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ABSTRACT The P1-like phage plasmid (PP) has been widely used as a molecular biol-
ogy tool, but its role as an active accessory cargo element is not fully understood. In
this study, we provide insights into the structural features and gene content similarities
of 77 P1-like PPs in the RefSeq database. We also describe a P1-like PP carrying a
blaCTX-M-55 gene, JL22, which was isolated from a clinical strain of Escherichia coli from
a duck farm. P1-like PPs were very similar and conserved based on gene content simi-
larities, with only eight highly variable regions. Importantly, two kinds of replicon
types, namely, IncY and p0111, were identified and can be used to specifically identify
the P1-like phage. JL22 is similar to P1, acquiring an important foreign DNA fragment
with two obvious features, namely, the plasmid replication gene repA9 (p0111) replac-
ing the gene repA (IncY) and a 4,200-bp fragment mobilized by IS1380 and IS5 and
containing a blaCTX-M-55 gene and a trpB gene encoding tryptophan synthase (indole
salvaging). The JL22 phage could be induced but had no lytic capacities. However, a
lysogenic recipient and intact structure of JL22 virions were observed, showing that
the extended-spectrum b-lactamase blaCTX-M-55 gene was successfully transferred.
Overall, conserved genes can be a good complement to improve the identification ef-
ficiency and accuracy in future screening for P1-like PPs. Moreover, the highly con-
served structures may be important for their prevalence and dissemination.

IMPORTANCE As a PP, P1 DNA exists as a low-copy-number plasmid and replicates
autonomously with a lysogenization style. This unique mode of P1-like elements probably
indicates a stable contribution to antibiotic resistance. After analyzing these elements, we
show that P1-like PPs are very similar and conserved, with only eight highly variable
regions. Moreover, we observed the occurrence of replicon IncY and p0111 only in the
P1-like PP community, implying that these conserved regions, coupled with IncY and
p0111, can be an important complement in future screening of P1-like PPs. Identification
and characterization of JL22 confirmed our findings that major changes were located in
variable regions, including the first detection of blaCTX-M-55 in such a mobile genetic ele-
ment. This suggests that these variable regions may facilitate foreign DNA mobilization.
This study features a comprehensive genetic analysis of P1-like PPs, providing new
insights into the dissemination mechanisms of antibiotic resistance through P1 PPs.
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Antimicrobials, including antibiotics, have been developed and applied in impor-
tant medical procedures and have saved millions of lives since their discovery in

1920s (1). Unfortunately, antimicrobial resistance among clinically important priority
pathogens is increasing and has become a serious public health problem worldwide,
thereby threatening the efficacy of clinical treatments. Enterobacteriaceae strains resist-
ant to third-generation cephalosporins are recognized among the critical priority
pathogens by the WHO (2). The wide and inappropriate use of antimicrobials has exa-
cerbated the development of resistance (3). Acquired resistance to cephalosporins is
mediated principally by extended-spectrum b-lactamases (ESBLs), the most prevalent
of which are the ESBLs of the CTX-M, TEM, and SHV families (4). Evidence has shown
that plasmid-located blaCTX-M-, blaTEM-, blaSHV-, and blaOXA-type genes are ubiquitous (5).

Antimicrobial resistance genes (ARGs) can be mobilized by horizontal gene transfer
(HGT) from one bacterium into another recipient in three ways, i.e., conjugation (cell to
cell), transduction (phage mediated), or transformation (direct absorption of naked
DNA from dead cells) (6). However, the dissemination of ARGs mediated by transduc-
tion of phages (bacteriophages) has been underestimated. Phages are the most abun-
dant (;1030 phages and ;1025 infections/s) biological entities on Earth (7, 8). The host
range of transducing phages can also be broad, and the transduction of ARGs is likely
to be common worldwide, allowing them to infect different bacterial species and to
spread ARGs in natural environments (9).

