is short relative 
to the infectious period – and so has little effect on the dynamics of 
infection – while HIV’s incubation period is long compared with the 
symptomatic late-stage period and so it is usually incorporated into 
models.24 In the case of TB, most people with infection never develop 
infectious disease (they remain latently infected) and so models dis-
tinguish between these states.25 Modeling of HIV and of TB have 
been reviewed by Johnson and White7, and White and Garnett25, 
respectively.

All models of infectious disease transmission need to represent 
changes in the infection status of persons in the population, but 
models vary in how they represent the population and patterns of 
contact within it. Most commonly, the population is represented in 
aggregate, with the population notionally assigned to ‘compartments’ 
representing different infection states and the model ‘keeping track’ of 
changes over time in numbers of individuals in each of these different 
states (see example below and Figure 5-1). However, other types of 
model represent each person in the population as a discrete individual, 
and are able to ‘track’ each individual’s history, as well as individual-
level variation in different traits – these models are typically very 
computationally demanding.

Figure 5-1  Susceptible–infected–recovered (SIR) model. The population is 
notionally divided into three compartments according to whether they are Sus-
ceptible to infection, Infected (and infectious) or have Recovered from infection 
and are immune. Individuals who become infected move from the Susceptible 
compartment to the Infected compartment; the process of recovery subsequently 
moves them from the Infected compartment to the Recovered compartment. The 
parameters β and γ affect the rate of transmission of infection and the rate of 
recovery, respectively. 

Susceptible, X(t)
β γ

Infected, Y(t) Recovered, Z(t)
(Immune)

Susceptible–Infected–Recovered (SIR) model
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susceptible (i.e. when Y(t) = 1 and X(t) = N(t); we ignore the fact that 
really X(t) = N(t) – 1 because one person is infected, because we assume 
that N(t) is large) is:

β β βX t Y t

N t

N t

N t

( ) ( )

( )

( )

( )
= ⋅ =1

The average infectious period is the reciprocal of the average recovery 
rate (the faster people recover, the shorter their infectious period), i.e. 
1/γ. Therefore R0 = β/γ. The estimated values from fitting to data were 
β = 1.97day−1, γ = 0.47day−1 (corresponding to a mean infectious period 
of 2.12 days), so R0 = 1.97day−1/0.47day−1 = 4.18.

Emergency Preparedness and 
Response
The huge growth in international travel and in population densities in 
many cities offers new challenges in controlling the spread of newly 
emerging infections. Infectious disease transmission dynamic model-
ing is now widely used for emergency preparedness and response. 
SARS, MERS-CoV and pandemic influenza are used as examples.

PANDEMIC INFLUENZA
Retrospective modeling, particularly of pandemic influenza, has been 
used to better understand the behavior of epidemics and the effective-
ness of interventions to inform scenario modeling for planning 
responses to epidemics of novel pathogens, with different characteris-
tics, and to determine the appropriate size of antiviral stockpiles, and 
capacity of intensive care facilities.9,10

In real-time during an epidemic, modeling is used for purposes 
such as:21

1.	 Estimation of severity at the individual level, including what 
proportion of infections will be symptomatic cases, and what 
proportions of those will be medically attended, hospitalized, 
admitted to intensive care, and what proportion will die. 	
These proportions are typically age-dependent, and affected by 
co-morbidities.

2.	 Estimation of the expected ultimate size of the epidemic and its 
trajectory, based on the initial growth rate and accumulating 
surveillance data.3,11,28 (Although R0 varies amongst populations, 
similarities between populations mean that early estimates from 
one location can be informative for others.)

3.	 Estimation of the likely impact of different intervention options, 
and evaluation of interventions that are being implemented.

