
diseases

Review

Empowering Melatonin Therapeutics with Drosophila Models

Cassandra Millet-Boureima 1 , Caroline C. Ennis 2 , Jurnee Jamison 2, Shana McSweeney 2, Anna Park 2 and
Chiara Gamberi 2,*

����������
�������

Citation: Millet-Boureima, C.; Ennis,

C.C.; Jamison, J.; McSweeney, S.; Park,

A.; Gamberi, C. Empowering

Melatonin Therapeutics with

Drosophila Models. Diseases 2021, 9, 67.

https://doi.org/10.3390/

diseases9040067

Academic Editors: Alejandro

Romero Martínez, Russel J. Reiter and

Germaine Escames

Received: 1 August 2021

Accepted: 22 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada;
cassandra.millet@mail.concordia.ca

2 Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA;
ccennis@clemson.edu (C.C.E.); jbjamison@coastal.edu (J.J.); skmcsween@coastal.edu (S.M.);
apark309@gatech.edu (A.P.)

* Correspondence: cgamberi@coastal.edu; Tel.: +1-843-349-2487

Abstract: Melatonin functions as a central regulator of cell and organismal function as well as a
neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep,
aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-
mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals.
Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the
mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as
well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting
melatonin may be used therapeutically. Drosophila models have extensively been employed to study
disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin
through the lens of functional conservation and model organism research to empower potential
melatonin therapeutics to treat neurodegenerative and renal diseases.
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1. Introduction

Melatonin (5-methoxy N-acetyltryptamine), nicknamed the “hormone of darkness”,
was first discovered in the cow pineal gland, and has, since, been found in several mammals
and other organisms, including plants (reviewed in [1]). Compared to mammalians, much
less is known about how melatonin functions in invertebrates and plants [2]. Responsible
for maintaining a steady circadian rhythm, melatonin is primarily synthesized and secreted
into the blood by the mammalian pineal gland of the brain, peaking at night and reaching
its lowest during the day [2–12]. Melatonin is also secreted by the retina, the lacrimal
and Harderian glands, gut, bone marrow, platelets, and thyroid [13–17]. Finally, several
(and potentially all) cells produce melatonin in the mitochondria [18,19], and, likely, the
cytoplasm [20] with a distinct, non-circadian rhythmicity. Melatonin has been found to in-
fluence many cellular pathways and organismal functions [14,17]. Its effects are prominent
on the circadian cycle, as well as endocrine function, immunity, and fertility [21]. Moreover,
melatonin protects from arterial vasoconstriction and neurodegeneration via at least two
types of receptors found in many cell types [22]. Melatonin effectively scavenges reactive
oxygen species (ROS) and functions as a mitochondrial and cyto-protector [23,24]. The
observed reduction in melatonin levels in several diseases, including neurodegeneration
and cancer, constitutes the foundation for pursuing melatonin as a therapeutic. Melatonin
is amphipathic and can easily cross cell membranes [25]. Therefore, it is expected to work
through binding to transmembrane receptors, intracellular proteins, possibly to nuclear
receptors, as well as display antioxidant activity [26].

Melatonin appears to have originated from photosynthetic bacteria, primitive cyanobac-
teria and alpha-proteobacteria before the endosymbiotic events believed to have origi-
nated eukaryotic mitochondria and chloroplasts [27]. Melatonin can donate electrons
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easily [28,29] and may have initially functioned as a free radical scavenger to reduce ox-
idative stress from photosynthesis and metabolism [2,27,30,31]. Organismal evolutionary
diversification prompted an increased range of melatonin functions beyond its funda-
mental antioxidant capacity, to include the regulation of circadian rhythm, sleep, ciliary
swimming behavior, vision, immunity, and more [2,32].

In contrast to the long evolutionary history of melatonin, its transmembrane receptors
appeared relatively late in evolution [2]. Specifically in mammals, melatonin receptor 1
(MT1) and melatonin receptor 2 (MT2) display high affinity for melatonin and belong to
the G-protein-coupled receptors (GPCR) superfamily [2,33–38]. A third receptor, MT3,
identified as a binding site on the cytosolic detoxification enzyme quinone reductase 2
(QR2), is also found in various tissues, including liver, heart, lungs, kidney, intestine, and
muscle [26,39–41].

Highly conserved functions and ubiquitous effects within the body make melatonin a
primary research interest with potential pharmacological application. However, its precise
molecular mechanism(s) of action, its reception and signal transduction have yet to be fully
elucidated. Model organisms such as the fruit fly Drosophila melanogaster can recapitulate
fundamental biological mechanisms, provide mechanistic insight, and contribute to the
evolving understanding of melatonin function and its possible use as a therapeutic.

2. Melatonin Receptors

Encoded by melatonin receptor genes found, respectively, on human chromosome 4
and 11, the MT1 (alias MTNR1A, Mel1a) and MT2 (alias MTNR1B, Mel1b) proteins bind
melatonin and share a high degree of sequence homology [37,42]. MT1 and MT2, respec-
tively consisting of 350 and 362 amino acids (aa), share a 55% overall aa homology and
70% homology within the transmembrane domains [32]. Both have seven transmembrane
α-helices connected by alternating loops with the amino-terminus on the extracellular
side and the carboxy-terminus on the intracellular side [41]. The recently reported crystal
structures of human MT1 and MT2, unexpectedly revealed the presence of highly specific
orthosteric binding sites for melatonin buried within the membrane that, due to melatonin
amphipathic properties, may contribute to ligand specificity [43].

While both MT1 and MT2 are high affinity melatonin receptors, the human MT2
exhibits a lower affinity for 125I-melatonin than MT1 [34]. Human MT1 and MT2 can form
homo- and heterodimers with each other and heteromers with other GPCRs, consistent with
them displaying several cellular functions (reviewed in [44]). MT1 and MT2 heterodimers
are common even in the absence of a ligand and conformational changes have been
shown to occur upon ligand binding [45]. Oligo- and heteromerization greatly impact
the functional diversity of these receptors [46]. MT1 and MT2 primarily remain coupled
to Gi/o proteins and display a high affinity for melatonin due to the formation of the
ligand–receptor–G-protein (L–R–G) (or β-arrestin) complex [46]. Several other signaling
molecules and G proteins have been reported to interact with MT1 and MT2 in specific
cases [46]. Dissimilar to MT1 and MT2, the MT3 receptor exhibits a low binding affinity
for melatonin [47,48]; however, its inhibition is theorized to play a role in the antioxidant
effects of melatonin [49]. An analysis of MTNR genes encoding the melatonin receptors
from 45 vertebrate species provided insight into their origin and evolution. In particular,
the mtnr1c gene found in lower mammals contains a C-terminal expansion, and is thought
to have evolved after the evolutionary branching from Monotremata and Marsupialia [50].
Interestingly, the orphan receptor GPR50 appears to be a mammalian mtnr1c ortholog.
Considering the two rounds of whole genome duplications occurred since the common
vertebrate ancestor [51], the loss of the ancestral mtnr1c function, and the analysis of
the regions adjacent to the MTNR genes, it seems likely that during the recent tetrapod
evolution several melatonin receptor-related genes may have been lost [50]. Numerous
sequences in GenBank have been automatically annotated as encoding “melatonin-receptor-
like” proteins, including entries from invertebrates and insect species. However, their
divergence and current lack of functional evidence cautions against considering them as
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bona fide melatonin receptors. Despite structural similarities in the MT1, MT2, and GPR50
transmembrane motifs, GPR50 in humans does not bind melatonin directly, but inhibits
MT1 receptor functions via heteromerization [46,52]. Transcription factors belonging to the
retinoic acid-related orphan nuclear hormone receptor (ROR) family are functionally linked
to melatonin pathways; however, their capacity to bind melatonin directly is debated [53].