Phages can promote transfer of ARGs, among which ESBL family genes are widely
found, via transduction. Colomer-Lluch and colleagues revealed the existence of two
ESBL-encoding genes (blaTEM and blaCTX-M) in phage DNA from animal feces in slaugh-
terhouse and water samples from sewage and a river (10–13). ESBL-coding genes have
also been recovered worldwide from different samples, i.e., blaTEM, blaCTX-M, and blaSHV
in hospital effluents (14); blaOXA-2 in a chicken farm and its surrounding water, as well
as soils and sediments, in India (15); blaTEM and blaCTX-M-1 in three large-scale pig farms
(16); blaTEM, blaCTX-M-1, blaCTX-M-9, blaOXA-48, blaTEM, blaCTX-M-1, blaCTX-M-9, blaOXA-48, and blaVIM
in fresh-cut vegetables and soils (17); blaTEM, blaCTX-M, blaPSE, and blaCMY-2 in the Yakima
River (18); and blaCTX-M in 30 different samples of chicken feces (19).

Although studies have explored the abundance and distribution of ESBL genes
from diverse environmental phage metagenomic samples (20), identification of ESBL-
carrying phages and the mechanism of specific dissemination remain largely unclear. A
previous study reported that blaCTX-M-10 linked to phage-related elements can be trans-
ferred from the chromosome to a plasmid via phage transduction (21). Also, a study
showed that staphylococcal phages and pathogenicity islands promoted plasmid evo-
lution (22). These results imply a possible relationship between plasmids and phages
(23). In the following years, several P1-like phages carrying ESBL family genes were suc-
cessively identified and characterized; these include phage RCS47 harboring blaSHV-2
(24) and phage SJ46 harboring blaCTX-M-27 (25). On the other hand, evidence indicates
that phage plasmids (PPs) have an extremely wide distribution in bacterial populations
(26) and, in that regard, P1-like PPs are also widely present in Enterobacteriaceae strains
(24). Phage P1 (GenBank accession number NC_005856), a temperate phage, induces
the lytic or lysogenic pathway upon infecting Escherichia coli and several other enteric
bacteria. Usually, P1 DNA exists as a low-copy-number plasmid and replicates autono-
mously with a lysogenization style independent of multiplicity of infection (MOI) (27).
This unique characteristic ensures stable lysogenic ability even at low concentrations
of P1 phage and may contribute to facilitating the dissemination of ESBL-family genes.

In this study, in order to further explore the similarities of P1-like elements, 77 P1-
like PP genome sequences were selected to gain insights into the abundance and
structural features of P1-like phages, as well as similarities in their gene content among
different groups, which will provide a new understanding of their contribution in
spreading antimicrobial resistance. Furthermore, a P1-like phage carrying blaCTX-M-55,
JL22, which was isolated from an E. coli strain from a duck, was identified and charac-
terized to clarify its role in the dissemination of blaCTX-M-55.
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RESULTS
Bacterial identification. Antimicrobial susceptibility testing showed that 67 of 103

E. coli isolates displayed ceftiofur MICs of $256 mg/mL, suggesting the presence of a
putative ESBL. These isolates were further analyzed for P1-like PP identification.

Genetic composition of P1-like PPs. According to a recent study (26), 780 PPs were di-
vided into three communities, namely, a well-related community, a diverse community, and a
small community. In the well-related community, P1-like PPs were the most frequent, account-
ing for 9.87% of all PPs (77/780 PPs), and most belonged to subgroup 1 (55/77 PPs) (Fig. 1A
and B). The BLAST results between these 77 phages and P1 showed significant differences
among P1-like subgroup 1, P1-like subgroup 2, and the P1-like not assigned (NA) group. P1-
like subgroup 1 matched about 80.89% of the length of P1 (except for E. coli strain AR_0119
plasmid unitig 3 [similar to group 2]), while the value for group 2 was only 6.39%, and the
only sequence that could be retrieved for the NA group (Shigella flexneri 1a strain 0228 plas-
mid) matched 0.81% of the length of P1 (Fig. 1D); this suggests that the remaining 54 p1-like
PPs in P1-like subgroup 1 are more representative of the P1 community. Although these three
groups have a low level of similarity in genome length (Fig. 1C), several shared genes were
identified (Fig. 1E), such as the cin-Sv-U-S cluster (encoding site-specific recombinase and tail
fiber) and the humD-phd-doc cluster (encoding SOS response protein and a toxin-antitoxin
[TA] system protein) in subgroup 2 and the insA-insB cluster (IS1) in the NA group.