SEVERE ACUTE RESPIRATORY  
SYNDROME (SARS)
SARS is caused by a coronavirus (SARS-CoV) normally found in wild 
animals such as the palm civet cat and Chinese ferret badger.3,29 Early 
cases are thought to have involved zoonotic infection, with subsequent 
genetic changes enabling greater human-to-human transmission, 
which accounted for the vast majority of cases in the global pandemic 
of 2002/3. SARS spread quickly from China to other parts of Asia, 
Europe, the Americas and elsewhere, infecting >8000 individuals in 29 
countries and killing at least 774 people. Transmission was linked to 
close contact with cases, mostly in hospital, affecting healthcare 
workers or patients.3,30

Models of SARS transmission provided estimates of the key epide-
miological parameters and showed how spreading was controlled by 
effective intervention. Reproduction number estimates from before the 
WHO global alert, for Hong Kong, Vietnam, Singapore and Canada, 
respectively, were 3.6, 2.4, 3.1 and 2.7, and after were 0.7, 0.3, 0.7 and 
1.31 The reduction in the reproductive number in each country reflects 
the effectiveness of control measures such as quarantine and travel 
restrictions in curbing the epidemic.

Estimating the case-fatality ratio (CFR) of newly emerged patho-
gens is difficult as defining true cases can be problematic.32 The CFR 
may be overestimated if many subclinical infections go uncounted. 

described by the differential equation dX(t)/dt, etc. In this example, 
there are two processes: infection and recovery.

The number of people becoming infected per day depends upon 
the force of infection (the risk per Susceptible individual of acquiring 
infection per day) and the number of Susceptible individuals available 
to become infected, X(t). The force of infection depends upon the 
prevalence of infection, Y(t)/N(t), and the transmission parameter, β, 
which is a combination of the rate of contact between people in the 
population and the probability of transmission upon contact between 
an Infected person and a Susceptible person. Therefore, the force of 
infection is βY(t)/N(t) and the transmission rate is X(t)βY(t)/N(t), 
which is conventionally written as β X(t)Y(t)/N(t). Since infection 
transfers people from the Susceptible compartment (X(t)) to the 
Infected compartment (Y(t)), the term β X(t)Y(t)/N(t) appears nega-
tively in dX(t)/dt and positively in dY(t)/dt. (Note that the transmis-
sion parameter, β, does not change with time; changes in the daily 
infection rate are due to changes in Y(t)/N(t) and X(t).)

The number of people recovering per day depends upon the per-
capita rate of recovery, γ, and the number of people who are Infected, 
Y(t), and is γ Y(t). Since recovery transfers people from the Infected 
compartment (Y(t)) to the Recovered compartment (Z(t)), the term γ 
Y(t) appears negatively in dY(t)/dt and positively in dZ(t)/dt. (Note 
that the per-capita rate of recovery, γ, does not change with time; 
changes in the daily recovery rate are due to changes in Y(t).)

The equations of the model are:

dX t

dt

X t Y t

N t

( ) ( ) ( )

( )
= −β

dY t

dt

X t Y t

N t
Y t

( ) ( ) ( )

( )
( )= −β γ

dZ t

dt
Y t

( )
( )= γ

N t X t Y t Z t( ) ( ) ( ) ( )= + +

This model is deterministic, i.e. random (stochastic) events are not 
considered. This is a common simplification that makes it much easier 
to gain insight into the fundamental dynamics of transmission because 
the effects of random chance, which cause fluctuations in the graph, 
are omitted. This model was fitted to data from an outbreak of influ-
enza in a boarding school in England27 (Figure 5-2) to estimate values 
of β and γ.

R0 is the mathematical product of the transmission rate from a 
single infected individual in a wholly susceptible population and the 
average infectious period. The algebraic expression for R0 depends 
upon the particular model. For this model, the rate of transmission 
from a single infected individual when the population is wholly 

