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,e k-means is one of the most popular clustering analysis algorithm and widely used in various fields. Nevertheless, it continues
to have some shortcomings, for example, extremely sensitive to the initial center points selection and the special points such as
noise or outliers. ,erefore, this paper proposed initial center points’ selection optimization and phased assignment optimization
to improve the k-means algorithm. ,e experimental results on 15 real-world and 10 synthetic datasets show that the improved
k-means outperforms its main competitor k-means ++ and under the same setting conditions, namely, using the default
parameters,its clustering performance is better than Affinity Propagation, Mean Shift, and DBSCAN.,e proposed algorithm was
applied to analyze the airline seat selection data to air passengers grouping.,e clustering results, as well as absolute deviation rate
analysis, realized customer grouping and found out suitable audience group for the recommendation of seat selection services.

1. Introduction

Clustering is to divide the dataset into nonoverlapping
subsets, such that the objects in the cluster are as similar as
possible, and the objects between the clusters are as dis-
similar as possible [1]. ,ere are numerous kinds of clus-
tering algorithms, such as AP [2], DPC [3–6], which show
excellent clustering performance. However, as one of the
most classic clustering algorithm, the k-means aimed to
partition the given dataset into K subsets so as to minimize
the within-cluster sum of squared distances continues to be
one of the most popular clustering algorithms [7]. Its effi-
ciency and simplicity of implementation make it successfully
applied in various fields, such as image [8, 9], education [10],
bioinformatics [11], medical [12], partial multiview data
[13], agricultural data [14], fuzzy decision-making [15].

Optimizing the initial center points may be one of the
most effective methods to improve the performance of
k-means algorithm. ,e study of Fränti and Sieranoja [16]
reported that (a) the k-means clustering algorithm can be
significantly improved by using a better initialization
technique and by repeating (re-starting) the algorithm; (b)

when the data have overlapping clusters, k-means can im-
prove the results of the initialization technique; (c) when the
data have well separated clusters, the performance of
k-means depends completely on the goodness of the ini-
tialization; (d) initialization using simple furthest point
heuristic (Maxmin) reduces the clustering error of k-means
from 15% to 6%, on average. With the popularity of deep
learning in various fields, optimizing data representation is
also a means to improve clustering performance, especially
in the face of high-dimensional data. ,e robust deep
k-means (RDKM) algorithm [17] exploit the hierarchical
information of multiple-level attributes with using the deep
structure to hierarchically perform k-means.

,e k − means + + [18] provided a simple and effective
initial center points optimization method called
D2 − sampling. It adds new center point one by one and
assigns different selection probabilities to each potential
center point. Since then, especially after being embedded in
scikit-learn as the default k-means algorithm, it has almost
become the first choice based on partitioning clustering
algorithms. However, due to k-means ++ randomly selects
the first center point uniformly and randomly adds
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subsequent center points according to the probability, some
special data distribution can also lead to k-means ++ poor
results, even unreasonable clustering results. For example, a
dataset with five clusters is synthesized and some noise
points half-circle surrounding them are added. ,e clus-
tering result of k-means ++ was shown in Figure 1, where
each color represents a cluster. ,e desired clustering result
should be that the points in the upper left corner are divided
into five clusters, but the actual result is that the points in the
lower (green points) are clustered into a single cluster to be a
wrong result. In this paper, some methods were proposed to
solve this problem.

Cluster analysis is one of the basic methods of data
knowledge discovery. With the development of airline
business, ancillary services that satisfy passengers’ personal
requirement are becoming more and more important for
airlines [19, 20]. However, owing to the impact of COVID-
19, the airline market faced a dramatic regression
(2019–2021), compelling airlines to seek revenue other than
from flight tickets [21, 22]. ,erefore, establishing ancillary
services is significantly important for airlines due to the
ability to increase the airline’s revenue. In this paper, the
improved k-means algorithm is applied into cluster anal-
ysis an airline seat selection dataset, which aims to group
airline passengers to serve the establishment of auxiliary
services.

Based on the above analysis and application require-
ments, this paper proposed an improved k-means algo-
rithm, called as k-means2o, based on initial center points
selection optimization and phased assignment optimiza-
tion, and realized the clustering analysis on airline seat
selection dataset. ,e main contributions are summarized
as follows:

(1) Two optimization methods are proposed for the
k-means algorithm: initial center points selection
and phased assignment. In the initial center points
selection optimization, this method inherits the
center point incremental strategy of k-means ++

[18], K-MC 2 [23] and AFK-MC 2 [24], but redefines
the first center point selection strategy and the
subsequent center point incremental strategy. In the
phased assignment optimization, the Tukey’s rule is
adopted to divide dataset into core and noncore sets
to realize two-stage assignment, then two assignment
strategies are proposed corresponding to the core
and noncore sets, respectively.

(2) Four popular algorithms, k-means ++ [18], affinity
propagation [2], mean shift [25], and DBSCAN
[26], are used to verify the effectiveness and the
performance improvement of k-means2o based on
15 real-world and 10 synthetic datasets. Further, the
impact of core and noncore sets on the clustering
result is analyzed.

(3) ,e improved k-means algorithm is applied to an
airline seat selection dataset, and the passenger

groups who are more willing to pay for seat selection
are found out. ,e absolute deviation rate adr is
defined to analyze the significance of passenger
grouping. ,is provides valuable information for
auxiliary services.