P1-like PP sequences display highly variable and conserved properties. Analysis
of the remaining 54 P1-like PPs and the alignment results among all 117 genes of the
P1 genome and the 54 P1-like PPs showed that the 54 P1-like PPs are very similar and
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conserved. However, eight highly variable regions outside the conserved regions were
also detected, as shown in Fig. 2, i.e., region 1 (res-mod [restriction-modification pro-
tein]) (Fig. 2A), region 2 (isaA, insB, insA, and isaB [IS1-associated genes]) (Fig. 2B),
region 3 (lydC, cin, Sv9, U9, U, and S [encoding holing and tail-fiber related protein])
(Fig. 2C), region 4 (simC, simB, and simA [superimmunity-linked function]) (Fig. 2D),
region 5 (rlfA, rlfB, and pmgF [possibly replication-linked function]) (Fig. 2E), region 6
(repA and upfA [plasmid replication]) (Fig. 2F), region 7 (tciA, tciB, and tciC [tellurite or
colicin resistance or inhibition of cell division]) (Fig. 2G), and region 8 (pmgT, pmgU,
pmgV, upfM, upfN, upfO, hot, lxr, and humD [putative morphogenetic function or SOS
putative morphogenetic function]) (Fig. 2H).

Among the conserved genetic regions, 21 extremely conserved genes (pmgA, tub,
pmgC, kilA, bplB, pmgG, gp22, gp23, mlp, ppfA, upfC, uhr, gp7, gp25, gp26, pmgR, pmgS,
phd, doc, pdcB, and pacA) were also observed to be evenly distributed in different sites
of the P1 genome. The length of these genes matched 100% of the corresponding P1
gene. The other genes in the conserved region also showed high levels of stability
regardless of harboring several base substitutions on deletions, including P1 lytic repli-
cation gene repL. The detection of these genes, instead of repL, could improve the
future identification of P1-like subgroup 1 PPs. It is worth noting that genes phd and
doc were excluded because they are also the core genetic part of P1-like subgroup 1.

P1-like PPs carrying the blaCTX-M-55 gene. Based on the conserved gene repertoire,
nine genes, i.e., gp22, gp23, gp25, pmgS, pdcB, ppp, hdf, pacA, and repL, were selected
to identify potential P1-like PPs from the 67 E. coli strains carrying putatively ESBL-cod-
ing genes. Among them, 4 isolates yielded positive PCR results. However, combined
Illumina HiSeq 2500 and Oxford Nanopore Technologies MinION sequencing showed
that only one E. coli strain, named strain 22, carried the ESBL gene-bearing P1-like PP
JL22. The complete sequence of JL22 is 99,605 bp long and harbors 124 open reading
frames (ORFs), accounting for 90% of its genome. For better visualization of JL22, the
genome was represented as a circle with the site-specific recombination site lox
assigned to the zero position, because P1 and similar phages lysogenize their hosts as
autonomous plasmid-like elements. The GC content of JL22 is 47.48%. We found that
88.2% of JL22 showed 95.7% nucleotide identity to P1 phage.

JL22 has seven regions showing major differences in relation to P1 (Fig. 3A). Except for
region 5, the other six regions spanned no more than 5 kb, and all were located in the highly
variable regions of the P1-like PP sequence (Fig. 4). Region 5 shows two main features. First,
the plasmid replication gene repA9 (p0111 plasmid incompatibility group) and an unknown
protein-encoding gene gp57 replacing the gene repA (IncY plasmid incompatibility group).
Two plasmid incompatibility groups were identified among the 55 P1-like subgroup 1 PPs
(including JL22), i.e., IncY (31/55 PPs) and p0111 (24/55 PPs). The phylogenetic analysis results
for the two plasmid replication genes showed that IncY and p01111 had significantly evolu-
tionary differences, whereas each plasmid replication gene sequence highly maintained con-
servation (Fig. 5; also see Table S1 in the supplemental material). Importantly, the distribution
rates of the two replication genes were almost the same. Second, a 4,200-bp DNA sequence
was inserted at nucleotide position 63151 (ORF at positions 62950 to 63342), interrupting a
392-bp gene upfA of unknown function, downstream from a membrane lipoprotein precur-
sor-encoding gene,mlp. This segment contains a blaCTX-M-55 gene surrounded upstream by the
insertion sequences IS1380 and IS5 and downstream by the trpB gene encoding the trypto-
phan synthase (indole salvaging). No other ARGs were detected in JL22 (Fig. 3B and 4).