Figure 5-2  Example output of a Susceptible–Infected–Recovered (SIR) model 
applied to data from an outbreak of influenza. Model parameters were adjusted 
to fit the number of Infected individuals, Y(t), to the observed data. 
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Future Research
There is increasing integration between infectious disease modeling 
and empiric research in the field and laboratory. Models can be used 
to help set research priorities by determining which gaps in knowledge 
are most important epidemiologically, and help in the design of trials.13 
Increases in computing power make it possible to develop increasingly 
sophisticated simulation models and to use them in real-time to 
analyze outbreaks to determine whether interventions are working and 
to guide policymakers in their response. DNA fingerprinting and now 
whole-genome sequencing are being used to identify ‘transmission 
clusters’ of individuals4,33 and the developing field of ‘phylodynamics’34 
synthesizes evolution and transmission dynamics. Another area of 
research is characterizing contact patterns between individuals in 	
more detail35 since this has important consequences for patterns of 
transmission.
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Alternatively, in epidemics where patients are hospitalized for lengthy 
periods before recovering or dying, a naïve real-time CFR estimate, 
dividing number of deaths by numbers of cases, will initially underes-
timate CFR, as patients will be recorded as cases before their outcome 
is known, and then the CFR will apparently rise over time as deaths 
occur and are recorded; in the 2003 SARS epidemic this apparently 
increasing CFR was wrongly interpreted as indicating an increase in 
virulence.3

Mathematical modeling identifies some key properties that enabled 
SARS to be contained effectively, in contrast to influenza. The genera-
tion time for influenza (4–6 days) is much shorter than for SARS (8–12 
days),3,16 meaning influenza will spread much quicker. Furthermore, 
SARS transmission occurs after the patient becomes symptomatic16 – 
making it feasible to use isolation to reduce transmission – whilst 
influenza can be transmitted in the absence of symptoms.

MIDDLE EAST RESPIRATORY SYNDROME 
CORONAVIRUS (MERS-CoV)
MERS-CoV was first detected in 2012, having apparently arisen from 
an animal reservoir. To date there has been limited human-to-human 
transmission; modeling4 suggests that medical intervention reduces 
transmission and that currently R(t) is most likely <1, although prior 
to medical intervention R(t) might be >1, suggesting that the virus 
might have pandemic potential if human cases are not detected 
efficiently.

KEY REFERENCES

Anderson R.M., May R.M.: Infectious diseases of humans: 
dynamics and control. Oxford: Oxford Science Publica-
tions; 1991.

Brisson M., Edmunds W.J.: Economic evaluation of vacci-
nation programs: the impact of herd-immunity. Med 
Decis Making 2003; 23(1):76-82.

Donnelly C.A., Fisher M.C., Fraser C., et al.: Epidemiologi-
cal and genetic analysis of severe acute respiratory syn-
drome. Lancet Infect Dis 2004; 4(11):672-683.

Ferguson N.M., Cummings D.A., Fraser C., et al.: Strategies 
for mitigating an influenza pandemic. Nature 2006; 
442(7101):448-452.

Fraser C., Donnelly C.A., Cauchemez S., et al.: (WHO Rapid 
Pandemic Assessment Collaboration): Pandemic poten-
tial of a strain of influenza A (H1N1): early findings. 
Science 2009; 324(5934):1557-1561.

Fraser C., Riley S., Anderson R.M., et al.: Factors that make 
an infectious disease outbreak controllable. Proc Natl 
Acad Sci USA 2004; 101(16):6146-6151.

Garnett G.P.: Theory is critical in understanding the risks 
of acquiring HIV. Sex Transm Dis 2007; 34(10):737-738.

Garnett G.P., Cousens S., Hallett T.B., et al.: Mathematical 
models in the evaluation of health programmes. Lancet 
2011; 378(9790):515-525.

Grassly N.C., Fraser C.: Mathematical models of infectious 
disease transmission. Nat Rev Microbiol 2008; 6:477-
487.

Grenfell B.T., Pybus O.G., Gog J.R., et al.: Unifying the epi-
demiological and evolutionary dynamics of pathogens. 
Science 2004; 303(5656):327-332.

Hallett T.B., White P.J., Garnett G.P.: Appropriate evaluation 
of HIV prevention interventions: from experiment to 	

full scale implementation. Sex Transm Infect 2007; 
83(Suppl.I):i55-i60.

Mossong J., Hens N., Jit M., et al.: Social contacts and 
mixing patterns relevant to the spread of infectious dis-
eases. PLoS Med 2008; 5(3):e74.

