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Abstract

Background: Caenorhabditis elegans nematodes are powerful model organisms, yet quantification of visible
phenotypes is still often labor-intensive, biased, and error-prone. We developed WorMachine, a three-step
MATLAB-based image analysis software that allows (1) automated identification of C. elegans worms, (2)
extraction of morphological features and quantification of fluorescent signals, and (3) machine learning

techniques for high-level analysis.

Results: We examined the power of WorMachine using five separate representative assays: supervised
classification of binary-sex phenotype, scoring continuous-sexual phenotypes, quantifying the effects of two
different RNA interference treatments, and measuring intracellular protein aggregation.

Conclusions: WorMachine is suitable for analysis of a variety of biological questions and provides an accurate
and reproducible analysis tool for measuring diverse phenotypes. It serves as a “quick and easy,” convenient,
high-throughput, and automated solution for nematode research.

Keywords: Caenorhabditis elegans, Machine learning, Deep learning, High-throughput image analysis, Feature
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Background

Caenorhabditis elegans nematodes are powerful genetic
model organisms which are instrumental for research
on a wide range of biological questions. It is relatively
simple to grow C. elegans under tightly regulated en-
vironmental conditions, and since the worm has a
short generation time (3 days) and a large brood size
(+250), large sample sizes and statistical power are
easily obtained. In many cases, however, when pheno-
typic features are examined, the advantage of having
a large sample size comes with great cost, because of
the need to manually analyze the features of interest
in the tested animals. Programs for quantifying C.
elegans’ phenotypes from still images exist, for
example, WormSizer [1], Fiji [2], QuantWorm [3],
and WormToolbox [4]. However, the analysis process
of these programs is not fully automated, and not all

* Correspondence: adamhakim@mail.tau.ac.il; yaelmor@mail.tau.ac.il;
odedrechavi@gmail.com

"Equal contributors

'Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
Full list of author information is available at the end of the article

( BioMed Central

informative phenotypic features can be analyzed simultan-
eously in one package. Moreover, each type of software
answers different specific research requirements.

We created WorMachine as a fast, friendly, and high-
throughput image processing platform. WorMachine
enables automated calculation of many morphological
and Fluorescent features and accessible machine learn-
ing techniques for higher level features-based analysis
(described in detail in the Implementation and Methods
sections), such as classification and phenotype scoring.
WorMachine is entirely MATLAB-based and combines
the capabilities of different programs into one software
package; the user-friendly interface was designed to suit
investigators with no background in MATLAB, image
processing, or machine learning, and it requires no
additional plugins or installations. WorMachine is not
limited to any specific image format, resolution, acquisi-
tion software, or microscope.

Implementation
WorMachine’s workflow includes three sequential pro-
grams: Image Processor, Feature Extractor, and Machine
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Fig. 1 WorMachine workflow. The software includes three sequential programs: an Image Processor, a Feature Extractor, and a Machine Learner

Learner (Fig. 1). WorMachine’s codes, demonstration
video, and a sample Tag Image File Format (TIFF) image
with which to try the program are accessible through
links supplied in WorMachine's manual, available Add-
itional file 1.

The Image Processor uses still bright-field (BF) im-
ages of worm plates as input (acquired using any
typical image acquisition microscope). Fluorescent
images can similarly be analyzed together with
overlapping BF acquisitions. The image acquisition
procedures and parameters which enabled optimal
processing of images in our hands are detailed in
the methods section. Identifying real worms from
other elements is normally a painstaking stage that
delays image analysis. The Image Processor of Wor-
Machine binarizes, identifies, and crops individual
worms from the original image automatically.

The cropped worm masks are then loaded to the
Feature Extractor, where the worms’ morphological
and fluorescent features are analyzed individually.
During this stage of the analysis, potentially faulty
and damaged worm images are flagged by a deep
learning network designed particularly for this task
and made available for the investigator’s review. The
Feature Extractor also enables tagging different worms
with labels according to the user’s needs, such as
assigning worms to different conditions or groups.
For example, the worms’ sex can be labeled, and this
information can be used for creating a training data-
set for later classification.

Finally, the Machine Learner builds on the ob-
tained features and labels to conduct binary classifi-
cation, using a support vector machine (SVM), or
visualization and scoring of high-dimensional data
and dimensionality reduction using principal compo-
nent analysis (PCA) or t-distributed stochastic neigh-
bor embedding (¢-SNE) [5, 6].