2.1. Melatonin Receptor Functions

Sleep/wake homeostasis and circadian rhythm regulate sleep (reviewed in [54]). In
mammalians, the master circadian clock is located within the suprachiasmatic nucleus
(SCN) in the hypothalamus, where melatonin is released and controls SCN activity through
the MT1 and MT2 receptors [55,56]. Melatonin receptors seem to be involved in a plethora
of physiological activities and cellular processes (reviewed in [22,34]) as diverse as photo-
transduction and ocular growth [57,58], blood pressure regulation [59], immunomodula-
tion [60,61], the hair cycle [62], and may exhibit oncostatic effects in several cancers [34].
Additionally, MTNR1A was found to have regulatory effects on reproductive seasonality
that appears tightly linked to the light/dark cycle [63]. Tissue-specific expression of recep-
tors relates to several melatonin physiological effects, yet it has only been partly defined.
MT1 and MT2 are expressed in the cell membranes of a variety of tissues throughout the
body, including the brain, retina, cardiovascular system, liver, gallbladder, colon, skin,
kidneys, among others [64], (reviewed in [22]). To date, the mammalian melatonin recep-
tors have been studied extensively. Some well-described melatonin receptor functions are
listed in Table 1. In contrast, melatonin signaling and receptor homologs in other species,
including invertebrates, remain largely unknown.

Table 1. Melatonin receptor functions.

Receptor Target Function Reference(s)

MT1 Pituitary Decreases functions of luteinizing hormone (LH),
follicle-stimulating hormone (FSH), and prolactin (PRL) [65–68]

MT1 Testes Decreases testosterone [69]

MT1 Adrenal cortex Reduces cortisol secretion [70,71]

MT1 Metabolism Limits insulin secretion and increases leptin production [72,73]

MT1/MT2 Vasculature system MT1 inhibits vasoconstriction; MT2 inhibits vasodilation [74–78]

MT1/MT2 Cancer cells MT1 reduces proliferation of cancer cells; MT2 reduces the
proliferation of JAr cells [79,80]

MT1/MT2/MT3 Immune system

MT1 counteracts prostaglandin E (PGE) inhibition of
interleukin (IL-2) production; MT2 increases B splenocyte

proliferation, anti-keyhole limpet hemocyanin (KLH) IgG levels
and decreases leukocyte rolling; MT3 is responsible for

leukocyte adhesion

[81–85]

MT1 Mammalian pituitary and SCN Inhibition of cAMP accumulation by pertussis toxin
(PTX)-sensitive G proteins [26,41,48,86,87]

MT1 Melatonin binding activates Gi proteins which inhibits
adneylyl cyclase activity and decreases cAMP [38,46]

MT1

Inner Rectifier Potassium (Kir)
channels, phosphorylation of

mitogen-activated protein kinase
(MAPK), and extracellular

signal-regulated kinase 1 and 2

Increases potassium conductance [38]

MT2 SCN Inhibits forskolin-stimulated cAMP production in addition to
cGMP formation and activation of PKC [38]

MT1 Activation of multiple types of G proteins [34]

MT2 Inhibition of adenylyl cyclase and guanylyl cyclase, as well as
phosphoinositide production [48,88]
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In the central nervous system (CNS), MT1 and/or its mRNA are found in the SCN,
pars tuberalis (PT) [89–91], and the retina [57]. MT2 is expressed in the olfactory bulb,
forebrain, hippocampus, amygdala, and superior colliculus [92], as well as in the septum,
within specialized cells of the hippocampus, the pars reticulata of the substantia nigra,
ventral tegmental nucleus and other regions associated with non-rapid eye movement
(NREM) sleep [90]. MT2 mRNA is found in the retina, sclera, lens, and retinal pigment
epithelial cells [93]. Although both MT1 and MT2 receptors were detected in the retina and
are essential for retinal function, the MT2 mRNA was, surprisingly, not detected within the
photosensitive retinal ganglion cells in mice [93]. Of note, mice are nocturnal. Melatonin
synthesis is similar in both nocturnal and diurnal animals, with peak release being recorded
during the middle of the night (12–3 am) [94]. It has been shown that melatonin induces
typical nighttime behavior, i.e., activity for nocturnal animals, and sleep for diurnal species
such as humans [95–97] (reviewed in [98]).

The simultaneous activation of MT1 and MT2 can elicit diverse responses with addi-
tive, cooperative or opposing effects [38]. In vertebrates, the light/dark cycle affects the
retina, which signals to the master circadian clock in the SCN via the retino-hypothalamic
tract [99]. Responding to the SCN, the pineal gland synthesizes and releases melatonin
that is captured by the target cells through MT1 and MT2 receptors (reviewed in [100]).
Creating a regulatory feedback loop, the SCN cells, which express MT1 and MT2, also
respond to melatonin (reviewed in [56]). MT1 and MT2 are cyclically expressed daily
during the light/dark cycle [101]. Melatonin promotes the expression of clock genes, which
is expected to contribute to its circadian functions [102] and may also operate in receptor-
independent ways [103], or through interaction with other receptors [87,104,105]. Several
GPCRs become desensitized upon ligand binding, which helps to regulate the intensity
of cell response. While there is suggestive evidence of such properties for MT1 and MT2
(e.g., [106,107]), both mechanism and physiological roles remain unknown. Genetic studies
with murine knockout animals have indicated that MT1 and MT2 may regulate REM sleep
and NREM sleep phases, respectively [87]. The relationship between melatonin, MT1, MT2,
and sleep appears complex. The genetic and pharmacologic manipulation of the MT1
and MT2 pathways through single and double MT1/MT2 knockout and chemical probing
employing agonists, as well as the study of the effects of the surgical removal of the pineal
gland, collectively suggest that melatonin contributes to the sleep wake cycle, yet, may not
be obligatory [87,105]. The double MT1/MT2 knockout mice displayed an almost normal
sleep phase duration but may have altered cycling between NREM and REM sleep [87].
Because both receptors are differentially expressed in the brain areas controlling REM and
NREM sleep, one intriguing possibility is that MT1- and MT2-dependent responses to
melatonin may be linked. This, together with potentially differential receptor deactivation
cycles during melatonin peak time, may yield the REM/NREM cycling [55,87,108]. The
mechanism remains, however, to be fully demonstrated experimentally.

