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Background: Mass spectrometry imaging is increasingly used in biological and translational research because it has the
ability to determine the spatial distribution of hundreds of analytes in a sample. Being at the interface of
proteomics/metabolomics and imaging, the acquired datasets are large and complex and often analyzed with proprietary
software or in-house scripts, which hinders reproducibility. Open source software solutions that enable reproducible data
analysis often require programming skills and are therefore not accessible to many mass spectrometry imaging (MS]I)
researchers. Findings: We have integrated 18 dedicated mass spectrometry imaging tools into the Galaxy framework to
allow accessible, reproducible, and transparent data analysis. Our tools are based on Cardinal, MALDIquant, and
scikit-image and enable all major MSI analysis steps such as quality control, visualization, preprocessing, statistical
analysis, and image co-registration. Furthermore, we created hands-on training material for use cases in proteomics and
metabolomics. To demonstrate the utility of our tools, we re-analyzed a publicly available N-linked glycan imaging dataset.
By providing the entire analysis history online, we highlight how the Galaxy framework fosters transparent and
reproducible research. Conclusion: The Galaxy framework has emerged as a powerful analysis platform for the analysis of
MSI data with ease of use and access, together with high levels of reproducibility and transparency.
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Mass spectrometry imaging (MSI) is increasingly used for a broad
range of biological and clinical applications because it allows
the simultaneous measurement of hundreds of analytes and
their spatial distribution. The versatility of MSI is based on its
ability to measure many different kinds of molecules such as
peptides, metabolites, or chemical compounds in a large vari-
ety of samples such as cells, tissues, fingerprints, or human-
made materials [1-5]. Depending on the sample, the analyte
of interest, and the application, different mass spectrometers
are used [6]. The most common ionization sources are MALDI
(matrix-assisted laser desorption/ionization), desorption elec-
trospray ionization, and secondary ion mass spectrometry. Typ-
ical mass analyzers are time-of-flight (TOF) devices and ion
traps.

Owing to the variety of samples, analytes, and mass spec-
trometers, MSI is suitable for highly diverse use cases rang-
ing from plant research to (pre-)clinical, pharmacologic studies,
and forensic investigations [2, 7-9]. On the other hand, the va-
riety of research fields hinders harmonization and standardiza-
tion of MSI protocols. Recently efforts were started to develop
optimized sample preparation protocols and show their repro-
ducibility in multicenter studies [10-13]. In contrast, efforts to
make data analysis standardized and reproducible are in their
infancy.

Reproducibility of MSI data analyses is hindered by the com-
mon use of software with restricted access such as proprietary
software, license-requiring software, or unpublished in-house
scripts [14]. Open source software has the potential to advance
accessibility and reproducibility issues in data analysis but re-
quires complete reporting of software versions and parameters,
which is not yet routine in MSI [15-17].

At the same time, the introduction of the open standard
file format imzML has opened new avenues to the community
and an increasing number of open source software tools are
emerging [18]. Yet, many of these tools necessitate steep learn-
ing curves, in some cases even requiring programming knowl-
edge to make use of their full range of functions [19-23].

To overcome problems with accessibility of software and
computing resources, standardization, and reproducibility, we
developed MSI data analysis tools for the Galaxy framework
that are based on the open source software suites Cardinal [21],
MALDIquant [20], and scikit-image [24]. Galaxy is an open source
computational platform for biomedical research that was devel-
oped to support researchers without programming skills with
the analysis of large datasets, e.g., in the field of next-generation
sequencing. Galaxy is used by hundred thousands of researchers
and provides thousands of different tools for many different sci-
entific fields [25].

With the present publication, we aim to raise awareness within
the MSI community of the advantages being offered by the
Galaxy framework with regard to standardized and reproducible
data analysis pipelines. Second, we present newly developed
Galaxy tools and offer them to the MSI community through
the graphical front-end and “drag-and-drop” workflows of the
Galaxy framework. Third, we apply the MSI Galaxy tools to a
publicly available dataset to study N-glycan identity and dis-
tribution in murine kidney specimens to demonstrate use of a
Galaxy-based MSI analysis pipeline that facilitates standardiza-

tion and reproducibility and is compatible with the principles of
FAIR (findable, accessible, interoperable, and re-usable) data and
MIAPE (minimum information about a proteomics experiment)
26, 27].