2. Related Works

,ere are many possible ways to optimize the initial center
points. ,e k-means ++ [18] provided D2 − sampling
method which assigns different selection probabilities to
each potential center point. Bachem et al. [23] replaced the
D2 − sampling in k-means ++ with MCMC-sampling and
obtained a nearly linear improved k-means algorithm
K-MC2. However, this algorithm defines two data-depen-
dent hypothesis α(X), β(X), which will have an important
impact on the clustering result and the algorithm com-
plexity. Subsequently, Bachem et al. [24] solved the hy-
pothesis defect of the K-MC2 algorithm. ,ey extended a
regular term based on D2 − sampling of k-means ++. ,is
new algorithm is called AFK-MC2. Whether it is K-MC2 or
AFK-MC2, they all follow the first center point selection
strategy of the k − means + + algorithm, namely that it first
samples an initial center uniformly at random. At the same
time, they all have similar center point selection methods,
that is, a point farther from the currently selected center
points has a greater probability of being chosen as the next
center point. For more information on the optimization
method of the initial center point, please consult the liter-
ature [27].

Phased assignment, generally speaking, is to divide the
data into different stages to complete the cluster label as-
signment, or assign the cluster labels to only part of the data,
and the remaining part will be removed as outliers, noise,
etc. Zhou et al. [28] proposed a three-stage k-means algo-
rithm to cluster data and detect outliers. In the first stage, the
fuzzy c-means algorithm is applied to cluster the data. In the
second stage, local outliers are identified, and the cluster
centers are recalculated. In the third stage, certain clusters
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Figure 1: ,e k − means + + clustering result on synthesized
dataset.
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are merged, and global outliers are identified. Im et al. [29]
proposed the NK-means algorithm which emphasizes the
removal of noise/outliers and is a two-stage k-means al-
gorithm. In the first stage, a greedy algorithm is utilized to
remove abnormal points. In the second stage, the center
points are optimized in the constructed core set, and cluster
label is assigned to each point. In term of preprocessing
techniques, k-means ++ is utilized as an additional filtering
step to remove out z of data points as outliers before ap-
plying the conventional k-means. ,e clustering process is
only performed on the remaining data which are outlier-
free. ,e outliers data are completely removed and not
classified to any known cluster as collected initially. ,e
KMOR algorithm is proposed by Gan and Ng [30] assigns
outliers to an additional cluster. ,is algorithm redefines the
clustering objective function and takes into account the SSE
between outliers and center points. However, it introduces
two new parameters to adjust outlier number. ,e k-means-
sharp is proposed by Olukanmi et al. [31] to eliminate the
outliers’ influences from the clusters’ centroid. ,e detected
outliers are completely excluded from the mean measure-
ment only, but they are involved later in the clustering
process. However, the data point with all attributes is
eliminated completely from centroid measurement. In this
case, the algorithm cannot recognize an outlier’s presence in
every attribute independently. ,is is because the single
value of the distance metric represents the entire vector
instead the single attribute be removed. ,erefore, an empty
cluster may occur in case of the presence of at least one
outlier in each data point [32]. ,e phased assignment is not
only used to optimize the k-means algorithm. For example,
Yu et al. [33] also adopted a two-stage assignment strategy
based on boundary conditions to optimize the DPC clus-
tering algorithm. For a dataset to be clustered, in many cases,
users do not care whether it contains outliers, because the
outliers themselves are difficult to define, but they definitely
want to assign them cluster labels. Wang et al. [34] proposed
an improved integrated clustering learning strategy based on
three-stage affinity propagation algorithm with density peak
optimization theory (DPKT-AP). In the first stage, the
clustering center point was selected by density peak clus-
tering. In the second stage, the k-means algorithm was used
to cluster the data samples. In the third stage, DPKT-AP
used the AP algorithm to merge and cluster the spherical
subgroups.

3. Proposed K-Means Algorithm

Suppose a given dataset X � x1, x2, . . . , xn , xi ∈ Rm, and
divide it into K mutually disjoint sets C � C1, . . . , CK , so
that ∪ K

i Ci � X and Ci ∩Cj � Φ,∀i, j, i≠ j.

3.1. InitialCenterPointsOptimization. Like the k-means ++

algorithm, the k-means2o adopts a strategy of increasing
center points one by one until the desired K points are
reached. However, the difference is that the new algo-
rithm redefines the selection of the first center point and
subsequent center points. For this purpose, first, define

the distance function d(x, S) between the point x and the
set S:

d(x, S) � minxj∈Sd x, xj , (1)

where d(x, xj) represents the distance between two points
x, xj. In this paper, Euclidean distance is selected.

Let ci, i � 1, . . . , K represent the center point of cluster
ci, i � 1, . . . , K, then the first center point c1 is selected as
follows:

c1 �
1

Score





xi∈Score

xi, (2)

where |Score| represents the number of elements in the core
set Score. ,en, the (2) shows that c1 is the mean value of the
core set Score.

Let Ck � c1, . . . , ck  represents a set containing k center
points, then the selection method of k + 1 th center point
ck+1 is as follows:

ck+1 � argmaxxi∈Scored xi, C
k

 , (3)

then Ck+1 � Ck⋃ ck+1 . Equation (3) shows that ck+1 is the
point farthest from the selected center points in the core set
Score. ,e whole process above is shown in Figure 2.

3.2. Phased Assignment. ,e k-means2o is mainly divided
into two stages to complete the clustering.,e first stage is to
assign cluster label to the core set Score, and the second stage
is to assign cluster label to the noncore set Snoncore. ,e
Tukey’s rule is adopted to divide the dataset X into sets
Score, Snoncore. Tukey’s rule is one of the most robust used
techniques for anomaly detection in univariate data [35].

In the first stage, the k-means2o establishes the Tukey’s
rule for each attribute of the data, and then the judgment
results in all dimensions are integrated to determine whether
the sample point x belongs to the core set Score.

First, calculate the first quartile Q1 and third quartile Q3
on each attribute:

Q
j
1 � x

j
i | i � round((n + 1) × 0.25),

Q
j
3 � x

j
i | i � round((n + 1) × 0.75).

(4)

,en, calculate the upper and lower bounds Bupper, Blower
as follows:

B
j

lower � Q
j
1 − r × IQRj

,

B
j
upper � Q

j
3 + r × IQRj

,
(5)

where IQRj � Q
j
3 − Q

j
1 and r is a scale factor.