Image Processor

WorMachine is best suited to handle TIFF images
with one or multiple channels, which can have a
maximum size of about 1 GB, depending on the
memory of the user’s computer. However, it also
supports a wide range of additional formats used by
biologists, as it incorporates the Bio-Formats Library
[7] for image reading. Imported images are automat-
ically grayscaled and contrast-adjusted to accentuate
the differences between worms and the background
and accordingly to improve the detection of nema-
todes. A representative input TIFF image with
multiple worms before and after grayscaling is shown
in Additional file 2: Figure S1. The program gener-
ates a binary mask based on the imported image,
using adaptive local thresholding [8], and this mask
is then “cleaned” and segmented using MATLAB’s
own Image Processing Toolbox (for details, see
methods). Individual worms within a likely size are
automatically identified, smoothed, filled, and
cleaned, using standard image processing procedures
included in MATLAB’s Image Processing Toolbox.
All individual worm images are numbered and saved
to a folder based on their respective image channel
(BF, Fluorescence, Masks, etc.). This procedure may
be applied automatically on multiple images, using
the “Batch Analysis” option (see manual and demo
movie link in Additional file 1).

Feature Extractor

Once individual worm masks are imported into this pro-
gram, the analysis may be performed on all channels in
parallel. All morphological and Fluorescent measure-
ments currently available in WorMachine are detailed in
Table 1, and each extraction technique is detailed in the
methods section. After extraction, objects which deviate
in area size, length, or skeleton disfigurement are flagged
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Table 1 Morphological and fluorescent features and their
calculation methods

Feature Calculation

Area Number of pixels in the worm's area X pixel
height x pixel width

Length Number of pixels in the worm's skeleton x pixel
height

Thickness Area/length

Midwidth Number of pixels in the worm's center width x
pixel height

Head and tail Diameter at thickest section 10% from edge

i X Diameter at slimmest section 10~20% from edge
diameter ratios

Head Bright-Field Mean brightness of a polygon within the worm's

head

Tail Bright-Field Mean brightness of a polygon within the worm's

tail
Peaks count 2d local maximum of fluoresecent intensities

Mean and STD of
peaks

Average and standard deviation of peak
intensities

Mean worm fluorescence x worm area — mean
background fluorescence x worm area

Corrected Total
Worm Fluoresence
(CTWF)

Raw Integrated
Density (RID)

Sum of worm fluorescence in its area — mean
background fluorescence x worm area

for manual inspection, together with images identified as
“noise” by the deep learning network. Thus, the user
may further clean and refine her database. The propor-
tion of worms excluded by this step is detailed in Add-
itional file 3: Table S1.

Machine Learner

At this stage, data extracted from the previous stages can be
analyzed with different Machine Learner techniques. First,
users may visually review and select features relevant to their
analysis. Next, the user can choose between two techniques:
(1) SVM for binary classification based on supplied or user-
generated training data or (2) high-dimensionality
visualization and scoring of complex phenotypes based on
various features using PCA or #-SNE. The algorithms and
their use are detailed in the methods section, and examples
for different applications are provided in the Results section.

Results

We examined WorMachine’s ability to facilitate analyses
of multiple different phenotypes. First, we describe the
use of the software for classification of worm popula-
tions based on binary-sex phenotypes (males or her-
maphrodites). Then we demonstrate, using a mutant
that displays a continuous-sexual phenotype, that Wor-
Machine can accurately create a common scale of worm
masculinization. Next, we show how the software can be
used to quantify RNA interference (RNAi)-induced gene
silencing, protein aggregation, and puncta distribution.
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Binary classification of the worms’ sex