Absence of lytic capacity and lysogenization of phage JL22. As a PP, blaCTX-M-55-
bearing JL22 might facilitate its horizontal dissemination through lysis-lysogeny path-
ways. We then investigated whether the JL22 phage (i) could be induced, (ii) had lytic
capacities, and (iii) could transfer blaCTX-M-55.

Following mitomycin C induction, we obtained a JL22 suspension containing
blaCTX-M-55 from the natural isolate 22, which also yielded positive PCR results for
gp22, gp23, gp25, pmgS, pdcB, ppp, hdf, pacA, and repL. The PCR assay aimed at
detecting the 16S rRNA gene yielded negative results, ruling out any possible con-
tamination with extracellular bacterial DNA.
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The lytic capacity of JL22 was assessed by spotting the suspensions onto agar over-
lays of E. coli strain MG1655, which is widely used for P1 assays. After 24 h of incuba-
tion at 37°C, the concentrated suspensions of JL22 did not induce a plaque.

We also assessed the ability of JL22 to lysogenize E. coli strain MG1655 and thus to
transfer blaCTX-M-55. Using the lysogenization procedure described above, we obtained
colonies resistant to third-generation cephalosporins, and PCR assays indicated the
presence of nine JL22 genes. To better understand the morphology of JL22, we pre-
pared phage suspensions from E. coli strain 22 and examined them by electron micros-
copy. They showed the presence of icosahedral DNA-containing heads of about 75 nm
and structures resembling tail tubes (Fig. 6).

DISCUSSION

The presence and distribution of PPs have been fairly well investigated using genomic
analyses (26, 28). However, although phage P1 was discovered over 50 years (29, 30),
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research efforts have mainly focused on its properties as a molecular biology tool (31), and
its role as an active element of the accessory cargo genome with dual properties of plas-
mid and phage has not been fully understood. Therefore, in-depth insights into the abun-
dance and structural features of P1-like elements, as well as their gene content similarities
among different groups, will provide a new understanding of their contribution in spread-
ing antimicrobial resistance. In this study, we determined the underlying relationship and
genetic composition of 77 P1-like PPs and analyzed the relationship of the three sub-
groups. A P1-like PP carrying blaCTX-M-55, JL22, which was isolated from E. coli in a duck farm
in China, was identified and characterized.

In a recent study, Pfeifer et al. identified 780 PPs screened from 11,827 plasmids
and 2,502 phages retrieved from the NCBI nonredundant RefSeq database, accounting
for ;7% of the sequenced plasmids and ;5% of the sequenced phages (26). Further
comparison of the 77 P1-like PPs to the reference genome (phage P1) indicated that
three regions (cin-Sv9-U9-U-S, humD-phd-doc, and insA-insB) were similar to the P1
genes, and they are also located in highly variable regions of P1.

Evidence indicates that U (U and U’), S (Sv and Sv9), and R operons determine host speci-
ficity (32), and their high variability might imply a wider host spectrum. For humD-phd-doc
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clusters, the humD gene is a LexA-regulated gene of the SOS response (33), and the phd-
doc operon functions as a TA system (34). For the ins (insA-insB) operon, the two adjacent
genes are required for IS1 transposition and IS1-mediated plasmid cointegration (35).
Evidence indicates that IS1 can mediate the transfer of ARGs (36), and the region upstream
of insA seems to be an integration hot spot. Billard-Pomares et al. (24) reported that the
presence of blaSHV-2 is involved in recombination at this position. In summary, these results
suggested that the three matched gene regions (cin-Sv9-U’-U-S, humD-phd-doc, and insA-
insB) might play a key role in P1 community maintenance and stabilization. Nevertheless, it
was still worth noting that the highly conserved genome of P1-like subgroup 1 is more
representative of the P1 community, and the eight highly variable regions probably are
the hot spot in ARGs mobilization.