Van Kerkhove M.D., Asikainen T., Becker N., et al.: (The 
WHO Informal Network for Mathematical Modelling for 
Pandemic Influenza H1N1 2009 [Working Group on 
Data Needs]). Studies needed to address public health 
challenges of the 2009 H1N1 influenza pandemic: 
insights from modeling. PLoS Med 2010; 7(6):e1000275.

http://www.expertconsult.com


	 Chapter 5  Mathematical Models in Infectious Disease Epidemiology	 53.e1

REFERENCES

1.	 Bernoulli D.: Essai d’une nouvelle analyse de la mor-
talité causée par la petite vérole et des advantages de 
l’inoculation pour la préventir. Mém Math Phys Acad 
Roy Sci Paris 1760; 1-45.

2.	 Ferguson N.M., Donnelly C.A., Anderson R.M.: Trans-
mission intensity and impact of control policies on the 
foot and mouth epidemic in Great Britain. Nature 2001; 
413(6855):542-548.

3.	 Donnelly C.A., Fisher M.C., Fraser C., et al.: Epidemio-
logical and genetic analysis of severe acute respiratory 
syndrome. Lancet Infect Dis 2004; 4(11):672-683.

4.	 Cauchemez S., Fraser C., Van Kerkhove M.D., et al.: 
Middle East respiratory syndrome coronavirus: quanti-
fication of the extent of the epidemic, surveillance 
biases, and transmissibility. Lancet Infect Dis 2014; 
14(1):50-56.

5.	 Dye C., Bassili A., Bierrenbach A.L., et al.: Measuring 
tuberculosis burden, trends, and the impact of control 
programmes. Lancet Infect Dis 2008; 8(4):233-243.

6.	 White P.J., Ward H., Cassell J.A., et al.: Vicious and vir-
tuous circles in the dynamics of infectious disease and 
the provision of health care: gonorrhea in Britain as an 
example. J Infect Dis 2005; 192(5):824-836.

7.	 Johnson L.F., White P.J.: A review of mathematical 
models of HIV/AIDS interventions and their implica-
tions for policy. Sex Transm Infect 2011; 87(7):629-634.

8.	 Brisson M., Edmunds W.J.: Economic evaluation of 
vaccination programs: the impact of herd-immunity. 
Med Decis Making 2003; 23(1):76-82.

9.	 Ferguson N.M., Cummings D.A., Fraser C., et al.: Strat-
egies for mitigating an influenza pandemic. Nature 
2006; 442(7101):448-452.

10.	 Halloran M.E., Ferguson N.M., Eubank S., et al.: Mod-
eling targeted layered containment of an influenza pan-
demic in the United States. Proc Natl Acad Sci USA 
2008; 105(12):4639-4644.

11.	 Birrell P.J., Ketsetzis G., Gay N.J., et al.: Bayesian mod-
elling to unmask and predict the influenza A/H1N1pdm 
dynamics in London. Proc Natl Acad Sci USA 2011; 
108(45):18238-18243.

12.	 Ferguson N.E., Steele L., Crawford C.Y., et al.: Bioter-
rorism web site resources for infectious disease clini-

cians and epidemiologists. Clin Infect Dis 2003; 
36(11):1458-1473.

13.	 Boily M.C., Abu-Raddad L., Desai K., et al.: Measuring 
the public-health impact of candidate HIV vaccines as 
part of the licensing process. Lancet Infect Dis 2008; 
8(3):200-207.

14.	 Garnett G.P., Cousens S., Hallett T.B., et al.: Mathemat-
ical models in the evaluation of health programmes. 
Lancet 2011; 378(9790):515-525.

15.	 Hallett T.B., White P.J., Garnett G.P.: Appropriate 
evaluation of HIV prevention interventions: from 
experiment to full scale implementation. Sex Transm 
Infect 2007; 83(Suppl. I):i55-i60.

16.	 Fraser C., Riley S., Anderson R.M., et al.: Factors 	
that make an infectious disease outbreak controllable. 
Proc Natl Acad Sci USA 2004; 101(16):6146-
6151.

17.	 Lexau C.A., Lynfield R., Danila R., et al.: Changing epi-
demiology of invasive pneumococcal disease among 
older adults in the era of pediatric pneumococcal con-
jugate vaccine. J Am Med Assoc 2005; 294(16):2043-
2051.