Finally, calculate the core set Score and noncore set
Snoncore as follows:

Score � xi ∈ X | B
j

lower ≤xij ≤B
j
upper,∀j ,

Snoncore � X − Score,
(6)

Equation (6) shows that this paper will evaluate each
attribute of the data individually, and then integrate all m
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attributes to determine whether it belongs to the core set
Score. As long as any attribute does not satisfy the inequality
constraints, it will be judged as belonging to Snoncore.
According to equations (3) and (6), it is obvious that c2
almost will be the point in the noncore set Snoncore, that is,
c2 ∈ Snoncore, and ci, i> 2 will also select the point in the
noncore set Snoncore with a high probability.

,e scale factor r in equation (5) is a predefined ad-
justable parameter. If you have sufficient prior knowledge of
dataset, you can set it depending on experience. If not, it
recommends to set r � 1.5. Although in the field of anomaly
detection research, r � 1.5 is often regarded as the boundary
value of the outlier. In cluster analysis, points in Snoncore
cannot be regarded as outliers and discarded, and they still
need to be assigned cluster labels. Whether points in Score or
in Snoncore, in the final clustering result, it is necessary to
assign cluster labels which are also one of the goals of cluster
analysis. On the 15 real datasets in this paper, each sample
has an exact class label, but the Snoncore of almost all datasets
are not empty. After constructing Score, it is more helpful to
obtain a more excellent initial center points. Not only that
Score effectively assists the selection of the initial center points
but also has a positive effect on the update of center points.

When we obtain Score, use the initial center points se-
lection method described in Section 3.1 to select the initial
center points set CK from Score, and then use the traditional
center points update method of k-means to complete
clustering in Score. Obtain the optimal clustering center
points set C

K and clusters C1, . . . , CK. ,e first stage of
clustering ends.

xi ∈ Ck⇔ d xi,
C

K
  � d xi, ck( , xi ∈ Score. (7)

In the second stage, points in Snoncore will be assigned
cluster label. With the help of the optimal clusters
C1, . . . , CK obtained in the first stage, determine the cluster
label of ∀xi ∈ Snoncore:

xi ∈ Ck⇔ d xi, Score(  � d xi, Ck( , xi ∈ Snoncore, (8)

where d(xi, Score), d(xi, Ck) are defined in (1), and Ck is the
k − tk cluster.

,e whole process above is shown in Figure 3.

3.3. Algorithm Flow and Complexity Analysis. ,e
k-means2o algorithm that optimizes the initial center points
selection and phased assignment are performed. ,e algo-
rithm 1 shows its detail process. ,e steps 1–15 corresponds
to the first stage, including that the Step 1 determines
Score, Snoncore, and the Steps 2–4 optimize the initial center
points. ,e Steps 16–19 correspond to the second stage.

According to the detailed steps in algorithm 1, the
complexity of k-means2o algorithm is analyzed with data
size n, attribute m, and cluster number K. ,e number of
iterations is denoted as t, and its maximum value is
max iter. Step 1 generates Score, Snoncore with O(nm). Steps
2–5 select initial center points with O(nK). Steps 6–13 are a
traditional k-means clustering process; however, Step 8 is a
new label assignment strategy, so the complexity of these
steps becomes O(n2t). In summary, the complexity of the
k-means2o algorithm is O(n2t).

4. Performance Analysis of the
Proposed Algorithm

In this section, the improved k-means algorithm,
k-means2o, testing and verification for clustering perfor-
mance compared with the well-known k-means ++ [18]
which is the most commonly used partition-based algorithm
with different initializations of the centroids to reduce the
sensitivity. ,en, the performance of the k-means2o will be
compared with affinity propagation (AP) [2], mean shift
(MS) [25], DBSCAN [26]. Although the latter obtain ex-
cellent clustering performance on some special datasets, they
require to preset one or more important parameter(s), which
is a very difficult task. ,e k-means2o is designed with

Input Score , K

Output c1,...,cK

Select c1 using Eq.(2)

k<K

No

Select ck+1 using Eq.(3)

Yes

Figure 2: ,e flow chart of initial center points optimization.

Second stageFirst stage

Input X , K

Calculate Score, Snoncore
using Eqs, (4)-(6)

Score Snoncore

Initial center points
with Sec. 3.1

Traditional k-means
clustering

Assign cluster label
using Eq.(8)Clusters C1,..., Ck

Output results C1,···, Ck

Figure 3: ,e flow chart of phased assignment.
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Python and k-means ++, AP, MS, DBSCAN are called from
scikit-learn [36].

4.1.Datasets andEvaluationMetrics. A total of 15 real-world
datasets used in the experiments were taken from UCI [37].
,e data size n, attribute m, and cluster number K are
summarized in Table 1 and Table 2 shows 10 synthetic
datasets from references [38, 39], where the K1 dataset is
synthesized by this paper, see Figure 1. All datasets are
publicly available1.

An appropriate and uniform evaluation index is both
required and meaningful to compare the different clustering
algorithms. ,erefore, the quality was measured via the
accuracy (ACC), the Adjusted Rand Index (ARI) [40], the
Normalized Mutual Information (NMI) [41] and the
Fowlkes–Mallows Index (FMI) [42] between the produced
clusters and the truth categories. Larger evaluation index
values indicate improved clustering performance, and all
index upper bounds � 1, representing perfectly correct
clustering:

ACC �


n
i�1 δ(label true,map(label pred))

n
,

ARI �
RI − E[RI]

max(RI) − E[RI]
,

NMI �
MI(U, V)

mean(H(U), H(V))
,

FMI �
TP

������������������
(TP + FP)(TP + FN)

 .

(9)

where U, V are predicted label and true label.