Evidence shows that the variable regions of P1-like PPs were associated with the low
G1C content, including res-mod, isaA-IS1-isaB, simABC, rlfAB, and hox-lxr regions. Also,
inspection of other P1-like PPs described in the literature showed that these regions also
tend to be shared among different P1-like elements isolated from different hosts (37), sug-
gesting that the GC content probably has an important effect on foreign gene mobiliza-
tion regardless of the host spectrum. Surprisingly, the tciABC operon does not exhibit low
G1C content; furthermore, nearly one-half of the tested P1 subgroup 1 PPs lost this op-
eron sequence. The predicted products of P1 tciA showed that they have significant simi-
larities to the gene terB. The terB gene is an internal gene of multigenic ter operons, which
have been implicated in tellurite resistance, phage inhibition, and pathogenicity; they are
usually located on prophage-like elements of IncHI2 plasmids or the chromosome (38, 39).
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FIG 5 Phylogenetic analysis of plasmid replication genes (IncY and p0111) based on sequences of the 54 representative P1-like PPs. The upper right area
represents the phylogeny of p0111, and the lower left area represents the phylogeny of IncY.
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Whether the high variability of tciABC operons is related to phage inhibition remains
unclear.

Apart from the eight highly variable genetic regions, 21 extremely conserved genes
with 100% identity to genes in the P1 genome (pmgA, tub, pmgC, kilA, bplB, pmgG, gp22,
gp23, mlp, ppfA, upfC, uhr, gp7, gp25, gp26, pmgR, pmgS, phd, doc, pdcB, and pacA) were
found, indicating that these genes may be indispensable for P1-like PPs, such as the phd-
doc operon encoding a TA system. For the other genes, most of which were identified as
unknown or coding for putative proteins, additional information is needed to validate the
role of these putative functional genes in the maintenance and stabilization of P1-like PPs.
Moreover, the identification of repL among the 54 P1-like PPs showed that repL was
located in the conserved region although it did not exhibit 100% identity to P1 repL (iden-
tity ranging from 97.3% to 99.41%), and the result indirectly confirmed the previous obser-
vations that the lytic replication gene repL could be used as a specific PCR target to detect
the presence of P1-like phages.

On the other hand, our results showed that there are two different types of plasmid
replication genes in P1-like PPs, belonging to IncY and p0111. Moreover, phylogenetic
analysis showed that the two genes had a significant evolutionary difference and inter-
group gene sequences remained highly conserved, indicating that the two replicon
types can also be used to specifically identify the P1-like PPs (40–43). With the ease
and accessibility of whole-genome sequencing, more plasmid sequences can be easily
obtained. Also, our results can provide a good supplement to accurately and efficiently
screen P1-like PPs with searches for the replicon gene (IncY or p0111) and PCR verifica-
tion of the nine highly conserved genes.

Although ESBL genes, such as blaCTX-M-27 (25, 44), blaCTX-M-15 (37, 45, 46), blaKPC-2 (47),
and blaSHV-2 (24), have been found in different P1-like PPs, the present study is the first to
report blaCTX-M-55-positive P1-like PPs. According to recent studies, the gene blaCTX-M-55

was found to be mainly located on IncFII-type plasmids and also was sporadically
detected in IncN, IncI1, IncFIC, IncFIB, IncHI2, and IncI2 (48–50) within a homologous
region of IS26-blaTEM-orf477-blaCTX-M-55-ISEcp1-IS26. Hence, ISEcp1-IS26 was probably
involved in the spread of blaCTX-M-55 (51), whereas no IS26- or ISEcp1-related insertion

FIG 6 Electron microscopy of phage JL22, showing the presence of an icosahedral DNA-containing
head of approximately 75 nm and a structure resembling the tail tube.
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sequence was detected in JL22, except for the insertion sequences IS1380 and IS5. A
study stated that blaCTX-M-32 was located in the chromosome, upstream of IS5-like and
IS1380-like sequences, in a bovine cecal sample-derived E. coli strain; also, a blaCTX-M-2

gene was in the p0111 plasmid, flanked by orf3/qacED1 and IS91/ISCR1 (52). Considering
the cooccurrence of IS5-like and IS1380-like sequences and p0111 plasmid in a single
strain, we then speculated that the blaCTX-M-55 location in JL22, a p0111 plasmid, might
have a closer relationship with chromosomal sequences or even be derived from
chromosomes.