In the cardiovascular system, melatonin regulates smooth muscle and endothelial
cells [75,109]. Melatonin receptors may increase coronary blood flow and improve cardiac
function [109]. Depending on the tissue, melatonin may also induce vasoconstriction or
vasodilation. In smooth muscle and coronary arteries, MT1 appeared to mediate vaso-
constriction while MT2 activation induced vasodilation [75,77,110], by reducing cyclic
adenosine monophosphate (cAMP) levels and phosphatidylinositol 4,5-bisphosphate hy-
drolysis [111,112]. In animal studies, specific arteries responded differentially to melatonin
exposure. Rat and pig coronaries constricted [113], while the rabbit pulmonary, aorta,
iliac, and renal arteries dilated [75,77,110,114–119]. In humans, while renal blood flow
and conductance decreased in response to melatonin, forearm vascular beds exhibited the
opposite response, and cerebral circulation was unaffected [120]. Pharmacological studies
suggest that some of these effects may be independent of MT1 and MT2 receptors [121].
Studies in pigs also imply that in endothelial cells, MT2 activation may increase nitric
oxide (NO) production, which in turn causes vasodilation [109]. However, melatonin an-
tioxidant properties are largely responsible for suppressing NO production in addition to
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significantly increasing superoxide dismutase (SOD) activity [122–124]. While this prompts
melatonin’s potential use in treating diseases such as Alzheimer’s disease, further studies
will be needed to decipher its effects on endothelial cells.

Melatonin may also impact immunity [60,61]. High levels of melatonin have been
shown to promote immune system functions, while, conversely, low levels are associated
with the suppression of numerous immune parameters. The discovery of melatonin recep-
tors in multiple lymphoid organs and lymphocytes indicates that there may be multiple
mechanisms of action [21]. Mice lacking a functional MT1 gene were used to show that
MT2 receptors are responsible for the melatonin enhancement of splenocyte proliferation
and the regulation of anti-keyhole limpet hemocyanin (KLH) IgG concentrations [81,125].
Note, that the T-cell-dependent KLH antigen from mollusks is widely employed in im-
munotoxicology to evaluate immune function in varying conditions (reviewed in [126]).
Additionally, the activation of MT2 receptors has been shown to inhibit melanoma cell
growth [127].

Due to its high cell permeability, free melatonin in humans can bind to intracellular
MT3 and nuclear ROR proteins [128]. MT3 (alias ML2, NQO2) is a quinone reductase
expressed in several vital organs, including kidney, liver, heart, and lung and in muscle,
intestine, and brown fat, that inhibits the quinones electron transport chain and protects
from oxidative stress (reviewed in [34,40]).

Melatonin has one possible nuclear receptor type in the ROR protein family. The
ROR/RZR proteins are zinc-finger transcription factors with α, β, and γ subgroups. Dis-
similar to RORβ, both RORα and RORγ are known to participate in several pathways that
are also regulated by melatonin. For example, the transcriptional regulation of the clock
gene Bmal1 by RORα correlates with the mammalian circadian rhythm and has been shown
to be necessary for normal circadian regulation in mice [129,130]. Melatonin promotes
RORα transcriptional activity and can be co-immunoprecipitated with RORα [131], indi-
cating some functional interaction. Physiological studies also point to a large functional
overlap between the two; however, their direct binding is controversial (reviewed in [53]).
Based on some experimental observations, it has been proposed that RORα-mediated ef-
fects may be indirect and exerted through other factors, e.g., MT1, MT2, sirtuins, the redox
state, mitochondria, and, possibly, the expression of ROR antagonist REV-ERB [132–139].

The orthologous GPR50 (alias H9, ML1X; found in vertebrates, except birds and
fish) and Mel1c (in fish, amphibians, and birds) proteins are also GPCRs. GPR50 exhibits
about a 50% sequence identity with MT1 and MT2; however, it does not appear to bind
melatonin [44]. Interestingly, GPR50 can form heteromers with both MT1 and MT2 and
negatively regulate the melatonin–MT1 interaction, while leaving MT2 binding activity
intact [52] (reviewed in [40]).

2.2. Molecular Mechanisms of Melatonin-Receptor Signaling

MT1 and MT2 are activated by distinct physiological concentrations of melatonin
released from the pineal gland due to feedback onto the SCN [41]. The pathways down-
stream of MT1 and MT2 affect intracellular cAMP and cGMP, calcium (Ca2+) levels, and
the activation of specific protein kinases [34].

Most notable among MT1 functions, is the inhibition of cAMP accumulation by the per-
tussis toxin (PTX)-sensitive G proteins in the mammalian pituitary and SCN [26,41,48,86,87].
MT1 engagement by melatonin activates Gi proteins, inhibits adenylyl cyclase activity,
and decreases intracellular cAMP (Figure 1) [38,46]. Such a decrease activates protein
kinase A and, subsequently, the transcription factor cAMP-responsive element binding
(CREB) [38,46]. Additionally, the MT1 receptor augments potassium conductance through
Inner Rectifier Potassium (Kir) channels, induces the mitogen-activated protein kinase 1/2
(MAPK), and extracellular signal-regulated kinase (ERK) 1 and 2 [38]. Circadian signal-
ing regulates melatonin binding and the expression of MT1 mRNA [34]. Both responses
and the signal transduction pathways themselves variably correlated to the circadian
rhythm. Studies with recombinant receptors illustrated the ability of MT1 to activate many
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types of G proteins [34]. MT2 is closely associated with the inhibition of adenylyl cyclase
and guanylyl cyclase, as well as phosphoinositide production [48,88]. MT2 also inhibits
forskolin-stimulated cAMP production in addition to cGMP formation and activates PKC
in the SCN [38]. In (nocturnal) rodent SCN and PT, varying levels of MT1 mRNA expres-
sion and 125I-melatonin binding are exhibited throughout the day, with greater expression
during the daytime [140].
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Figure 1. The melatonin signaling cascades. Melatonin binds to transmembrane receptors MT1
and MT2, as well as the MT3 binding site on the cytosolic enzyme QR2, and, possibly, the nuclear
receptor RZR/RORα. Melatonin (ligand) binding with MT1 and MT2 receptors recruits β-arrestin
and activates G proteins, which inhibit adenylyl cyclase activity and decrease cAMP levels. MT1
coupling to G proteins activates phospholipase C (PLC), which leads to increased intracellular Ca2+.
Melatonin-dependent activation of MT2 and associated G proteins prompts interaction with guanylyl
cyclase, which reduces cGMP levels; therefore, lowering PKG activity. In vertebrates, except for
birds and fish [42,141], heteromerization of GPR50 and MT1 (but not MT2) inhibits both G protein
interactions and melatonin binding. Melatonin acts as a ligand for MT3 and, possibly, for RORα,
independently of the MT1 and MT2 pathways. With RORα and RORγ, melatonin affects nuclear
transcription factor activity and gene expression.