4.2. Experimental Results and Discussion. ,e experimental
datasets were clustered using k-means ++ and k-means2o.
,e ACC, ARI, NMI, and FMI of them are listed in Tables 3
and 4, where k-++ represents k-means ++ and k-2o rep-
resents k-means2o. ,e best clustering performance eval-
uation values are shown in bold, and 1 means that the
clustering result is completely correct. ,e value 0.0000 in
the table represents its real metric value < 0.0001.

From Table 3, the k-means ++ and k-means2o simul-
taneously obtained the maximum FMI value for 8 of the 15
datasets. ,is shows that the two algorithms have the same
performance, and further performance comparison and

Input: Dataset X, cluster number K, scale factor r

Output: Clustering results C � C1, . . . , CK , center points set C
K, sum of squared error SSE

(1) Using (6) divide dataset X into Score, Snoncore
(2) Using (2) generate c1
(3) For i � 2 to K do
(4) Using (3) generate ci

(5) End for
(6) For j � 1 to max iter do
(7) for ∀x ∈ Score do
(8) According to the principle of the nearest distance between x and CK, classify x into the corresponding cluster
(9) end for
(10) if SSE does not change then
(11) break
(12) end if
(13) end for
(14) Update the center points set CK and compute SSE
(15) Compute the optimal center points C

K

(16) for ∀x ∈ Snoncore do
(17) According to the principle of the nearest distance between x and Score, classify x into the corresponding cluster
(18) end for
(19) Compute SSE
(20) Return clustering results C � C1, . . . , CK , center points set C

K, sum of squared error SSE

ALGORITHM 1: k-means2o.

Table 1: Real-world datasets.

Dataset n m K Dataset n m K

Breast-cancer 569 30 2 Banknote 1372 4 2
Bupa 345 6 2 Compound 399 2 6
Ct 221 36 2 Hayes-roth 132 5 3
Iris 150 4 3 Libras 360 90 15
Parkinsons 195 22 2 Penbased 10992 16 10
Vowel 990 10 11 Waveform21 5000 21 3
Waveform40 5000 40 3 Wdbc 569 30 2
Wine 178 13 3

Table 2: Synthetic datasets.

Dataset n m K Dataset n m K

Aggregation 788 2 7 circlesA3 300 2 3
D31 3100 2 31 Flame 240 2 2
Jain 373 2 2 K1 262 2 5
R15 600 2 15 S1 5000 2 15
S3 5000 2 15 Spiral 312 2 3
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analysis of other evaluation indicators are required. From
the view of ARI in Table 3, the most significant and direct
conclusion is that the k-means2o outperforms the k-means
++ on most datasets, and the performance of the two al-
gorithms is also very close on a few datasets that are inferior
to k-means ++. Specifically, the k-means2o achieved the
maximum ARI value for 10 of the 15 datasets, as well as the
NMI and it obtained the same result, and the k-means ++

achieved the best clustering performance only on 6 datasets
in ARI, as well as in NMI. For banknote, iris, wine datasets,
the k-means2o is only inferior to k-means ++ with a small
gap. For ACC evaluation, it comes to the exact same con-
clusion as NMI and ARI, that is, the k-means2o clustering
performance is better than the k-means ++.

For the synthetic datasets in Table 2, the four evaluation
metrics in Table 4 show that k-means ++ and k-means2o
have similar clustering performance. For datasets with
spherical cluster distribution, such as D31, R15, S1, and S3,
the clustering results of the two algorithms are close to the
real cluster partition, while for datasets with nonspherical
distribution such as spiral, flame, circlesA3, the clustering
performance of them drops sharply. When the size of the
distribution area of spherical clusters is significantly dif-
ferent, the performance difference between k-means ++ and
k-means2o can be revealed. For example, in the aggregation
dataset, the two algorithms’ clustering results are shown in
Figure 4. ,e evaluation values of ARI, NMI, and FMI all
show that k-means ++ is better than k-means2o, but ACC
gives the opposite conclusion. Figure 4(a) shows that
k-means ++ selects seven center points in six real clusters,
and two different clusters (green points in the figure) are
wrongly classified into the same cluster. Figure 4(b) shows
that k-means2o can select center points in seven real clusters,
respectively.

Further, the performance of the k-means2o will be
compared with AP, MS, and DBSCAN.,e ARI and NMI of
these algorithms are listed in Table 5, and the ACC and FMI
are listed in Table 6. ,e values larger than the one of the

k-means2o are marked in bold. ,e three comparison al-
gorithms all use default parameters. Considering better
performance, the data are normalized here. From the per-
spective of ARI values, compared with AP, MS, and
DBSACN, the k-means2o obtained better clustering per-
formance on 12,14,13 datasets, respectively. ,e evaluation
results of NMI are similar to ARI, except for the AP algo-
rithm. ,e AP’s measurement results of NMI and ARI are
very different, which may be tied to the number of error
clusters given by the AP algorithm. ,e ACC evaluation
conclusion is consistent with ARI, but FMI and NMI reach
opposite conclusions. For the MS algorithm, its FMI value is
better than k-means2o algorithm in 9 out of 15 datasets,
while for the AP algorithm, its FMI value on all datasets is
smaller than k-means2o algorithm. Based on the four
evaluation metrics, the k-means2o algorithm is superior to
the comparison methods in at least three of these metrics on
most datasets. ,erefore, k-means2o has better clustering
performance.

As for the abnormal conclusion given by a certain
evaluation metric for a specific algorithm, for example, the
NMI evaluation metric for the AP algorithm, the FMI
evaluation metric for the MS algorithm, it may be caused by
too many or too few clusters. Table 7 shows that the AP and
MS algorithms give the wrong number of clusters on any
datasets, and the former far exceeds the true number of
clusters, while the latter divides more than half of the
datasets into one cluster. Undeniably, the AP, MS, and
DBSCAN algorithms provide a method to identify the
number of clusters. If the parameters for the AP algorithm,
damping factor, and preference value are carefully adjusted,
it maybe achieves better clustering performance in these
real-world datasets. In those clustering algorithms that
contain parameters, careful selection of parameters is often
time-consuming and requires prior knowledge. ,erefore,
these algorithms have poor universality.