As a PP, phage JL22 might spread blaCTX-M-55 horizontally through lysis-lysogeny path-
ways (53). Following mitomycin C induction, JL22 was successfully induced but had no lytic
capacities, as detected by spotting assays. Despite the lack of lytic ability, JL22 had the abil-
ity to lysogenize MG1655 and thus to transfer blaCTX-M-55. Electron microscopy of JL22
showed the presence of icosahedral DNA-containing heads of about 75 nm and neck, tail,
and baseplate structures, implying that JL22 retains its intact structure, compared with the
original structure of P1 (54, 55). Before lysogenization assays were performed, the analysis
of the JL22 genome revealed that two structural gene regions were replaced by other
functional protein genes, i.e., region 3 and region 6.

For region 3, the U operon and part of the S operon were replaced by sacF and Tfa
genes, respectively. As stated previously, U, S, and R operons are involved in tail fiber
production and host specificity; in this regard, this is probably a substitution by a ho-
mologous gene since gene tfa also encoded a tail fiber assembly protein. On the other
hand, although JL22 and P1 preserved the lysogenic ability, whether they suffered any
changes in their host range remain unclear. Interestingly, among the changed regions,
a gene encoding serine acetyltransferase was identified. Serine acetyltransferase, an
enzyme involved in catalyzing the first step of cysteine biosynthesis, is essential for the
survival of persistent microbes and therefore is usually recognized as a target for iden-
tifying potential inhibitors (56). However, the reason for the presence of a serine acetyl-
transferase gene in the P1-like PP JL22 is still unknown. In region 6, the pmgT gene was
replaced by a series of gene clusters, i.e., gp99-pg100-gp101-adsM-ra22-gp104, most of
which are genes encoding proteins of unknown function. While the replacement of
pmgT did not influence the lysogenic ability, further studies are still required to explore
the potential roles of these genes.

MATERIALS ANDMETHODS
Bacterial isolate and antimicrobial susceptibility. Susceptibility to ceftiofur was assessed for 103

E. coli isolates that had been recovered from healthy ducks in 2020 in China, to screen for putative ESBL
producers. Antimicrobial susceptibility testing was conducted by the broth microdilution method in ac-
cordance with the standards and guidelines described by the Clinical and Laboratory Standards Institute
(CLSI) guidelines (57). Escherichia coli ATCC 25922 was used as the quality control.

Genetic composition of P1-like PPs and target gene selection. Seventy-seven P1-like PPs (see
Table S1 in the supplemental material) were obtained from the NCBI nonredundant RefSeq database
(26). These genome sequences were then aligned with all 117 genes of the P1 reference sequence by
using local BLAST1. Only those genes with E values of #1e 2 5 and identity of $80% were taken into
consideration and normalized against their corresponding P1 reference gene (58). P1-like PPs were effi-
ciently and specifically screened from previously isolated bacteria. Based on the genetic composition an-
alyzed in the previous item, nine genes were selected for further PCR-based assays, namely, repL (phage
lytic replication gene), pmgS (putative morphogenetic function), ppp (serine/threonine protein phospha-
tase gene), pacA (phage DNA-packaging gene), and five other genes of unknown function (pdcB, gp22,
gp23, gp25, and hdf). The PCR procedure consisted of 35 cycles of denaturation at 94°C for 30 s, anneal-
ing for 30 s, and extension at 72°C for 45 s, followed by an additional 10 min of extension at 72°C.
Annealing temperatures are listed in Table S2 in the supplemental material.

Genome extraction. Genomic DNA was extracted using the TIANamp bacterial DNA kit (TianGen,
Beijing, China), following the manufacturer’s instructions. Putative PPs in strain 22 were also extracted
with a plasmid midikit (Qiagen, Germany) following the manufacturer's instructions. The genomic DNA
was first subjected to short-read sequencing (2 � 150 bp) with the Illumina HiSeq 2500 platform.
Genomic and plasmid DNA were then sequenced with the Oxford Nanopore Technologies MinION long-
read platform with the RBK004 barcoding library preparation kit and MinION R9.4.1 flow cells to obtain
the complete sequences, as described previously (59).