3. Receptor-Independent Melatonin Functions

In addition to its several receptor-mediated functions, melatonin can also function
independently. A well-known example of a receptor-independent action is its activity to
counter oxidative stress. Melatonin is an effective scavenger for free radicals formed in re-
sponse to stressors activating the AP1 transcriptional response [142–144]. In mitochondria,
melatonin functions to neutralize dangerous pro-oxidant metabolic byproducts of oxidative
phosphorylation and the electron transport chain, such as radicals and peroxides [145,146].
Reportedly, the mitochondrial melatonin concentration (~100 nM) is approximately one
hundred times that of the circulatory melatonin released by the pineal gland (1 nM at peak
release) [147]. Such a concentration is achieved from a combination of rapid uptake and
transport via the PEPT1/2 transporters [148] and glucose transporter 1 (GLUT1) [149],
and endogenous synthesis independent of the circadian pineal release [18]. It has been
proposed that mitochondrial melatonin synthesis reflects the capacity of the ancestral
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bacterial endosymbiont that modern mitochondria originate from (reviewed in [150]). In
addition to its ROS scavenging power, melatonin affects several mitochondrial pathways.
It improves the function of the electron transport chain [147] and ATP production [151]. It
also promotes the synthesis of antioxidant glutathione [152], upregulates mitochondrial
sirtuin SIRT3 [153–155], which, in turn, increases SOD antioxidant activity and acetyl coen-
zyme A synthesis. The latter is a necessary cofactor for a limiting melatonin biosynthetic
enzyme, arylalkylamine N-acetyl transferase [156]. Altogether, these pathways appeared
to reduce mitochondrial ROS damage in rat and mice models [157–159] (reviewed in [160]).

Experimental observations suggest that mitochondrial melatonin also exits this or-
ganelle [19] and may affect other cell districts and compartments, as well as nearby cells in
paracrine fashion [150]. Because the mitochondrial membrane contains abundant MT1 and
MT2 [19,161,162], mitochondria can respond to released mitochondrial melatonin in a way
reminiscent of cellular autocrine loops.

Several diseases and aging feature cellular oxidative damage (Figure 2). Cells appear
to have a natural defense against these injuries in their endogenous melatonin production
and melatonin signaling. However, the natural buffering capacity may become insufficient
and, in such cases, melatonin administration in therapeutical dosages promises to help
remedy such degeneration. Additionally, several diseases affect the mitochondria directly
or compromise them indirectly (discussed below), in which case, melatonin may become
an attractive treatment option.
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3.1. Melatonin and Longevity

One of the risk factors for several prevalent diseases, biological aging is the decline in
the physiological ability to perform or meet certain demands that occur as time passes [164].
Shared by most organisms and characterized by the accumulation of damage in processes
at the molecular, cellular, and, eventually, the organ levels, biological aging increases
individual susceptibility to disease, infection, and death. Aging is influenced by genetic,
dietary, and environmental factors. Considering the social costs and degraded life quality
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associated with disease, preventing age-related conditions and prolonging a healthy life
span are biomedical topics of great interest.

The genes found to affect survival displayed weak effects on longevity when assayed
individually [165]. Consistently, genetic manipulation of the aging process in mice could
only increase lifespan modestly [165]. Thus, aging appears to be only partly modulated
by genetic factors. A series of observations support such conclusion. Aging may present
differently even among individuals of the same species. In fact, in populations of ge-
netically identical yeast or laboratory animals, individual age at death varies. Similarly,
monozygotic human twins usually die at different ages [166]. Twin studies estimated
that the individual genetic makeup may affect lifespan at most by 30% [167]. Aging is
associated with many features, including genomic instability, telomere attrition, and mi-
tochondrial dysfunction. During aging, melatonin production gradually declines [168]
(reviewed in [169]). Life-extension protocols and environmental factors such as nutrition
appeared to impact longevity at about 70%, more than twice the estimated impact of
genetic makeup [170]. Thus, many compounds known to affect aging mechanisms have
been tested for life-extending potential. The DrugAge database of aging-related drugs
reports that pineal gland extract was found to be the most effective, prolonging mouse
lifespan by about 31% [171,172]. Similarly, epithalamin, a tetrapeptide found in pineal
gland extract, was also reported to elicit a nearly identical longevity extension [171,173].
Epithalamin was found to be active in both its natural and synthetic form, the latter called
epit(h)alon [174–176]. Besides lengthening the healthy life span, epithalamin could also
reduce carcinogenesis, improve cardiovascular function, and protect retinal and brain
function [174,176–187]. Epithalamin heightened peroxide chemiluminescence found in
the blood of 30-month-old rodent models and humans [173]. Interestingly, epithalamin
appeared to induce melatonin production [188–190]. Underscoring evolutionary conser-
vation and strongly implying melatonin, the administration of pineal gland extract was
found to extend life from humans to Drosophila [177,191–195].

Melatonin administration increased the life span of rodents [191,196–198], with an
18% extension reported for mice [171,172]. Melatonin was also found to increase the life
span of several invertebrates, including Drosophila [196,199,200]. One study examining
the protective effects of melatonin from ionizing radiation in rats observed that melatonin
inhibited guanine base oxidation in DNA [201]. In C. elegans, it was found that genes related
to mitochondrial function greatly affected life span [202]. RNAi inactivation pertinent to
mitochondrial function, surprisingly, extended the life span of the average C. elegans [202].

Oxidative Damage

Oxidative damage is a major contributor to biological aging. The free radical theory
of aging states that free radicals induce changes in cellular metabolism, which, eventually,
leads to functional decline and organismal death through gradual loss in cellular function
and reduced resistance against physiological stress [200,203]. ROS include oxygen-derived
molecules and chemical species with one unpaired electron called free radicals [204]. ROS
have been linked to oxidative damage of fatty acids, DNA, and proteins, as well as to the
production of hydroxyl and peroxyl radicals, hydrogen peroxide, and superoxide radical
anions [205]. ROS can also target mitochondria [206], which would induce mitochondrial
stress and, eventually, reduce the life span [207]. The cellular capacity to counter oxidative
stress is limited and may be overwhelmed when ROS form at an excessive rate [163,205]
(Figure 2). Evidence of oxidative stress has been found in several age-related pathologies,
including cancer, cardiovascular, inflammatory, and neurodegenerative diseases such as
PD and AD [205,208]. Mitochondria are responsible for more than 90% of the oxygen
consumption and, thus, produce the greatest amount of ROS [209]. Indeed, ROS can
be formed through exogenous and endogenous means. Endogenous promoters of ROS
formation include free radical semiquinone anion species (Q−) formed in mitochondria,
and cytosolic intracellular enzymes, while extrinsic sources comprise environmental agents
(e.g., ultraviolet light, ionizing radiation), including non-DNA reactive carcinogens and
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chemicals in pollutants such as methyl viologen, also known as herbicide paraquat [205].
Excess oxygen-containing compounds bring about tissue damage, chronic inflammatory
processes, and disturb cell function [210]. Antioxidants and free radical scavengers, instead,
inhibit the effects of free radicals because of their ability to quench oxidative stress.