In essence, the Galaxy framework is characterized by 4 hall-
marks: (i) use of a graphical front end that is web browser based,
hence alleviating the need for advanced information technology
skills or the requirement to locally install and maintain software
tools; (ii) access to large-scale computational resources for aca-
demic users; (iii) provenance tracking and full version control,
including the ability to switch between software and tool ver-
sion and to publish complete analysis, thus enabling full repro-
ducibility; (iv) access to a vast array of open source tools with
the ability to seamlessly pass data from one tool to another, thus
generating added value by interoperability.

Multiple Galaxy servers on essentially every continent pro-
vide access to large computing resources, data storage capabili-
ties, and hundreds of pre-installed tools for a broad range of data
analysis applications through a web browser-based graphical
user interface [28-30]. Additionally, there are >100 public Galaxy
servers available that offer more specific tools for niche applica-
tion areas. For local use, Galaxy can be installed on any com-
puter ranging from private laptops to high-performance com-
puting clusters. So-called “containers” exist, which facilitate a
fully functional 1-click installation independent of the operat-
ing system. Hence, local Galaxy servers are easily deployed even
in “private” network situations in which these servers remain
invisible and inaccessible to outside users. This ability empow-
ers Galaxy for the analysis of sensitive and protected data, e.g.,
in a clinical setting.

In the Galaxy framework, data analysis information is
stored alongside the results of each analysis step to en-
sure reproducibility and traceability of results. The informa-
tion includes tool names, versions, and all other parame-
ters that are necessary to capture the provenience of an
experiment [31].

We propose that MSI research can greatly benefit from the
possibility to privately or publicly share data analysis histo-
ries, workflows, and visualizations with collaboration partners
or the entire scientific community, e.g., as online supplementary
data for peer-reviewed publications. The latter step easily fulfills
the criteria of the suggested MSI minimum reporting guidelines
[6, 16].

The Galaxy framework is predestined for the analysis of
multi-omics studies because it facilitates the integration of soft-
ware of different origin into 1 analysis [32, 33]. The possi-
bility of seamlessly linking tools of different origins has out-
standing potential for MSI studies, which often rely on differ-
ent software platforms to analyze MSI data, additional MS/MS
data (from liquid chromatography coupled tandem mass spec-
trometry [LC-MS/MS]), and (multimodal) imaging data. As a
result of community-driven efforts, >100 tools for proteomic
and metabolomics data analysis are readily available in Galaxy
[34-38]. Increasing integration of MSI with other omics ap-
proaches such as genomics and transcriptomics is antici-
pated, and the Galaxy framework offers a powerful and future-
proof platform to tackle complex, interconnected data-driven
experiments.
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Figure 1: Typical MSI data analysis steps and newly developed Galaxy tools. Typical MSI data analysis steps include quality control, file handling, preprocessing, ROI
annotation, supervised and unsupervised statistical analysis, visualizations, and identification of features. Owing to the variety of MSI applications, tools of all or only
a few of these categories are used and the order of use is highly flexible. To serve a broad range of data analysis tasks, we provide 18 tools that cover all common data
analysis procedures and can be arbitrarily connected to allow customized analysis. Dark blue: MSI data analysis steps; pale blue: newly developed Galaxy tools.

Findings
The newly available MSI toolset in the Galaxy
framework

We have developed 18 Galaxy tools that are based on the
commonly used open source software packages Cardinal,
MALDIquant, and scikit-image and enable all steps that com-
monly occur in MSI data analysis (Fig. 1) [20, 21, 24]. In or-
der to deeply integrate those tools into the Galaxy framework,
we developed bioconda packages and biocontainers, as well as
a so-called wrapper for each tool [31, 39]. The MSI tools con-
sist of R scripts that were developed on the basis of Cardinal
and MALDIquant functionalities, extended for more analysis
options and a consistent framework for input and output of
metadata (Additional File 1). Cardinal and MALDIquant are well-
established R packages and are commonly used open source
software for the analysis of MSI data [40-45]. Cardinal is under
active development and provides a multitude of processing and
analysis options for MSI data [46]. MALDIquant was originally
developed for the analysis of classical MALDI-TOF data but offers
powerful preprocessing options that are applicable for the anal-
ysis of MSI data [44, 45]. The image-processing tools that are part
of the region of interest (ROI) annotation (co-registration) work-
flow are built from scratch using functionality from the scikit-
image library. Scikit-image is an open source image-processing
library for Python. All tools are deliberately built in a modular
way to enable highly flexible analysis and to allow a multitude
of additional functionalities by combining the MSI-specific tools
with already available Galaxy tools.