C. elegans nematodes have two sexes - the majority of
the worms are self-fertilizing XX hermaphrodites, and
a small minority (0.1-0.2%) are X0 males [9].
WorMachine can be used to calculate in a high-
throughput and precise manner the sex ratios in dif-
ferent strains and conditions. To distinguish between
the sexes, WorMachine uses morphological and
brightness features that differentiate between her-
maphrodites and males and, also, when fluorescent
reporters are available, sex-specific expression pat-
terns. The mutant worms that we used here (him-
5(el1467); zdlsl3 [tph-1p:GFP] IV]) segregate many
males and express green fluorescent protein (GFP) in
the serotonergic neurons. Mutations in kim-5 increase
the frequency of XO males (to about 30%) by elevat-
ing the frequency of X chromosome nondisjunction
[10]. The tphlp::GFP transgene allows one to distin-
guish the worms’ sex as it drives GFP expression in
male-specific and hermaphrodite-specific neurons: the
hermaphrodite-specific neuron (HSN), the males’
ventral cord motor neurons (CPs), and some tail-
specific neurons [11, 12]. We classified worms based
on morphological, brightness, and fluorescent features
(Additional file 4: Figure S2) and reached 98% classifi-
cation accuracy when we trained on all features using
1800 worms. Figure 2 displays the true positive rates
of the machine learning program, based on training
sets of different sizes (30 to 2000 worms), with and
without taking advantage of the sex-specific Fluores-
cent pattern. For each size of the training set on
which the model was trained, the true positive rates
presented were based on predictions the model per-
formed on the same held-out test set; the test set was
composed of 200 worms, 100 males and 100 her-
maphrodites, randomly selected and excluded from
the entire dataset in advance of any training.

Quantifying a continuous-sex phenotype

Continuous morphological phenotypes are common, and
due to their complex nature, their quantification is often
challenging. We used the CB5362 strain, which is mutated
in the sex determination genes xol-1 and tra-2. These
worms display an intersex phenotype which depends on
temperature [13]. We used WorMachine to determine the
sexual phenotype (= degree of masculinization) of each
worm, based on multiple features: the shape of the tail
(angle evaluation) [14], the presence or absence of eggs in
the gonad (egg-bearing worms have larger midwidth), the
worm's length and area (males are smaller than hermaph-
rodites), and the head and tail brightness (males have dar-
ker tails in BF) (Additional file 4: Figure S2). We grew
CB5362 worms at three different temperatures (15, 20,
and 25 °C) and imaged them at the first day of adulthood.
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Fig. 2 Success rates in classifying the worms' sex as a function of the number of worms used for training. Shown are results when the fluorescence of a
reporter expressed in sex-specific neurons was taken into account (dark blue, dots) and when only morphological and brightness features were considered
(light blue, triangles). The classification is based on these morphological features: head BF, tail BF, area, length, midwidth, thickness, tail ratio, and on the
following fluorescent features: peak number (count), corrected total worm fluorescence (CTWF), and mean peak intensity. The training set included
30-2000 worms, while the test set included 200 worms, 100 of each sex, randomly selected and excluded in advance

The program determined the degree of masculinization of
each worm, ranging from male to hermaphrodite, using
dimensionality reduction techniques. PCA yielded scores
that were concurrent with previous literature, showing
higher masculinity scores for higher temperatures (Fig. 3,
Additional file 5: Figure S3). t-SNE analysis yielded similar
results (Additional file 6: Figure S4). In order to verify that
the spread of the first PCA component, as illustrated in
Fig. 3, is indeed a measure of masculinization degree, we
added worms with binary-sex phenotype to the PCA. The
figure shows that the higher the temperature in which the
continuous-sex phenotype worms were grown, the more
they resemble males from the binary-sex phenotype strain
in the first principal component.

Quantifying RNAi-induced phenotypes

We used WorMachine to quantify the RNAi response of
worms fed with anti-dpy-11 or anti-mCherry double-
stranded RNA (dsRNA) expressing bacteria.