,e performance of all five algorithms can be directly
compared in Figure 5. In this radar chart, each axis

Table 3: Clustering results of k-means ++ and k-means2o on real-world datasets.

Dataset
ACC ARI NMI FMI

k-++ k-2o k-++ k-2o k-++ k-2o k-++ k-2o
Breast-cancer 0.8541 0.8910 0.4914 0.6062 0.4647 0.5276 0.7915 0.8286
Banknote 0.6122 0.5954 0.0485 0.0356 0.0303 0.0239 0.5517 0.5231
Bupa 0.8550 0.5768 0.0000 0.0058 0.0000 0.0112 0.6192 0.5136
Compound 0.6566 0.6365 0.5378 0.5043 0.7191 0.6557 0.6422 0.6181
Ct 0.8235 0.8325 0.4160 0.4399 0.3296 0.3485 0.7078 0.7199
Hayes–Roth 0.4393 0.4469 0.0202 0.0226 0.0287 0.0317 0.3501 0.3519
Iris 0.8933 0.8933 0.7302 0.7302 0.7581 0.7581 0.8208 0.8208
Libras 0.4277 0.4416 0.3199 0.2760 0.6066 0.5716 0.3734 0.3389
Parkinsons 0.7230 0.6307 0.0000 0.0625 0.0000 0.0493 0.7444 0.5889
Penbased 0.7674 0.6035 0.5992 0.4907 0.6927 0.6723 0.6412 0.5582
Vowel 0.3636 0.3645 0.2028 0.2204 0.4141 0.4337 0.2789 0.2868
Waveform21 0.5016 0.5018 0.2536 0.2547 0.3622 0.3654 0.5039 0.5047
Waveform40 0.5146 0.5160 0.2516 0.2530 0.5023 0.5035 0.3605 0.3632
Wdbc 0.8541 0.8910 0.4914 0.6062 0.4647 0.5276 0.7915 0.8286
Wine 0.7022 0.7022 0.3711 0.3675 0.4287 0.4164 0.5835 0.5809
Maximum 7 10 6 10 6 10 8 8
,e best clustering performance evaluation values are shown in bold.
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Figure 4: Clustering results on aggregation dataset: (a) k-means ++; (b) k-means2o.

Table 4: Clustering results of k-means ++ and k-means2o on synthetic datasets.

Dataset
ACC ARI NMI FMI

k-++ k-2o k-++ k-2o k-++ k-2o k-++ k-2o
Aggregation 0.7855 0.8680 0.7624 0.7438 0.8792 0.8373 0.8159 0.7992
CirclesA3 0.5833 0.5866 0.1283 0.1311 0.3616 0.3633 0.4903 0.4915
D31 0.9764 0.9290 0.9522 0.9059 0.9669 0.9498 0.9538 0.9090
Flame 0.8375 0.8375 0.4534 0.4534 0.3987 0.3987 0.7363 0.7363
Jain 0.7855 0.7855 0.3241 0.3241 0.3690 0.3690 0.7005 0.7005
K1 0.7824 0.9923 0.7318 0.9809 0.8160 0.9765 0.7962 0.9847
R15 0.9966 0.9966 0.9927 0.9927 0.9942 0.9942 0.9932 0.9932
S1 0.9938 0.9936 0.9867 0.9863 0.9866 0.9861 0.9876 0.9872
S3 0.8568 0.8568 0.7270 0.7270 0.7959 0.7962 0.7453 0.7453
Spiral 0.3461 0.3461 0.0000 0.0000 0.0007 0.0005 0.3276 0.3277
Maximum 7 8 8 7 7 6 7 7
,e best clustering performance evaluation values are shown in bold.

Table 5: ARI and NMI evaluation results on real-world datasets with AP, MS, DBSCAN.

Dataset
ARI NMI

AP MS DBSCAN k-2o AP MS DBSCAN k-2o
Breast-cancer 0.0574 0.2275 0.0687 0.6062 0.2692 0.2439 0.0415 0.5276
Banknote 0.0491 0.0000 0.0000 0.0356 0.2973 0.0000 0.0000 0.0239
Bupa 0.0000 0.0000 0.0037 0.0058 0.0287 0.0237 0.0130 0.0112
Compound 0.3023 0.7189 0.0000 0.4133 0.6289 0.7692 0.0000 0.6240
Ct 0.1006 0.0000 0.3271 0.4399 0.2529 0.0601 0.2563 0.3485
Hayes-Roth 0.0350 0.0000 0.0589 0.0226 0.2010 0.0000 0.1168 0.0317
Iris 0.3381 0.5681 0.0000 0.7302 0.5706 0.7336 0.0000 0.7581
Libras 0.2882 0.0000 0.0058 0.2760 0.6375 0.0000 0.1449 0.5716
Parkinsons 0.0305 0.0000 0.0000 0.0625 0.1889 0.0641 0.0227 0.0493
Penbased 0.1037 0.0000 0.0008 0.4907 0.5929 0.0000 0.0380 0.6723
Vowel 0.1315 0.0000 0.0000 0.2204 0.5525 0.0000 0.0000 0.4337
Waveform21 0.0168 0.0000 0.0000 0.2547 0.2345 0.0000 0.0003 0.3654
Waveform40 0.0187 0.0000 0.0000 0.2530 0.2052 0.0000 0.0000 0.3632
Wdbc 0.0574 0.2275 0.0687 0.6062 0.2692 0.2439 0.0415 0.5276
Wine 0.2689 0.0000 0.4228 0.3675 0.5264 0.0000 0.5263 0.4164
Number 3 1 2 — 8 2 1 —
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represents a dataset, and its value is the cluster evaluation
ARI value. According to the previous analysis, the
k-means2o has the best performance, and its corre-
sponding red line in the radar chart reaches the maximum
value on more polar axes, that is, farther away from the
center point.