Data formats and data handling
We extended the Galaxy framework to support open and stan-
dardized MSI data files such as imzML, which is the default input

format for the Galaxy MSI tools. Today, the major mass spec-
trometer vendors directly support the imzML standard and sev-
eral tools exist to convert different file formats to imzML [47].
Data can be easily uploaded to Galaxy via a web browser or via
a built-in FTP functionality. Intermediate result files can be fur-
ther processed in the interactive environment that supports R
Studio and Jupyter or downloaded for additional analysis out-
side of Galaxy [48].

To facilitate the parallel analysis of multiple files, the Galaxy
framework offers so-called dataset collections. Numerous files
can be represented in a dataset collection, allowing simultane-
ous analysis of all files while the effort for the user is similar as
for single files. MSI metadata such as spectra annotations, m/z
lists, and statistical results are stored as tab-separated values
(TSV) files, thus enabling processing by a plethora of tools both
inside and outside the Galaxy framework. All graphical results
of the MSI tools are stored as concise vector graphic PDF reports
with publication-quality images.

Quality control and visualization tools

MSI Quality control Quality control is an essential step in data
analysis and should be used not only to judge the quality of the
raw data but also to control processing steps such as smooth-
ing, peak picking, and intensity normalization. Therefore, we
have developed the “MSI Qualitycontrol” tool, which automat-
ically generates a comprehensive PDF report with >30 different
plots that enable a global view of all aspects of the MSI data
including intensity distribution, m/z accuracy, and segmenta-
tion maps (Fig. 2). For example, poor-quality spectra, such as
those with low total ion current or low number of peaks, can
be directly spotted in the quality report and subsequently be re-
moved by applying the “MSI data exporter” and “MSI filtering”
tools.
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Figure 2: Exemplary quality control plots. The quality control report contains >30 different plots, 5 of which are shown here. They derive from the peptide imaging
in mouse kidney training that we provide in the Galaxy training network [58]. A, Control of tryptic digestion with a bombesin spot next to the tissue. The log, fold
change of the cleaved vs uncleaved bombesin peptide shows the digestion efficiency in the spot. B, Total ion current (TIC) in each pixel. C, Accuracy of m/z for the
internal calibrant angiotensin I in each pixel. D, Average mass spectrum showing the angiotensin I peak and its first isotope together with vertical lines indicating the
theoretical m/z of angiotensin (blue), the most abundant m/z in the chosen window (red), and the closest m/z value in the file (green). E, TIC for each spectrum.

MSI mz image The “MSI mz image” tool allows the automatic
generation of a publication-quality PDF file with distribution
heat maps for all m/z features provided in a TSV file. Contrast en-
hancement and smoothing options are available, as well as the
possibility of overlaying several m/z features in 1 image (Fig. 3A
and B).

MSI plot spectra The “MSI plot spectra” tool displays multiple sin-
gle or average mass spectra in a PDF file. Overlay of multiple sin-
gle or averaged mass spectra with different colors in 1 plotis also
possible (Fig. 3C and D).

The Galaxy framework already offers various visualization
options for TSV files, including heat maps, barplots, scatterplots,
and histograms. This enables a quick visualization of the prop-
erties of TSV files obtained during MSI analysis.

MSI file-handling tools

A large variety of tools that allow for filtering, sorting, and ma-
nipulating of TSV files is already available in Galaxy and can
be integrated into the MSI data analysis. Some dedicated tools
for imzML file handling were newly integrated into the Galaxy
framework.