Known for being a highly effective antioxidant and free radical scavenger [211], mela-
tonin has been studied and used for anti-aging benefits and longevity extension to prevent
oxidative and mitochondrial injury and maintain mitochondrial bioenergetics. Melatonin
counters oxidative stress by working alongside other radical scavengers to donate elec-
trons to unstable radicals [212–214]. It stimulates antioxidative glutathione peroxidase and
glutathione reductase enzymes, as well as upregulates glutathione synthesis (reviewed
in [163,215,216]). Melatonin can quench hydrogen peroxide, NO, peroxynitrite anion, su-
peroxide anion, peroxyl, and the more damaging hydroxyl radicals, acting both in lipophilic
and hydrophilic manners [215,217] (reviewed in [150,216]). In vitro, melatonin effectively
reduced the peroxidation of ox-brain phospholipids [218]. Importantly, the breakdown
metabolites formed during the quenching process, such as cyclic 3-hydroxymelatonin,
N-acetyl-N-formyl-5-methoxykynuramine, and N-acetyl-5-methoxykynuramine, also do-
nate electrons [219–223], creating an “antioxidant cascade” (reviewed in [163]), where free
radicals are progressively eliminated. Resistance to oxidative stress is one of the longevity
extending factors [200].

Aging decreases activity of the mitochondrial respiratory chain and slows down ATP
production [224]. Steady melatonin administration in the drinking water of one-month-old
mice until ten months of age appeared to effectively counteract the age-related decline of
lung functionality and increase ATP production, indicating that melatonin administration
maintained fully functioning lung mitochondria during aging [225].

3.2. Drosophila in Longevity Studies

Drosophila melanogaster is an ideal model species to specifically study longevity because
of its relatively short life span, and conservation of ~75% of the genes and pathways in-
volved in human disease and longevity [226,227]. With a rigorous comparative perspective,
core biological mechanisms can be deciphered in the fly and the resulting knowledge may
be used to inform complex vertebrate modeling. Fruit fly physiology can be directly (and
carefully) compared to that of humans. Relevant for aging studies, Drosophila presents two
sexes, sexual dimorphism enabling the examination of sex-specific differences, and highly
differentiated tissues [228]. Economic culturing in the laboratory, without the need of
expensive containment facilities, and the wealth of accessible genetic resources (e.g., public
strain repositories, construct collections available to the research community at minimal
cost) make Drosophila particularly amenable to studying the genetics of aging. Moreover,
its short life span eases the study of potential life-extending drugs. D. melanogaster, as well
as other invertebrate and unicellular model organisms, have first indicated that caloric
restriction positively impacts longevity [229]. Adult Drosophila that were administered a
mechanistic target of rapamycin (mTOR) inhibitor rapamycin through their food source,
displayed the life span extension patterns observed in mTOR mutants [230]. Such effect
is also visible in Figure 8 of Gamberi et al., 2017 [231]). Drosophila research confirmed
the involvement of the nutrient-sensing insulin/insulin-like growth factor signaling (IIS)
pathway in regulating aging. The mutational inactivation of three of the seven insulin-
like peptides encoded in the fly genome (dilp2–3,5) yielded a dramatic 30–50% life span
increase [232]. Another study provided evidence that circ RNA encoded by sulfateless
(circSfl) is downregulated over time, contributing, significantly, to aging; however, circ
RNA upregulation only increased the average life span of Drosophila by about 15% [233].
Underscoring mechanistic conservation, dietary restriction positively affected longevity in
Drosophila [234]. However, how calorie restriction and altered macronutrient intake balance
result in increased longevity, have not yet been identified [235].
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4. Melatonin and Neurological Disease

Linked to melatonin function, many neurodegenerative diseases such as Alzheimer’s
disease (AD), Huntington’s disease (HD), and Parkinson’s disease (PD) are associated with
the disruption of the circadian clock and function [236] (reviewed in [237]). Moreover,
oxidative damage is widespread among neurological diseases [238–240]. As well, defective
mitochondrial function leading to oxidative imbalance is thought to lead to neurological
disease pathology directly or indirectly (reviewed in [241]). It has recently been shown
that the melatonin synthesized by the mitochondrial matrix can activate MT1 signaling
which inhibits cytochrome c release and caspase activation, thereby halting neurodegen-
eration [19]. Thus, these pathologies may offer opportunities of intervention through
melatonin or the modulation of melatonin-responsive pathways.

4.1. Alzheimer’s Disease

The hallmark of AD consists of the accumulation of extracellular senile plaques,
composed of amyloid β peptides, and intracellular neurofibrillary tangles, composed
of aggregated neuronal cytoskeletal tau protein [241–243]. AD is characterized by the
disruption of cognitive functions and progressive memory loss [243] (reviewed in [244]).
As well, mitochondrial abnormalities have been shown to play an important role in disease
pathogenesis, often leading to the inhibition of electron transport in the brain, including
reduced activity of cytochrome c oxidase [245] (reviewed in [241]). In AD, inhibited
electron transport from the mitochondria is thought to yield oxidative imbalance favoring
accumulated mitochondrial oxidants [241]. Melatonin has been shown to play a role in AD
because it not only protects against oxidative stress, but also against amyloid β-peptides
accumulation, which are typical of AD pathogenesis [243,246,247]. Suggesting a weaker
melatonin signal transduction, patients suffering from AD also have reduced melatonin
and MT1/MT2 receptor levels; more precisely, in AD patients, the immunoreactivity of
both MT1 and MT2 receptors appeared distinctly decreased within the pineal gland cell
somata and cellular processes [248].

4.2. Huntington’s Disease

Caused by mutations of the Huntingtin (Htt) gene, HD leads to motor impairment
such as involuntary movements, cognitive impairment such as dementia, and psychiatric
symptoms among which anxiety and depression are common (reviewed in [249]). From
murine models, it has been found that Htt is necessary for mitochondrial metabolism
and bioenergetics [250]. Just as AD, HD has also been associated with mitochondrial
abnormalities such as a defective electron transport chain and Ca2+ uptake [251,252]. HD
has also been associated with a reduction in nightly melatonin levels, accompanied by
sleep and circadian function disturbances [253]. Diminished oscillations of core clock genes
such as period and timeless have also been observed [236]. In a rat model of HD, melatonin
treatment has been proposed to delay the onset of disease symptoms due to its antioxidant
properties [254].

4.3. Parkinson’s Disease

PD is frequently caused by mutations in the leucine-rich repeat kinase 2 (LRRK2) gene
(reviewed in [255,256]) and it leads to severe motor symptoms such as tremors or slow
movements and sleep disturbances [257]. Sleep disturbances are found in 60–98% of LRRK2-
associated PD patients [258], suggesting the need for therapeutics, potentially targeting
the genes and/or symptoms associated with sleep disorders. Melatonin supplements have
been widely used to induce sleep and it is hypothesized that treatment in PD patients could
normalize melatonin levels, inducing regular sleep patterns [257]. As well, PD patients
were found to be defective in the mitochondrial Complex I, leading to abnormal electron
transport, neuronal depolarization, impaired mitochondrial Ca2+ uptake, and oxidative
imbalance [241,259–262]. PD pathogenesis also includes the impaired removal of defective
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mitochondria [241,263] and has been classified as a “mitochondrial disease” (reviewed
in [264,265]).