High-throughput sequencing and bioinformatic analysis of PP JL22. Genomic DNA short-read
Illumina and long-read Nanopore data were used to perform de novo assembly with the hybrid strategy
as described previously (60). Short-read Illumina raw sequences were assembled using SPAdes (61).
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Multilocus sequence typing (MLST) of strains was performed using the MLST tool (62, 63). The draft
genomes were annotated using Prokka software (64). The Flye long-read assembly tool was used to per-
form de novo assembly of Nanopore long-read MinION sequences of PPs and genomic DNA (65). The
draft assembly of blaCTX-M-55-bearing P1-like PP was analyzed using the BLASTn program against the non-
redundant database. High-quality complete genome sequences were annotated using RAST (http://rast
.nmpdr.org) automatically and manually. Plasmid replicons, insertion sequences, and antimicrobial re-
sistance determinants were determined using online tools (https://cge.cbs.dtu.dk/services). BRIG,
CGView, and Easyfig were used to generate figures for the genetic comparison (66–68).

Induction of PP JL22. E. coli strain 22 was cultured to the exponential growth phase at 37°C in LB.
The bacterial suspension was treated with 2.0 mM mitomycin C and incubated for 2 h at 37°C with shak-
ing. The suspension was then centrifuged at 3,000 � g for 15 min to remove bacterial cell debris and fil-
tered using a 0.22-mm Millex-GP filter (Millipore). The filtrate from the previous step was concentrated
using a 100-kDa Amicon Ultra centrifugal filter unit (Millipore) to a final volume of about 1 mL. The
phage suspensions obtained were stored at 4°C. The suspension containing phage JL22 was also
checked by PCR for the five target genes to confirm the successful induction of JL22.

Lytic capacity of PP JL22. The lytic capacity of JL22 was determined as described previously (24), by
using E. coli strain MG1655. Exponentially grown cells were uniformly distributed in semisolid LB agar
medium and overlaid on top of LB agar; 10-mL aliquots of the pure suspensions containing phage JL22
were then spotted on the surface of the plate. After overnight incubation at 37°C, the occurrence of pla-
ques on the plate was considered to indicate the presence of a lytic phage, and the lack of the latter
indicated possible lysogenization. The suspension was also treated with trypsin for 20 min (250 mg/mL)
at 30°C to rule out the occurrence of colicins affecting strain MG1655.

Lysogenization assay of PP JL22. The phage lysogenization assay was carried out as described by
Goh et al., with minor modifications (69). Briefly, an overnight culture of the recipient strain (rifampicin-
resistant E. coli C600) was mixed with JL22 suspension to achieve an MOI of 10, incubated for 1 h at
37°C, and then centrifuged at 14,000 � g for 30 s. The supernatant was removed, and the cells were
washed in 1 mL of LB broth. Washing was repeated twice, and the cells were resuspended in 150 mL of
LB broth. About 150 mL of the cells was plated on three LB agar plates supplemented with ceftiofur
(256 mg/mL) and rifampicin (200 mg/mL), and the plates were incubated for 48 to 72 h at 37°C. Putative
lysogenic colonies were checked for the presence of the nine target P1 genes by PCR. The recipient bac-
terial concentrations and JL22 concentrations were standardized to 1 � 107 CFU/mL and 1 � 108 PFU/
mL, respectively. A control containing only bacteria and phage buffer was included in each experiment.

Transmission electron microscopy. Electron micrographs of purified JL22 phage particles were
obtained as described below. High-titer phage stocks were concentrated 10-fold by using 100-kDa Amicon
Ultra centrifugal filter units, and 15 mL of phage concentrate was dropped on carbon-coated Formvar-cov-
ered grids for 15 min. The drops were then blotted, and the samples were stained with 2% (wt/vol) phospho-
tungstic acid (pH 7.0) and air dried. The phages were examined with a FEI transmission electron microscope
(Thermo Fisher Scientific, Hillsboro, OR, USA) at an acceleration voltage of 80 kV (70).

Data availability. The blaCTX-M-55-bearing JL22 PP generated in this study was deposited in the NCBI
database. The complete nucleotide sequence of JL22 was deposited in GenBank under the accession
number ON018986.
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