Anti-dpy-11 RNAi

Knockdown of dpy-11 results in a “Dumpy” phenotype
(reduced length) [15]. In addition to using wild-type
worms (N2), we also examined the RNAIi response in rrf-
3(pk1426) mutants, which are hypersensitive to RNAi
(they exhibit an enhanced RNAI, or Eri, phenotype) [16].
As can be seen in Fig. 4a, WorMachine successfully cap-
tures the stronger response to RNAi of rrf-3 mutants, in
comparison to N2 wild types (p < 107%).
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CB5362 20°C
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Fig. 3 A PCA visualizing the effect of temperature on the sexual phenotype. CB5362 worms were grown in different temperatures and imaged during the first
day of adulthood. The PCA was calculated on scaled data and was based on the statistically significant and theoretically justified features that distinguish
between the sexes (eg, area, length, midwidth, thickness, tail ratio, head BF, and tail BF, as shown in Additional file 2: Figure S1A). Circular data points represent
individual worms of the CB5363 strain displaying a temperature-dependent intersex phenotype. Triangular data points represent individual worms with binary-
sex phenotype (BFF23). Red circles = 15 °C; blue circles = 20 °C; yellow circles = 25 °C. Triangles representing binary-sex phenotype worms: red triangles = males,
yellow triangles = hermaphrodites. Upper panel contains representative worms at each temperature. Scale bar = 100 pm
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Fig. 4 Quantification of RNAi-induced phenotypes. The worms were imaged during the first day of adulthood. The values for each worm were
divided by the mean value of the corresponding control group. Each dot represents an individual worm. Bars represent mean + standard
deviation (****p < 107, **p < 107%, one-way analysis of variance (ANOVA) test with Bonferroni post hoc correction). a Quantification of the Dumpy
phenotype following dpy-11 RNAI treatment. N2 worms (upper panel) or rrf-3 mutants (lower panel) were fed with bacteria expressing an empty
vector control or dsRNA complementary to dpy-11. b Quantification of fluorescence intensity in whole animals. EG7841 worms expressing
mCherry in all somatic cells were fed with bacteria expressing either an empty vector control or dsRNA complementary to mCherry. The RNAi--
producing bacteria were grown to the indicated optical density (O.D.). PO condition: The eggs were laid on RNAi-producing bacteria lawns. F1
condition: The progeny of the RNAi-treated worms that were laid and grown on standard OP50 bacteria
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Anti-mCherry RNAi

We used worms that express mCherry ubiquitously
(EG7841 0xTi302 [eft-3p:mCherry:tbb-2 3UTR + Cbr-
unc-119(+)] [17]. Worms were treated with dsRNA-
expressing bacteria grown to different optical density
(OD) values (to obtain a gradient of silencing efficiencies),
and the corrected total worm fluorescence (CTWF) was
measured. As expected, worms exposed to bacteria grown
to higher OD values showed lower CTWF values which
reflect greater levels of silencing (p <107*) (Fig. 4b). The
differences in CTWF values (silencing levels) that were
automatically measured by WorMachine were comparable
to the differences measured when using Image] on manu-
ally defined worms (Additional file 7: Figure S5).

Quantification of intracellular protein aggregation

Protein aggregation can be toxic and is a hallmark of
many diseases [18]. The Cohen lab (at the Hebrew
University of Jerusalem) studies the cellular mechanisms
of polyglutamine toxicity and agreed to test whether
WorMachine can be useful for quantifying the aggrega-
tion of polyglutamine proteins. Importantly, the analysis
of this phenotype and the data acquisition were done
outside of the Rechavi lab, using a different microscope,
and by non-Rechavi lab members (Amir Levine, from
the Cohen lab). The transgenic AM140 worm strain
expresses a polyglutamine protein (35 repeats) tagged
with the yellow fluorescent protein (polyQ35-YFP) in
body wall muscles [19]. These animals form visible poly-
glutamine puncta that accumulate in an age-dependent
manner. The sizes and quantity of these puncta serve as
a measure for toxic polyglutamine aggregation [19, 20].

The large variability of puncta quantities among worms
in a population and the large differences in puncta sizes
within each individual worm normally require the col-
lection of large datasets to achieve reproducible and
consistent results. WorMachine was able to measure the
number and size distributions of polyQ35-YEP in a high-
throughput manner. The abundance of polyQ35-YFP
puncta increases with age (in accordance with the litera-
ture), while the relative sizes of polyQ35-YFP puncta
decrease (Fig. 5). The differences in the number of
puncta between the different experimental conditions
(different days) that were identified manually were also
identified by WorMachine (Additional file 7: Figure S5).