5. Melatonin Life Extension in Drosophila Models of Aging and Disease

Both melatonin and arylalkylamine N-acetyltransferase, a key catalyst for mela-
tonin synthesis, are conserved in flies [200,266]. Moreover, Drosophila extracts can syn-
thesize melatonin from its natural building blocks tryptophan, tryptamine, and sero-
tonin [266]. Melatonin fed to the D. melanogaster Oregon wild strain at a daily concentration
of 100 µg/mL within the culture medium increased the maximum life span by 33.2%,
compared to vehicle-fed flies [200]. Another study found that exposure of the Drosophila
HEM strain to melatonin and pineal peptide epithalamin [173], increased the mean life
span by about 17% [196]. Epithalamin administration increased antioxidant activity by
36.6% and SOD by 19.7% [173]. Suggesting mechanistic conservation, epithalamin was
found to lengthen the Drosophila lifespan and reduce oxidative stress [267–269]. In flies,
epithalamin appeared to promote transcription by favoring DNA strand separation at
promoter sites while stimulating euchromatin formation, which is instead progressively
lost during aging [270].

Melatonin dispensed to the Drosophila Canton-S wild strain at the early stages of devel-
opment, and a concentration of 0.08% per unit mass in a culture medium, increased male
life span by 15% [199]. Melatonin administration (0.43 mM) increased both life span and
malondialdehyde levels [271]. Malondialdehyde reduces aging-related free radical dam-
age, and its levels are used as a clinical indicator of antioxidant potential in patients [272].
As that of other insects, the Drosophila genome does not contain clear MT1 and MT2 ho-
mologs, although it encodes several orphan GPCRs and the downstream effectors of signal
transduction. Worm and fly genomes include quinone reductases of distinct origin from
NQO2 [273]. The Drosophila ROR homolog, ultraspiracle, has been studied for its endocrine
function related to the hormone ecdysone [274,275], but it is known to be important for
retinoid metabolism in eye development and tissue regeneration [276,277] both having
functional conservation. Interestingly, retinoids are crucial for retinal development and
appear linked to melatonin function [278]. However, functional relatedness and melatonin
binding remain to be determined. Due to the complicated melatonin functional overlap
in mammalians, Drosophila appears an ideal system in which to distinguish evolutionary
recent GPCR receptor-mediated functions from ancient melatonin functional pathways.

5.1. Melatonin Treatments in Drosophila Models of Neurological Disease

With a nervous system similar to humans, yet streamlined [279,280], Drosophila models
have recently been key to understanding HD pathogenesis and aspects of other neurodegen-
erative diseases [226,227]. The Drosophila circadian clock system contains fewer circadian
pacemaker neurons than humans, which enabled functional studies and, likely, the most
precise definition of the molecular, genetic, physiological, and behavioral aspects of any
circadian clock system [281]. In the fly, the setup of the circadian rhythm is regulated
largely at the transcriptional level by the daily expression cycle of several genes, including
period (per) [282–284] and timeless (tim) [285], as well as the pigment dispersing factor (pdf )
found in circadian pacemaker neurons [286] (reviewed in [287,288]). While the complex
mammalian circadian rhythm relies on multiple clocks (reviewed in [289]), the basic or-
ganization of the oscillators is conserved between flies and mammals and several key
proteins are also conserved. Therefore, Drosophila is considered a valid model in which to
study neurodegenerative disease (reviewed in [290]). Importantly, the high conservation of
oxidative response pathways makes Drosophila a useful model to further explore the role of
oxidative stress in pathologies, including neurodegenerative and renal diseases [291–294]
(Table 2).
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Table 2. Antioxidant enzymes influenced by melatonin *: Implications in Drosophila disease models.

Enzymes Drosophila
Homolog HD PD ADPKD References

Superoxide
dismutase (SOD) Sod No effect on

neurodegeneration
Reduced activity as PD

progresses Reduced levels [295–297]

Glutathione
peroxidase (GPx) PHGPx

Neuroprotective in
different models

of HD

Reduced activity possibly
leading to dopamine

neuron loss
Reduced activity [298–301]

Catalase (CAT) Cat Reduced activity
Low activity possibly due to

CAT inhibition by
α-synuclein

Reduced activity [302–304]

Glutathione
reductase (GR) -

Reduced activity
causing redox

imbalance

Increased levels suggesting
attempt to maintain
glutathione levels

Activity inhibited
by acid pH in

proximal tubules
[305–308]

* [163].

5.1.1. Huntington’s Disease

Very recently, transgenic HD flies were generated by expressing mHtt in pan neuronal
and pdf-specific neurons [236]. The HD fly model displays the progressive loss of motor
function and reduced oscillations of core clock genes per and tim [236]. The Drosophila HD
model was used to investigate the effects of melatonin and curcumin, a compound found in
turmeric plant roots, on eclosion and the characteristic progressive loss of locomotion [236].
Curcumin exhibits several therapeutic properties, e.g., antioxidant and anti-inflammatory,
and, notably, it has been suggested to be neuroprotective for PD and AD [309]. This study
found that melatonin significantly increased both percent eclosion and motor function
measured as the climbing ability of the HD flies, compared to control flies of the same
age [236]. Curcumin (10 µM) also improved the climbing ability of the HD flies. Neither
melatonin nor curcumin had adverse effects on control flies [236], suggesting they may
be non-toxic and suitable to long-term therapeutical administration. Moreover, similar
to the aging process which features the progressive loss of circadian functions, HD flies
aged 1 through 13 days normally displayed a lower amplitude of per and tim mRNA
oscillations compared to the wild-type controls [236,310,311]. However, both melatonin
and curcumin rescued the daily (24 h) per and tim mRNA oscillations to normal levels in
HD flies [236]. Khyati et al. speculated that melatonin and curcumin supplementation
to HD flies may prevent neurodegeneration by inhibiting oxidation and blocking Htt
protein aggregation, respectively [236]. Consistently, in a mouse model of HD, Htt protein
accumulation and aggregation, as well as transcriptional deficits, were present by six
months of age and were both improved by dietary curcumin [312]. Oxidative damage
is widespread in neurodegenerative disease [238–240] and the antioxidant properties of
melatonin make it a promising therapeutic candidate. However, melatonin’s effectiveness
appears to be due to more than its antioxidant function. Indeed, while oxidative damage
appears important for HD fly pathology, supplementation with antioxidant SOD and
dietary antioxidants α-tocopherol and coenzyme Q10 in HD flies was not enough to
rescue the lethal HD phenotype [296]. This observation is reminiscent of the Martin and
colleagues finding that in rat mitochondria, glutathione levels were responding specifically
to melatonin and not to other antioxidants, i.e., ascorbic acid and α-tocopherol [147]. These
observations in different models make it tempting to speculate that melatonin may have
unique critical properties. A clue about melatonin’s mechanism of action in HD may
come from the observation that the skin fibroblasts of HD patients displayed significantly
reduced activity of antioxidant catalase [303]; therefore, melatonin may potentially be used
to increase catalase activity in HD. Antioxidant enzymes influenced by melatonin are well
conserved in Drosophila and can be further studied to gain mechanistic detail (Table 2).
As well, the amelioration of HD pathology is likely to involve an improved regulation of
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core melatonin-responsive clock-gene pathways, that can also be rapidly characterized in
Drosophila [17,236]. Overall, melatonin and curcumin both showed promise in ameliorating
HD symptoms, and further studies are required to understand their precise action following
circadian clock disturbances and the potential for synergistic or additive effects.