4.3. Comparative Analysis of Different InitializationMethods.
In this subsection, the effects of three different initialization
methods on the performance of the k-means clustering
algorithm are compared. ,ese three methods are repre-
sented by Random, D2-sampling, New respectively, see the
header of Table 8. Random means randomly initializing the
center point. D2-sampling means assigning a selection
probability to each noncenter point and randomly selecting

the center point. New means the center point initialization
optimization method proposed in this paper. In fact, the
k-means algorithm based on D2-sampling is the famous
k-means ++ algorithm.

,e initial center points optimization plays an important
role in the performance improvement of k-means2o.
However, Table 8 shows that only using the initialization
method proposed in this paper cannot improve the clus-
tering performance. From the evaluation value of ARI, the
optimal initialization method is D2-sampling, followed by
Random, and the worst is New which is the initialization
method proposed in this paper. Except for tiny numerical
differences on individual datasets, the NMI evaluation shows
similar conclusions. Combined with the conclusion of
k-means2o performance improvement, it is the combination
of initial center point optimization and phased assignment
that improves the performance of k-means2o, not just the
center points optimization.

Table 6: ACC and FMI evaluation results on real-world datasets with AP, MS, DBSCAN.

Dataset
ACC FMI

AP MS DBSCAN k-2o AP MS DBSCAN k-2o
Breast-cancer 0.1353 0.7153 0.6626 0.8910 0.2491 0.7117 0.6775 0.8286
Banknote 0.1013 0.5554 0.5554 0.5954 0.2230 0.7112 0.7112 0.5231
Bupa 0.0841 0.5188 0.9913 0.5768 0.1540 0.6224 0.7073 0.5136
Compound 0.3584 0.7393 0.3960 0.6365 0.4530 0.8159 0.4972 0.6181
Ct 0.2172 0.4977 0.7873 0.8325 0.3267 0.6724 0.6633 0.7199
Hayes-Roth 0.1515 0.3864 0.3561 0.4469 0.1981 0.5876 0.3436 0.3519
Iris 0.4133 0.6667 0.3333 0.8933 0.5145 0.7715 0.5735 0.8208
Libras 0.3889 0.0667 0.1278 0.4416 0.3333 0.2531 0.2429 0.3389
Parkinsons 0.1590 0.6513 0.6154 0.6307 0.2465 0.6857 0.6436 0.5889
Penbased 0.1018 0.1041 0.1195 0.6035 0.2416 0.3164 0.3080 0.5582
Vowel 0.1657 0.0909 0.0909 0.3645 0.2266 0.3000 0.3000 0.2868
Waveform21 0.0368 0.3392 0.3374 0.5018 0.1067 0.5773 0.5613 0.5047
Waveform40 0.0650 0.3384 0.3384 0.5160 0.1124 0.5773 0.5773 0.5035
Wdbc 0.1353 0.7153 0.6626 0.8910 0.2491 0.7117 0.6775 0.8286
Wine 0.3427 0.3989 0.6966 0.7022 0.4604 0.5813 0.6482 0.5809
Number 0 2 1 — 0 9 7 —

banknote

bupa

compound

ct

hayes-roth

iris

libras parkinsons

penbased

vowel

waveform21

waveform40

wdbc

wine
breast-cancer

k-means++
k-means2o

MS
DBSCAN

AP

Figure 5: Radar chart of ARI values on the real-world datasets.

Table 7: ,e number of real and 3 algorithms predicted clusters in
the real-world datasets.

Dataset AP MS DBSCAN Real
Breast-cancer 43 12 2 2
Bupa 32 14 2 2
Ct 20 7 2 2
Iris 9 2 1 3
Parkinsons 21 5 2 2
Vowel 85 1 1 11
Waveform40 157 1 1 3
Wine 14 1 3 3
Banknote 45 1 1 2
Compound 15 3 1 6
Hayes-roth 16 1 4 3
Libras 30 1 6 15
Penbased 199 1 7 10
Waveform21 148 1 2 3
Wdbc 43 12 2 2
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4.4. Impact Analysis of Core and Noncore Sets. ,is paper
uses Tukey’s rule to realize the division of Score and Snoncore.
,erefore, a scale factor r needs to be given. Tukey’s rule
comes from the field of anomaly detection. Generally, the
scale factor is set to 1.5. Points that do not meet the con-
ditions of the scale factor are called outliers. In most cases,
these points are directly abandoned. ,is idea is introduced
into cluster analysis and used in the data preprocessing stage.
As a result, the points detected as abnormal will be discarded
and not assign cluster label. ,ere will be great hidden
trouble in this way. Table 9 shows the number of elements in
Score and Snoncore in 15 real-world datasets when r � 1.5.
Except that the Snoncore of compound dataset is empty, the
Snoncore of the remaining 14 datasets are not empty. However,
as well as we known, all points in these datasets are labeled
with class labels. ,erefore, it is unreasonable to abandon
these suspected outliers simply and rudely. For this reason,

this paper proposes a two-stage assignment method, whose
first stage assigns cluster label to the points in Score and
second stage assigns the points in the Snoncore. For the
compound dataset, the empty Snoncore indicates that Tukey’s
rule has no effect on this dataset and will directly lead to the
failure of the second stage assignment.

,e k-means2o algorithm relies on a predefined scale
factor r, so it is necessary to perform a sensitivity test of this
parameter. ,erefore, we took the iris, wine, breast_cancer,
banknote, and bupa datasets as an example to investigate the
effects of different r on ARI and NMI, as shown in Figure 6.
Its shows that the ARI and NMI curves of the five datasets do
not fluctuate drastically, so the clustering performance of the
k-means2o algorithm based on the scale factor r is relatively
robust. Nevertheless, the scale factor r still has a slight
impact on the clustering performance. For example, in the
iris dataset, when r � 0.5, its ARI and NMI values reach

Table 8: Results of different initialization methods of k-means algorithm.