Discussion and conclusions
WorMachine offers the nematode research community an
easy-to-use, automated, accurate, and reproducible meth-
odology to analyze morphological and fluorescent worm
features from images obtained using standard micro-
scopes. The software is free and has a modular design in
each step that is adaptable to user-specific requirements.
Other useful software programs for analysis of C.
elegans images exist. The most similar existing
software is WormToolbox [4], a module created for
CellProfiler [21], which also enables high-throughput
phenotypic analysis of morphology and fluorescence.
In contrast to WormToolbox, WorMachine is entirely
MATLAB-based, and it was built to provide a quick
and easy alternative, with an interface that less com-
puter literate users can appreciate. In addition,
WormToolbox is adjusted for images of worms sus-
pended in liquid (for example, in 96-well plates) and
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Fig. 5 Quantifying intracellular fluorescent protein aggregation. a Representative images of polyQ35-YFP-expressing animals at days 2, 4, and 6 of
adulthood. BF bright-field illumination. Fluorescent protein aggregations are marked with white arrows. Scale bars = 100 um. b Quantification of
polyQ35-YFP puncta at days 2 (red, n = 64), 4 (blue, n = 37), and 6 (green, n = 42) of adulthood. Each dot represents an individual worm. Bars
represent mean =+ standard deviation (****p < 107, one-way ANOVA test with Bonferroni post hoc correction). ¢ Quantification of the relative
sizes of polyQ35-YFP puncta on days 2 (red), 4 (blue), and 6 (green) of adulthood. Values for mean puncta size per worm as percent of worm size
were log (base e) transformed. Each dot represents an individual worm. Bars represent mean + standard deviation (***p < 0.001, *p < 0.05, one-
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handles lower quantities of worms per image (up to
15 worms per well). Although WormToolbox is very
useful in some contexts, it may be helpful for
researchers to use WorMachine, which captures large
quantities of worms in 60-mm agarose plates and en-
ables extensive batch processing. In fact, our software
is only limited by the image file size (depending on
the user’s computer memory capacity). Importantly,
WorMachine introduces the first, to our knowledge,
neural network that is trained to distinguish worms
from noise. The deep learning neural network imple-
mented in WorMachine recognizes, flags, and omits
non-suitable objects, to ensure a high level of quality
for the users’ generated data.

Further advantages WorMachine offers are the ma-
chine learning algorithms provided in its Machine
Learner section, which can uncover new information
about the data that would be hard to reveal using stand-
ard analysis. For example, scoring the continuous-sex
phenotype based on the program’s output features
provides information on degree of masculinity that is
unattainable through each feature on its own. More
generally, the dimensionality reduction techniques allow
clear visualization of any dataset obtained through
WorMachine for easier interpretation.

There are many more possible applications for
WorMachine in addition to quantification of the

biological features that we analyzed in this paper. Firstly,
the variety of details the software affords enables
researchers to easily examine novel relations between
them, such as the association between fluorescent
markers to morphological features, and determine the
most appropriate and artifact-free measure. In addition,
the modular design of the software allows adaptation of
its algorithms on many experimental datasets. For
example, SVM models can be applied on any binary
phenotype or experimental manipulation to automatic-
ally classify large sets of worms out of a customized lim-
ited training dataset. As for complex continuous
phenotypes, such as developmental stages or various
fluorescent patterns, PCA or ¢-SNE can be applied on
custom datasets to obtain an aggregate continuous
score. We hope that many users will find this software
useful in the near future.

Methods

Preparation of worms for imaging

Worms were synchronized at each generation in one of
two standard ways: (1) mothers were allowed to lay eggs
for a limited span of 24 h, or (2) bleaching (“egg-prep”)
was performed [22]. Adult worms were washed three
times to get eliminate bacterial (OP50) residues. Worms
were left in ~ 100 pL of M9 buffer and paralyzed via the
addition of sodium azide (final concentration of 25—
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50 mM). The paralyzed worms were transferred to im-
aging plates and then physically separated from each
other using a platinum-wire pick. Separation of the
worms is important for allowing the software to cor-
rectly process each worm individually. The imaging
plates were 60-mm petri dishes filled with 8 mL of
modified transparent nematode growth medium (NGM,
2% agarose, 0.3% NaCl, 5 mM K,PO, 1 mM CaCl,,
1 mM MgSO,).

Microscopy image acquisition

Images were taken on an Olympus IX83 microscope,
using fluorescence excitation with a light-emitting diode
(LED) light source on two channels: GFP and mCherry
fluorescence. For BF imaging, a relatively long exposure
time was used for trail erasure, and the contrast was in-
creased to better differentiate between worms and back-
ground. Pictures were taken with a 4X/0.75 Universal
Plan Super Apochromat objective.