5.1.2. Parkinson’s Disease

Recently, transgenic flies were generated by selectively expressing human (h) LRRK2
in mushroom bodies, where sleep is regulated in Drosophila [257]. “Humanized” LRRK2
transgenic flies recapitulate key properties of human PD such as motor impairment and
the loss of dopaminergic neurons [257,313]. The hLRRK2-expressing flies displayed sleep
fragmentation caused by elevated arousal at night, as well as the disturbance of presynaptic
function demonstrated by the decrease in cellular excitability of Kenyon cells in mushroom
bodies [257]. Melatonin treatment was found to ameliorate both conditions. The dark
phase (night) mean sleep length was increased and the frequency of excitatory postsynaptic
potentials (EPSPs) was restored to normal levels upon administering melatonin (4 mM) to
the hLRRK2 transgenic flies [257]. The observed rescue was thought to reflect improved
synaptic transmission due to a melatonin-dependent reduction in ROS, that would oth-
erwise damage neurotransmitter release [257]. Similarly, SOD and catalase activity were
found significantly decreased in PD patients as the disease progressed [295,314]. Melatonin
treatment could also improve long-term memory deficits in hLRRK2 flies by regulating the
presynaptic membrane Ca2+ activity of Kenyon cells, though exact mechanisms are still
unknown [315]. More than 80% of PD patients experience cognitive decline often leading
to long-term memory impairment [315,316]. Therefore, melatonin treatment could greatly
improve their quality of life. Overall, melatonin seems to be a promising treatment for PD
patients expressing LRRK2 mutations with severe sleep-related problems and cognitive
decline.

5.1.3. Alzheimer’s Disease

AD is identified by the accumulation of plaques composed of amyloid beta (Aβ)
peptides [243]. One dominant form of Aβ peptides, Aβ42, is speculated to play an impor-
tant role at the start of AD pathogenesis [243]. In AD, Aβ42 oligomers form interactions
with mitochondrial proteins, leading to mitochondrial dysfunction and excessive ROS
production (reviewed in [317]). Thus, antioxidants such as melatonin have previously
been used to inhibit Aβ oligomerization in AD [318]. A recent study has used transgenic
flies overexpressing human Aβ42 in the central nervous system to study the effects of
melatonin. The treatment was found to have many benefits in the AD Drosophila model.
Melatonin (0.43 mM) significantly improved climbing ability and increased the AD fly life
span compared to untreated control flies [243]. As well, an immunoblot analysis showed
that Aβ42 expression was reduced in flies exposed to melatonin [243]. Moreover, fluo-
rescence assays displayed normalized ROS levels in the mitochondria of treated AD flies,
compared to untreated ones that, instead, contained high levels of ROS [243]. Because
of these promising results, melatonin seems to be a potential treatment for AD due to its
antioxidant properties, although a deeper characterization of these effects is needed.

5.2. Melatonin Treatment in a Novel Drosophila Model of Polycystic Kidney Disease

Recently, we showed that melatonin reduced cysts in a first-in-kind Drosophila model
of autosomal-dominant polycystic kidney disease (ADPKD) [319], which raises the novel
and intriguing possibility that melatonin may be beneficial in PKD treatment. ADPKD is
a genetic disease caused by mutations in genes PKD1 (80% of all cases) or PKD2 (15% of
all cases) [320]. ADPKD is characterized by the progressive formation of fluid-filled cysts
along the length of the renal tubules (nephrons). Cystic growth disrupts normally regulated
proliferation and apoptosis of the epithelial cells forming the renal tubule and it displays
some neoplastic characteristics (reviewed in [321]). The first-in-kind Drosophila model of
PKD harbors a mutation in the Bicaudal C (BicC) gene [231]. Conserved evolutionarily
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from flies to humans, the human BicC ortholog is called BICC1 and the murine one Bicc1.
Both BICC1 and Bicc1 appear to be genetically downstream of key PKD gene PKD1 [231].
The mutation of any vertebrate BicC genes was sufficient to induce renal cysts (reviewed
in [322]), implying that BicC dysregulation may contribute to renal cystic pathogenesis in
conditions of PKD1 loss-of-function.

The Drosophila PKD model was developed by crossing flies containing a BicC deletion
(Df(2 L)RA5/CyO or ∆) with flies containing a BicC hypomorphic mutation (BicCYC33/CyO),
generating BicC∆/YC33 mutant flies that recapitulate several phenotypic and molecular as-
pects of human PKD, such as the formation of fluid filled cysts along the renal (Malpighian)
tubules, as well as increased activity of the mTOR kinase and myc upregulation, which
both control cell proliferation and apoptosis [231,323]. BicC mutants also show conserved
pharmacological response to Smac mimics [324,325] and rapamycin [231]. Melatonin
(150 µM) was administered at night to the BicC∆/YC33 mutant flies aged 0–2 days and
Malpighian tubules were dissected after 18 days of treatment [319]. Melatonin was found
to significantly reduce cysts by over 30% along the entire tubule length of BicC∆/YC33 flies,
compared to vehicle-treated flies [319]. Drosophila features one longer anterior and one
shorter posterior Malpighian tubule pair, each with different transcriptomes and func-
tions [326]. As well, each tubule pair contains three functionally distinct regions dubbed
proximal, intermediate, and terminal (reviewed in [327]). Melatonin-promoted cyst reduc-
tion affected such regions differentially [319]. Compared to vehicle-treated controls, the
proximal region of melatonin-treated flies was rescued most effectively with a 59% cyst
reduction [319]. The intermediate and terminal regions showed 37 and 31% reduction,
respectively [319]. These results highlight the functional differences occurring along the
anterior and posterior tubule regions [319,328] (reviewed in [327]) and raise the intriguing
possibility that such differences may be conserved to humans. Although not extensively
studied, melatonin has been found to support normal kidney function in mammals. Mes-
enchymal stem cells pre-treated with melatonin and transplanted into the kidneys of a
rat model of chronic kidney disease (CKD) displayed less disturbance of the basement
membrane and improved renal tubule histology, while reducing overall fibrosis, a common
complication [329,330]. As well, the preconditioning of the mesenchymal stem cells with
melatonin reduced transforming growth factor (TGF)-β, tumor necrosis factor (TNF)-α,
and α-smooth muscle actin expression, while increasing E-cadherin expression, indicating
the amelioration of cell-to-cell adhesion in the tubules [329]. It was suggested that TNF-α
reduction may be due to melatonin antioxidant activity, which decreases ROS production
and inflammation [329,331], but additional investigation is needed to fully characterize the
molecular mechanism.