18.	 Anderson R.M., May R.M.: Infectious diseases of 
humans: dynamics and control. Oxford: Oxford Science 
Publications; 1991.

19.	 White P.J., Ward H., Garnett G.P.: Is HIV out of control 
in the UK? An example of analysing patterns of HIV 
spreading using incidence-to-prevalence ratios. AIDS 
2006; 20(14):1898-1901.

20.	 Hallett T.B., Zaba B., Todd J., et al.: Estimating inci-
dence from prevalence in generalised HIV epidemics: 
methods and validation. PLoS Med 2008; 5(4):e80.

21.	 Van Kerkhove M.D., Asikainen T., Becker N., et al.: (The 
WHO Informal Network for Mathematical Modelling 
for Pandemic Influenza H1N1 2009 [Working Group 
on Data Needs]). Studies needed to address public 
health challenges of the 2009 H1N1 influenza pan-
demic: insights from modeling. PLoS Med 2010; 
7(6):e1000275.

22.	 Grassly N.C., Fraser C.: Mathematical models of infec-
tious disease transmission. Nat Rev Microbiol 2008; 
6:477-487.

23.	 Keeling M., Rohani P.: Modeling infectious diseases in 
humans and animals. Princeton, NJ: Princeton Univer-
sity Press; 2007.

24.	 Garnett G.P.: Theory is critical in understanding the 
risks of acquiring HIV. Sex Transm Dis 2007; 34(10):737-
738.

25.	 White P.J., Garnett G.P.: Mathematical modeling of the 
epidemiology of tuberculosis: modeling parasite transmis-
sion and control. Austin, TX: Bioscience/Eurekah; 
2009.

26.	 Kermack W.O., McKendrick A.G.: A contribution to the 
mathematical theory of epidemics. Proc R Soc Lond 
Series A 1927; 115(772):700-721.

27.	 Anonymous: Influenza in a boarding school. Br Med J 
1978; 1:587.

28.	 Fraser C., Donnelly C.A., Cauchemez S., et al.: (WHO 
Rapid Pandemic Assessment Collaboration): Pandemic 
potential of a strain of influenza A (H1N1): early find-
ings. Science 2009; 324(5934):1557-1561.

29.	 World Health Organization: The WHO response to the 
challenges of SARS in the Western Pacific Region. 
Available: http://www.wpro.who.int/en/.

30.	 Lau J.T., Fung K.S., Wong T.W., et al.: SARS transmis-
sion among hospital workers in Hong Kong. Emerg 
Infect Dis 2004; 10(2):280-286.

31.	 Wallinga J., Teunis P.: Different epidemic curves for 
severe acute respiratory syndrome reveal similar 
impacts of control measures. Am J Epidemiol 2004; 
160(6):509-516.

32.	 Garske T., Legrand J., Donnelly C.A., et al.: Assessing 
the severity of the novel influenza A/H1N1 pandemic. 
Br Med J 2009; 339:b2840.

33.	 Choudhury B., Risley C.L., Ghani A.C., et al.: Identifica-
tion of individuals with gonorrhoea within sexual 	
networks: a population-based study. Lancet 2006; 
368(9530):139-146.

34.	 Grenfell B.T., Pybus O.G., Gog J.R., et al.: Unifying the 
epidemiological and evolutionary dynamics of patho-
gens. Science 2004; 303(5656):327-332.

35.	 Mossong J., Hens N., Jit M., et al.: Social contacts and 
mixing patterns relevant to the spread of infectious dis-
eases. PLoS Med 2008; 5(3):e74.

http://www.wpro.who.int/en/

	5 Mathematical Models in Infectious Disease Epidemiology
	Key Concepts
	Dynamics of Infectious Disease Transmission
	A Typical Epidemic

	Insights from Transmission-Dynamic Modeling
	Use of Models for Analysis of Epidemics and Interventions
	Epidemiologic Data
	Reproduction Numbers
	Structure of Models of Infectious Diseases
	Example Compartmental Model of Influenza

	Emergency Preparedness and Response
	Pandemic Influenza
	Severe Acute Respiratory Syndrome (SARS)
	Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

	Future Research
	Acknowledgment
	Key References
	References