For the protein aggregation assays, images were ac-
quired using a Nikon SMZ18 stereoscope fitted with a
1X objective, set up to capture both BF illumination and
YFP fluorescence.

Measurement of worm length following dpy-71 RNAi
treatment

For this assay, we took images of live worms on NGM
plates. The worms grew on the indicated treatment after
synchronization by egg laying. At the first day of adult-
hood, the worms went through four rounds of washes in
M9 buffer and were transferred to a new NGM plate.
Images of worms were obtained using a DCM-310
digital camera (Scopetek) attached to an SMZ745
stereomicroscope (Nikon) with its objective set to 2X
magnification. The ScopePhoto software was used for
image acquisition. Images were then loaded to Wor-
Machine’s Image Processor using the available preset
global setting for low-resolution images. Further ana-
lytical steps were performed similarly as in all other
presented assays.

C. elegans strains

The C. elegans strains employed in this work are as fol-
lows: wild-type Bristol N2 strain, BFF23: him-5(e1490)
V; zdIs13(tph-1p::GFP) 1V; CB5362: tra-2(ar221) 11; xol-
1(y9) X, AM140: rmls132(unc-54p::Q35-YFP) I; NL2099:
rrf-3(pk1426); EG7841: 0xTi302 [eft-3p:mCherry:tbb-2
3'UTR + Cbr-unc-119(+)].

RNAi treatment

We used a standard RNA interference (RNAi) feeding
protocol, as previously described [22]. In each stage of
the different experiments, worms were cultivated either
on HT115 bacteria that transcribe a specific dsRNA
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(e.g., targeting mCherry or dpy-11) or on control HT115
bacteria that contain only an “empty vector” that does
not lead to dsRNA transcription. The NGM plates con-
tained isopropyl £3-p-1-thiogalactopyranoside (IPTG) for
induction of dsRNA expression. The offspring which
hatched on these plates were examined.

Image requirements and limitations

WorMachine was tested on a variety of image resolu-
tions, signal-to-noise ratios, bit depths, and contrasts.
The software offers three preset global settings, which
set all necessary image processing parameters accord-
ing to a given microscope magnification used to
acquire the image: high ( 10XObjective—O.451% ),
medium (4XObjective-1.14£"), and low (2X-5.14

pixel
ﬂ
pixel
tions of 96, 72, and up to very small dpi, and bit
depths of 8, 16, and 24. However, as internal com-
puter memory is limited, loading high-resolution im-
ages, which are usually very exhaustive in memory
uptake, can be problematic. Thus, regardless of reso-
lution, bit depth, and contrast, the software is limited
to working on ~1 GB per image. Further testing
showed that worms were successfully processed and
analyzed in almost any posture, including omega
turns (see examples in Additional file 8: Figure S6).
However, worms that complete a full circle, such that
one of their ends touches some point on their body,
cannot be analyzed with our software and will be
flagged as faulty. Worms that touch another worm or
object directly would also be excluded, so the best
practice is to separate touching worms on the plate
before acquiring images. Also, we found that using
plates with agarose instead of agar provided images
with better foreground-background separation, since it
allows more light to pass through the plate’s surface
where no worms are present, increasing the back-
ground’s brightness relative to the worms on the
plate. Lastly, using images with contrast lower than
0.04 (defined as a grayscaled image’s standard devi-
ation [23]) is not possible, and therefore worms
should be imaged on plates rather than slides (which
typically have lower contrast). The software success-
fully analyzes images of plates with higher contrast,
ranging from 0.06 to 0.15; increasing the contrast fur-
ther usually provides better results, as long as the
image is not distorted by amplified noise.

). The software has been successful with resolu-

Image binarization, cleaning, and segmentation

A mask image is produced by applying adaptive local
thresholding [8], using the free parameters ‘neighbor-
hood’ and ‘threshold’. The first determines the num-
ber of pixels around a given pixel that would be
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considered when deciding its value, while the second
sets the relative intensity for thresholding the given
pixel. The mask image is a matrix of equal size as
the original image, containing ones where a sus-
pected worm is present and zeros in the background.
The filter’s parameters ‘neighbors’ and ‘threshold’
may be adjusted manually, though several default
recommended presets are offered, per the image’s
resolution. After binarization, objects with areas
smaller than a specified value will be deleted, includ-
ing objects touching the edges of the image, which
are unlikely to be whole worms. All the objects in
an image are identified using MATLAB’s “region-
props” function and are considered worms only if
their area is within a specified relative range.