While the potential mechanism of action for melatonin in renal cyst reduction is not
known, one important feature of ADPKD is oxidative stress [297,299,332], which could be
attenuated by the antioxidant properties of melatonin. Oxidative stress markers such as
8-isoprostane, asymmetric dimethylarginine and prostaglandin PGF2a have been shown
to be elevated in ADPKD patients with a preserved estimated glomerular filtration rate
(eGFR), as compared to normal individuals [332] (reviewed in [333]). Reduced levels of
SOD, as well as glutathione peroxidase were also found in ADPKD patients [297,302]. Con-
sistently, murine models of ADPKD featured decreased antioxidant enzymes glutathione
peroxidase, catalase, glutathione S-transferase, and SOD, while displaying aggregates of
lipid peroxidation byproducts in plasma and kidneys [299]. Moreover, murine models of
ADPKD suggest that mitochondrial dysfunction may also play a role in inducing oxidative
stress leading to cyst formation [334]. Mitochondrial function seems indirectly regulated by
the PC1–PC2 complex, which promotes mitochondrial Ca2+ uptake and regulates oxidative
phosphorylation [335]. Suggesting that renal cystic diseases may share a signature of oxida-
tive stress, rat models for the autosomal recessive (AR) form of PKD also feature increased
oxidative stress [336]; however, more markers need to be studied for this condition and to
clarify mitochondrial involvement. Because the evolutionary ancient oxidative response
pathways are conserved in Drosophila [291–294] (Table 2), Drosophila seems ideal to model
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how melatonin affects PKD-type cysts. Melatonin is also known to regulate several path-
ways implicated in neoplastic growth (e.g., mTOR (reviewed in [337]), MAPK [338,339],
JAK/STAT3 [339–341], ERK [337,342], and TGF-β/Smad [343]). Several of these pathways
are also altered in ADPKD tissue and related neoplastic renal cell carcinoma (reviewed
in [321,344]). Thus, the observed improvements in the melatonin treated cystic BicC flies
may result from the simultaneous correction of several cellular defects. Another possi-
ble contributing mechanism, ADPKD, similar to several other diseases, including cancer,
causes a profound metabolic reprogramming of the renal cystic cells and defective glucose
metabolism [345] such as or similar to the Warburg effect [346,347]. In these conditions,
pyruvate, that is normally transported to the mitochondria, remains in the cytoplasm, and
is fermented to lactate in hypoxic conditions. Melatonin appears to counteract the War-
burg effect by inhibiting the hypoxia inducible factor (HIF) 1α, which increases pyruvate
uptake by the mitochondria and its conversion to acetyl-coenzyme A [348]. As mentioned
above, acetyl-coenzyme A is also a cofactor for melatonin synthesis, which consolidates
the pathway. These melatonin-mediated effects have been found to rescue cell metabolism
in oncology [349] and may also contribute to ameliorating the Warburg-like effects in
the renal cyst and ADPKD. Considering that all these pathways are well-conserved in
Drosophila (reviewed in [321,327,350]), and corresponding gene knockout and knockdown
flies exist, it should be possible to decipher the molecular bases of melatonin efficacy as a
cyst-reducing drug candidate. Overall, our Drosophila studies gave insight into a potential
novel treatment for ADPKD, that being non-toxic, could likely be administered indefinitely
to alleviate symptoms of chronic ADPKD. In oncology, melatonin also exhibited promise
as a combination drug that potentiates chemotherapy and, simultaneously, shields normal
tissue from its damaging effects [351–361]. Possibly, the melatonin ability to alleviate the
side effects of other drugs may be tested in combination with tolvaptan, the only approved
ADPKD drug that has displayed signs of potential hepatotoxicity [362–364]. While in-
triguing, further studies will be needed to fully determine the efficacy and applicability of
melatonin treatment to ADPKD therapy.

6. Discussion

Melatonin is a universally conserved molecule and major regulator for (virtually) all
biological organisms. It displays evolutionary ancient functions as an antioxidant and
transcriptional regulator that protects both unicellular and multicellular organisms from
endogenous and exogenous stress and oxidative injury. In the latter organisms, melatonin
has acquired additional functions to synchronize gene expression with daily and seasonal
variations of the light/dark cycle. Overall, melatonin affects key aspects of metabolism,
longevity, and biological adaptation. Mostly studied in mammals, the evolutionary recent
functions are mediated through multifunctional MT1 and MT2 receptors. Belonging to the
GPCR family, MT1 and MT2 can homo- and hetero-dimerize with each other and heteromer-
ize with other receptors, displaying remarkable functional diversity. Through such key
roles, melatonin appears to be a master regulator fine-tuned to species-specific biology and
conceivably holds immense therapeutic potential. It is, therefore, unsurprising to find dis-
rupted melatonin-related pathways in several diseases. Circadian disruption is known to
occur in neurodegenerative diseases such as AD, PD, and HD; however, altered light/dark
cycles have been observed in several other conditions that are seemingly unrelated to
the CNS, including ADPKD. Increased oxidative stress, and mitochondrial dysfunction,
conditions underlying several diseases, could be improved through melatonin-induced
renormalizing functions. Being non-toxic, melatonin makes it ideal for the protracted
treatment needed in chronic disease. Speculatively, the melatonin capacity to affect and
rebalance a multitude of pathways also makes it an ideal drug, especially in conditions
causing metabolic reprogramming such as ADPKD and cancer. However, the incomplete
knowledge of the myriad of melatonin roles and dosage effects still limits precise manip-
ulation in diseased states. The potential for melatonin treatment is widely recognized in
neurological disease and oncology, there is new promise for ADPKD and there appears
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to be an untapped capacity also in renal cell carcinoma, a malignancy sharing patholog-
ical aspects with ADPKD (reviewed in [321,344]). Considering that the complexity and
redundancy of the mammalian melatonin pathways substantially complicate mechanistic
studies, model organisms may be deployed to probe specific questions and mechanisms.
Evolutionary conservation and a vast arsenal of genetic tools make Drosophila a key or-
ganism in which to distinguish core conserved ancient roles from those evolutionarily
more recent. Due to the lack of bona fide MT1 and MT2 receptors, the powerful Drosophila
genetics could potentially be used to generate humanized flies expressing human MT1 or
MT2 receptors alone and in combination to test genetic interactions and gene modifiers in
the whole organism and in specific tissues. Combined with up-and-coming fly pharmacol-
ogy (reviewed in [227,350]) and toxicology [365,366], fly research promises to yield new
biological knowledge with translational significance.
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