MSI combine The “MSI combine” tool allows several imzML files
to be combined into a merged dataset. This is especially impor-

tant to enable direct visual but also statistical comparison of
MSI data that derived from multiple files. With the “MSI com-
bine tool,” individual MSI datasets either are placed next to each
other in a coordinate system or can be shifted in the x or y di-
rection in a user-defined way. The output of the tool contains a
single file with the combined MSI data and an additional TSV
file with spectra annotations; i.e., each spectrum is annotated
with its original file name (before combination) and, if applica-
ble, with previously defined annotations such as diagnosis, dis-
ease type, and other clinical parameters.

MSI filtering The “MSI filtering” tool provides options to filter m/z
features and pixel (spectra) of interest, either by applying man-
ual ranges (minimum and maximum m/z, spatial area as defined
by x/y coordinates) or by keeping only m/z features or coordi-
nates of pixels that are provided in a TSV file. Unwanted m/z fea-
tures such as predefined contaminant features can be removed
within a preselected m/z tolerance.

MSI data exporter The “MSI data exporter” can export the spec-
tra, intensity, and m/z data of an imzML file together with their
summarized properties into TSV files.
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Figure 3: Visualization of heat maps and mass spectra. Visualizations of heat maps, overlay image, and mass spectra plots of a chilli section that is part of the chilli
training that we provide in the Galaxy training network [19, 58]. A, Heat map of the m/z feature 306.6 that corresponds to capsaicin. B, Overlay of the m/z features
306.6, 62.2, and 84.2 that show different distribution in the chilli section. C, Average mass spectrum for the complete chilli dataset. D, Overlay of single mass spectra
that belong to different chilli compartments: green: pericarp; light blue: placenta; purple: seeds; red: average mass spectra of all other chilli spectra.

Region of interest annotation tools
For supervised analysis, spatial ROI can be defined. Those
are commonly annotated on a photograph or histological im-
age that shows the morphological features of the sample. We
extended and developed 6 new Galaxy tools and combined
them with existing tools into a workflow that enables co-
registration of the real image (photograph or histological im-
age), ROIs, and the MSI image by alignment using an affine
transformation [49]. The transformation is estimated by a least-
squares method using landmarks from both real and MSI
image that are annotated outside Galaxy, for example, us-
ing the GNU Image Manipulation Program (GIMP) (Fig. 4) [50].
For more robust estimation of the transformation, random
sample consensus is used on random subsets of landmark
pairs [51].

The co-registration workflow includes 6 newly developed
Galaxy tools, as follows.

Scale Image The ”scale image” tool can resize an image relative
to the original image or using absolute dimensions with nearest
neighbor, bilinear, or bicubic interpolation.

Landmark registration The "landmark registration” tool estimates
the affine transformation between 2 sets of points using the ran-
dom sample consensus [51].

Overlay The "overlay” tool overlays 2 images, transforming 1 us-
ing a transformation matrix. The tool can be used to visually
asses the performance of the registration.

Coordinates of ROI The "coordinates of ROI” tool extracts the in-
dices of all pixels of an ROI from a binary image.

Projective transformation points The “projective transformation
points” tool applies a transformation matrix to a set of points.
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Figure 4: Co-registration strategy using affine transformation and landmarks.
Co-registration of an MSI image with a histological hematoxylin-eosin (H&E) im-
age from a mouse kidney via affine transformation. The affine transformation
is estimated from the landmarks (red dots) that the user has to provide. Land-
marks can be either characteristic marks of the sample or marks applied outside
the tissue, e.g., with a xylene-resistant pen (black crosses). The transformation
matrix, estimated by the affine transformation estimation tool, can be used to
generate an overlay of both images (right image) for visual inspection. Moreover,
the matrix can be used to transfer the annotated regions of interest in the H&E
image to the MSI coordinates (not shown here).

Switch axis coordinates The "switch axis coordinates” tool can
be used to change the origin of a set of points in a coordinate
system.

In the supporting information, we also provide automated
workflows to convert annotation files from proprietary Bruker
software (spotlist.txt and regions.xml) into annotation files that
are compatible with the Galaxy MSI tools.