Flagging faulty worms

Morphological outliers

Aberrant worms are flagged using two methods. First,
the program locates outliers — worms with extremely
large or small areas or lengths or with non-continuous
skeletons. All worms’ lengths and areas are standardized,
and those that deviate by more than 1.5 or less than —
1.5 standard deviation units from the mean are flagged.
Moreover, when the worm’ skeleton is extracted, the
worm is smoothed using a median filter until a singular
continuous skeleton line is obtained, for a maximum of
five attempts. If more than two attempts were required
to obtain a smooth skeleton from a worm mask image,
or, if after the maximal smoothing attempts the skeleton
still contains branch points, the mask image is likely to
be disfigured or aberrant and will be flagged.

WormNet

A dedicated convolutional neural network (C-NN) was
developed particularly for this task. This network has
been trained on 11,820 mask images containing equal
amounts of “valid” worms and noisy objects or worms
with a variety of faulty features. The images were col-
lected from various experiments in our lab in which
WorMachine was used for their analysis.
Experimenters manually reviewed their worm images,
and they discarded images that were defective for dif-
ferent reasons. The discarded images were labeled as
faulty, and the remaining images as valid. Mask
images were first padded to the size of the 65th per-
centile mask size, and all were rescaled to the net-
work’s defined input size of 64 x 128 pixels. Worms
were then split to 85% training set and 15% hold-out
test set. Training was performed with the stochastic
gradient descent with momentum optimizer, 0.9 mo-
mentum, an L2 regularization of 0.0001, a mini-batch
size of 256, and a learning rate of 0.005, for 50
epochs while data was shuffled every epoch. This

Page 8 of 11

yielded 99.2% training accuracy and 93.4% accuracy
on the test set. The network’s complete architecture
is depicted in Fig. 6. Thus, any user-generated mask
images may be automatically padded and rescaled in
the same procedure and then classified into “worm”
or “non-worm” categories, clearly marked in the pro-
gram’s interface for the users’ convenience. Moreover,
the program allows users to retrain the network on
their own labeled data, to further improve and fit the
network to their laboratories’ specifications.

Morphological measures

The calculation of the worms’ morphological features in-
cludes several steps. First, the worm is skeletonized to a
single line using the “bwmorph” function and “thin” ar-
gument; the line is then cleaned and pruned of branches
to obtain the worms’ continuous skeleton line. The deb-
ranching procedure is performed by applying a [15 15]
median filter on a temporary copy of a mask image, if
any branch points are found on the worm’s skeleton,
followed by another “thin” command. If branch points
are still found, the temporary mask is smoothed and
thinned again, until all branch points are gone or until
five attempts were made. Afterwards, the worms’ edges
are located using the “edge” function with the Sobel
technique. A worm’s area is calculated using the
“bwarea” function on the mask image, which is then
multiplied by pixel height and pixel width. Its length is
calculated by using the same function on the skeleton,
which is then multiplied by pixel width. A pixel’s height
and width are given as editable input in the program’s
interface. Thickness is calculated by dividing the area by
the length. Middle-width (Midwidth) is computed using
our own “cross_section” function, which locates the
length of the worm’s cross section which is perpendicu-
lar to the pixel in the exact center of the skeleton. Lastly,
the extraction of head and tail diameter ratios was
adapted from WormGender [24], but with some modifi-
cations. The software calculates the mean intensity in
the BF image around the two ends of the worm’s skel-
eton. It was previously shown [25] that ends with higher
intensity are characteristic to the head of the worm.
Tests we performed on pre-labeled heads and tails of
500 worms showed this method to be accurate in 85% of
worms. In order to further improve robustness of head-
tail distinction, we took advantage of a known morpho-
logically distinct phenotype. Male worms have tails with
larger diameter than heads, while hermaphrodites have
tails with smaller diameter than heads [24]. We com-
bined this information with head and tail brightness and
achieved 95% accuracy of distinction between heads and
tails in our testing. The first diameter of each end (D1)
is the longest cross section found 10 pixels from the
worm’s end and up to 10% of the worm’s length. If the
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Outputs:
‘Worm / Noise