Dataset
ARI NMI

Random D2-Sampling New Random D2-Sampling New
Breast-cancer 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914
Banknote 0.0485 0.0485 0.0485 0.0485 0.0485 0.0485
Bupa 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001
Compound 0.5328 0.5378 0.4133 0.7220 0.7191 0.6240
Ct 0.4160 0.4160 0.0000 0.3296 0.3296 0.0219
Hayes-Roth 0.0160 0.0202 0.0202 0.0250 0.0287 0.0287
Iris 0.7302 0.7302 0.7302 0.7581 0.7581 0.7581
Libras 0.3062 0.3199 0.2868 0.5896 0.6066 0.5767
Parkinsons 0.0853 0.0000 0.0001 0.0505 0.0001 0.0001
Penbased 0.5442 0.5992 0.4265 0.6835 0.6927 0.6486
Vowel 0.2180 0.2028 0.2058 0.4332 0.4141 0.4067
Waveform21 0.2536 0.2536 0.2535 0.3622 0.3622 0.3622
Waveform40 0.2516 0.2516 0.2515 0.3605 0.3605 0.3605
Wdbc 0.4914 0.4914 0.4914 0.4647 0.4647 0.4647
Wine 0.3711 0.3711 0.3711 0.4287 0.4287 0.4287
Maximum 11 13 7 11 12 9
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Figure 6: Clustering evaluation for different r on five datasets: (a) ARI curve and (b) NMI curve.
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0.8340 and 0.8191, respectively. ,is clustering result is
better than k-means ++, see Table 3 (the values are ARI �

0.7302 and NMI � 0.7581).
In the above analysis, the k-means2o outperforms

k-means ++, AP, MS, and DBSCAN. Combined with the
fact, almost all Snoncore of these datasets in Table 9 are
nonempty. ,ese results show that the combination opti-
mization of the initial center point and the core subset works
and improves the k-means clustering performance.

5. The Application of K-Means2o

In this section, the k-means2o is applied into cluster to
analyze the airline seat selection dataset provided by Neu-
soft. According to the meaning of clustering, the samples in
the same cluster are as similar as possible, and the samples
between different clusters are as dissimilar as possible. If
most samples in the same cluster have a certain property, it
can be inferred that other samples in the same cluster are
also most likely to have the same property. If the most
passengers in the cluster are willing to accept some of the
personalized recommendation service, such as paying for
seat selection, the same service should be recommended to
other passengers in the cluster, and a clearer audience group
will increase the personalized recommendation service
success rate. For the airline seat selection dataset, the ap-
propriate clusters number is required to be determined first.

,e silhouette coefficient is a simple and effective
method to determine the appropriate clusters number for
the k-means algorithm. ,e silhouette coefficient of the
k-means2o algorithm on this dataset is shown in Figure 7.
,e figure shows that the SSE change tends to be gentle from
16 clusters. ,erefore, the optimal number of clusters would
be selected as 16.,en, the k-means2o is applied and divides
the data into 16 clusters. ,e number of passengers in each
cluster is shown in the column named as size in Table 10.,e
3rd, 4th, and 5th columns of Table 10 (payment, no-pay-
ment, payment ratio), respectively, show the number of paid
passengers, the number of nonpaid passengers and the
proportion of paid ones in the airline seat selection. ,e
absolute deviation rate adr in the last column is defined as
follows:

adrc �
rc − r




r
, (10)

where rc is the payment rate in cluster c and r is the payment
rate in the dataset. ,e larger the adr value, the more sig-
nificant the difference between the payment behavior of
passengers in the cluster and the whole dataset.

,e clustering results show that the number of pas-
sengers in each cluster is not close. ,e cluster with the
largest number of passengers is C0, with 2580, while the
smallest one is C13, with 379.

Further, the significant differences are explored between
clusters. Figure 8 shows the kernel density estimation curves
of three attributes, pax_fcny, pax_tax, recent_gap_day. On
the whole, these curves in each cluster are not completely
coincident, and there are significant differences, which show

that the data distribution of each cluster is different. ,is
conclusion is consistent with the expectation of cluster
analysis, that is, the samples between clusters are dissimilar
as much as possible. From a single attribute point of view,
the discrimination of pax_fcny attribute is the most sig-
nificant, with different mean point, peak point, and data
span. Followed by pax_tax attribute. ,e third one is
recent_gap_day attribute. Its mean and span are very
similar, but the peak point is still different. ,e difference of
peak points indicates that there are differences in the

Table 10: ,e airline seat selection dataset clustering result.

Cluster Size Payment No-
payment

Payment ratio
(%)

adr
(%)

C0 2580 185 2395 7.17 13.99
C1 1771 127 1644 7.17 13.99
C2 1139 30 1109 2.63 58.19
C3 1256 107 1149 8.52 35.45
C4 1596 43 1553 2.69 57.23
C5 1582 112 1470 7.08 12.56
C6 761 22 739 2.89 54.05
C7 1935 166 1769 8.58 36.41
C8 1930 140 1790 7.23 14.94
C9 1623 67 1556 4.13 34.34
C10 2023 176 1847 8.70 38.31
C11 695 21 674 3.02 51.99
C12 1438 58 1380 4.03 35.93
C13 379 8 371 2.11 66.45
C14 909 67 842 7.37 17.17
C15 1815 146 1669 8.04 27.82

6000

5000

4000

SS
E

10 20
cluster number

30

Figure 7: Silhouette coefficient of the k-means2o algorithm on
passenger seat selection dataset.

Table 9: ,e number of core and noncore subsets elements
|Score|, |Snoncore| in k-means2o clustering.