Input Image
[64X128]

Convolutional Layer Convolutional Layer 2 Convolutional Layer Fully Connected Layer Fully Connected Layer
2

1 32@3X3 3 1
16@3X3 (padding 1, stride 1) 64@3X3 100 units 100 units
(padding 2, stride 1): Max-Pooling Layer 2 (padding 1, stride 1) Dropout Layer Softmax Layer
Batch Normalization 2X2 Batch Normalization 0.25 probability
1 (padding 0, stride 2)
ReLu Layer 1 Batch Normalization 2 ReLu Layer 3

Max-Pooling Layer 1 ReLu Layer 2

3X3
(padding 2, stride 2)
Fig. 6 WormNet architecture. The network receives an input image of size 64 x 128 pixels and outputs a classification into worm or non-worm
(noise) categories. The complete architecture is detailed in the figure and can also be viewed within the WorMachine's open-source code.
WormNet was trained on 11,820 mask images of worms and non-worms, randomly split into 85% training and 15% test set. It classified with

99.2% accuracy on the training set and 93.4% on the held-out test set

longest cross section is at 10% of its length, then the
length of the cross section at 2.5% of the worm’s length
is taken as D1. The search for the second diameter of
each end (D2) begins 20 pixels from D1’s location and
continues up to 20% of the worm’s length, until the
shortest cross section is found. Lastly, the diameter ratio
for each end is calculated by dividing D1 by D2. We
developed this algorithm to maximize the diameter ratio
of the wider male tails [25], without biasing against her-
maphrodites’ tails, to improve distinctiveness between sex
phenotypes. Following these adjustments, our software
distinguishes the worms’ sex successfully in 98% of the
cases tested (see the Results section for more details).

Fluorescent analysis

We applied MATLAB’s “LocalMaximaFinder” object
(part of the “Computer Vision” package) to locate the
local maximum intensities (peaks) throughout the image,
using the adjustable parameters Neighborhood and
Threshold. The Neighborhood parameter specifies the
size of a square surrounding an identified peak, in which
no other local maxima can be considered as peaks. A
large Neighborhood allows only peaks that are brightest
and furthest apart to be identified, while a small neigh-
borhood allows many adjacent peaks to be identified
separately. The Threshold parameter enables control
over the minimal intensity that can be considered as a
peak, and it is set by choosing the desired percentage
from the image’s maximum intensity. The number of
peaks identified, their mean intensity, and standard devi-
ation are reported for each worm. In addition, the raw
integrated density (RID) is calculated by summing the
intensity values of all pixels within the worm’s area and
subtracting the mean background intensity multiplied by
the number of pixels in the worm’s area. Lastly, the
CTWEF is calculated by subtracting the mean intensity

within the worm from the mean intensity of its back-
ground, which is then multiplied by the worm’s area.

Binary classification

The creation of a SVM model for binary classification
is available, based on a labeled dataset generated by
the Feature Extractor. Users may choose a kernel
method, whether or not to standardize their data, and
the number of cross validations on the data, aimed at
reducing model overfitting. The program splits the
data into a training set and a test set and performs
optimization towards an appropriate SVM model. The
resulting model may be later used to classify un-
labeled datasets with similar features into the labels
on which it was trained. One may create one’s train-
ing dataset by manually labeling worms and then use
the model created based on the data to classify
unlabeled worms. Alternatively, one may utilize the
dataset to obtain prediction rates for various combi-
nations of features, in order to assess the contribution
of each feature towards accurate prediction (Fig. 2).
We supply a trained model for the purpose of worm
sex classification, but we recommend customized
labeling and training to create bespoke models that
would better suit each lab’s specifications.

Unsupervised scoring

The technique called -SNE [5], for dimensionality re-
duction, is particularly well suited for the visualization of
high-dimensional datasets and gives each data point a
location on a two- or three-dimensional map. The tech-
nique is a variation of stochastic neighbor embedding
that is easier to optimize and produces better visualiza-
tions [26]. This method of unsupervised learning essen-
tially enables scoring data within a single common
dimension, giving each sample a continuous value. The
data is pre-processed using PCA [6], reducing the
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