Dataset |Score| |Snoncore| Dataset |Score| |Snoncore|

Breast-cancer 398 171 Banknote 1280 92
Bupa 280 65 Compound 399 0
Ct 164 57 Hayes-roth 102 30
Iris 146 4 Libras 356 4
Parkinsons 148 47 Penbased 10482 510
Vowel 960 30 waveform21 4740 260
Waveform40 4116 884 Wdbc 398 171
Wine 161 17
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concentration of data distribution in the cluster. ,e larger
the peak value, more points are distributed near the mean
value.

Table 10 discusses the k-means2o algorithm clustering
results of the airline seat selection dataset from the simi-
larities within clusters and dissimilarities between the
clusters. ,e clustering results will be a good reference basis
for customer grouping. Air passenger grouping will enable
the decision-makers to more accurately find the audience of
the personalized recommendation service, such as payment
for airline seat selection. ,e dataset shows the label of
payment for airline seat selection. ,e adr value of each
cluster is greater than 12%, which is significantly different
from the payout rate of the entire dataset of 6.29%. ,e
cluster with the largest adr value is C13, reaching 66.45%,
and the one with the smallest adr value is c5, reaching
12.56%.,ese results show that passenger payment behavior
within clusters is more agglomerated compared to the entire
dataset. Since the payment rate of C13 is 2.11%, it is a reverse
difference. In other words, the adr � 66.45% indicates that
passengers in C13 are extremely unwilling to pay for seat
selection, and the willingness to pay is significantly lower
than the overall level. In 9 of the 16 clusters, the ratio of
paying for airline seat selection exceeds 5%. According to the
precise recommendation or personalized marketing strat-
egy, enterprises should pay more attention to the passengers
in these nine clusters, and their marketing is more likely to
succeed. Compared with the passengers in other clusters, the
ones in these clusters will be more willing to accept such
recommendations and enhance their stickiness. On de-
signing a recommendation system, this clustering result will
become a good auxiliary prior information.

6. Conclusion

In this paper, two optimization methods for k-means are
initial center points selection and phased assignment were
proposed, and then the improved k-means algorithm,
k-means2o, were proposed. In contrast to the previously
introduced algorithms, k-means ++, K-MC2, and AFK-MC2,
the new initial center points selection optimization redefines

the first center point selection strategy and the subsequent
center point incremental strategy. ,e phased assignment
optimization adopted the Tukey’s rule to divide dataset into
core and noncore sets, then two assignment strategies were
proposed corresponding to the core and noncore sets, re-
spectively.,ese two optimizationmethods complement each
other to form combinatorial optimization. ,e experimental
results on 15 real-world and 10 synthetic datasets show that
the k-means2o outperforms its main competitor k-means ++,
and under the same setting conditions, namely using the
default parameters, the clustering performance of k-means2o
is better than affinity propagation, mean shift, and DBSCAN.

,e improved k-means algorithm, k-means2o, is ap-
plied to analyze the airline seat selection dataset. Com-
bined with the data label of paying for seat selection, the
clustering results realize customer grouping, and find
suitable audience group for the recommendation of seat
selection services. ,rough the analysis of the newly
defined absolute deviation rate adr index, the appropriate
groups for service recommendation are found, and the
groups that are not suitable for recommendation are
distinguished. ,erefore, the airline enterprises can use
limited resources to promote the groups with high-pay-
ment willingness, improve the success rate, and avoid
promoting seat selection services to the groups with low-
payment willingness which not only wastes resources but
also causes passengers’ disgust.

After a lot of experimental tests, the k-means2o algo-
rithm, like other algorithms, cannot be adapted to all fields
and situations, such as high-dimensional sparse data. If the
data are a huge number of attributes or higher dimensions, it
will easily lead to fewer samples in Score, and in extreme
cases, it may be less than the number of clusters. ,e Olivetti
Face image data with 112∗ 92 � 10304 dimension have been
tested and found that |Score|< 40, that is, the number of
samples in the core set is less than the number of clusters;
therefore, the clustering fails. Due to the division of the core
and noncore sets, the k-means2o algorithm is not suitable
for huge number of attributes or higher dimensions. We will
continue to study this problem and hope to solve this
problem in the future.
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tation using mumford–shah model,” Journal of Electronic
Imaging, vol. 30, no. 06, Article ID 063029, 2021.

[9] A. R. Khan, S. Khan, M. Harouni, R. Abbasi, S. Iqbal, and
Z. Mehmood, “Brain tumor segmentation using k-means
clustering and deep learning with synthetic data augmenta-
tion for classification,” Microscopy Research and Technique,
vol. 84, no. 7, pp. 1389–1399, 2021.

[10] A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Student
engagement level in an e-learning environment: clustering
using k-means,” American Journal of Distance Education,
vol. 34, no. 2, pp. 137–156, 2020.

[11] X. Qian, M. Di Renzo, and A. Eckford, “K-means clustering-
aided non-coherent detection for molecular communica-
tions,” IEEE Transactions on Communications, vol. 69, no. 8,
pp. 5456–5470, 2021.

[12] Z. Xu, D. Shen, T. Nie, Y. Kou, N. Yin, and X. Han, “A cluster-
based oversampling algorithm combining smote and k-means
for imbalanced medical data,” Information Sciences, vol. 572,
pp. 574–589, 2021.

[13] H. Liu, J. Wu, T. Liu, D. Tao, and Y. Fu, “Spectral ensemble
clustering via weighted k-means: theoretical and practical

evidence,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 29, no. 5, pp. 1129–1143, 2017.

[14] A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana,
“Implementation of k-means algorithm for clustering corn
planting feasibility area in south lampung regency,” In Journal
of Physics: Conference Series, vol. 1751, Article ID 012038,
2021.

[15] Z.-S. Chen, X. Zhang,W. Pedrycz, X.-J. Wang, K.-S. Chin, and
L. Mart́ınez, “K-means clustering for the aggregation of
HFLTS possibility distributions: N-two-stage algorithmic
paradigm,” Knowledge-Based Systems, vol. 227, Article ID
107230, 2021.
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