Preprocessing tools

Preprocessing of raw MSI spectra is performed to reduce data
size and to remove noise, inaccuracies, and biases to improve
downstream analysis. Crucial steps are peak picking to reduce
file size and remove noise features, intensity normalization to
make spectra within and between different samples compara-
ble, as well as m/z recalibration to improve comparability and
identification of analytes. We have developed 3 dedicated MSI
preprocessing tools that are based on a variety of preprocessing
algorithms from both the Cardinal and MALDIquant packages.
An overview of all available preprocessing options is available in
Additional File 2.

MSI preprocessing The “MSI preprocessing” tool offers a multi-
tude of algorithms that are useful to preprocess raw MSI data:
intensity normalization to the total ion current (TIC), baseline
removal, smoothing, peak picking, peak alignment, peak filter-
ing, intensity transformation, binning, and resampling.

MALDIquant preprocessing and MALDIquant peak detection Both
MALDIquant tools offer a multitude of preprocessing algorithms
that complement those of the Cardinal-based MSI preprocessing
tool such as m/z re-calibration, peak picking on average mass
spectra, and picking of mono-isotopes.

Statistical analysis tools

A multitude of statistical analysis options for TSV files is already
available in Galaxy; the most MSI-relevant tools are from the
Workflow4metabolomics project and consist of unsupervised
and supervised statistical analysis tools [52]. For specific pur-
poses of spatially resolved MSI data analysis, we have integrated
Cardinal’s powerful spatially aware statistical analysis options
into the Galaxy framework.

MSI segmentation The “MSI segmentation” tool enables spatially
aware unsupervised statistical analysis with principal compo-
nent analysis, spatially aware k-means clustering, and spatial
shrunken centroids [53, 54].

MSI classification The “MSI classification” tool offers 3 options
for spatially aware supervised statistical analysis: partial least
squares (discriminant analysis), orthogonal partial least squares
(discriminant analysis), and spatial shrunken centroids [53].

Analyte identification tools

Determination of m/z on its own often remains insufficient to
identify analytes. Compound fragmentation and tandem mass
spectrometry are typically used for compound identification by
mass spectrometry. In MSI, the required local confinement of
the mass spectrometry analysis severely limits the compound
amounts that are available for fragmentation. Hence, direct on-
target fragmentation is rarely used in MSI. A common practice
for compound identification includes a combinatorial approach
in which LC-MS/MS data are used to identify the analytes while
MSI analyzes their spatial distribution. This approach requires
assigning putative analyte information to m/z values within a
given accuracy range.

Join 2 files on a column allowing a small difference The "Join 2 files on
a column allowing a small difference” tool allows for the match-
ing of numeric columns of 2 TSV files on the smallest distance,
which can be absolute or in ppm. This tool can be used to iden-
tify the m/z features of a TSV file by matching them to already
identified m/z features of another TSV file (e.g., from a database
or from an analysis workflow).

Community efforts such as Galaxy-M, Galaxy-P, Phenome-
nal, and Workflow4Metabolomics have led to a multitude of
metabolomics and proteomics analysis tools that are available
in Galaxy today [34-38]. These tools enable the analysis of addi-
tional tandem mass spectrometry data that are often acquired
to aid identification of MSI m/z features. Databases to which the
results can be matched, such as UniProt and LIPID MAPS, are di-
rectly available in Galaxy [55, 56]. The highly interdisciplinary
and modular data analysis options in Galaxy render it a very
powerful platform for MSI data analyses that are part of a multi-
omics study.

All described tools are easily accessible and usable via the Eu-
ropean Galaxy server [29]. Furthermore, all tools are deposited
in the Galaxy Toolshed from which they can be easily in-
stalled into any other Galaxy instance (Additional File 3) [57].
We have developed bioconda packages and biocontainers that
allow for version control and automated installation of all tool
dependencies—those packages are also useful outside Galaxy
to enhance reproducibility [31, 39]. For researchers who do not
want to use publicly available Galaxy servers, we provide a pre-
built Docker image that is easy to install independent of the op-
erating system.

For a swift introduction into the analysis of MSI data in
Galaxy, we have developed training material for metabolomics
and proteomic use cases and deposited it to the central repos-
itory of the Galaxy Training Network [58, 59]. The training ma-
terials consist of a comprehensive collection of small example
datasets, step-by-step explanations, and workflows that enable
any interested researcher to follow the training and understand
it through active participation.
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Figure 5: Results from the unsupervised statistical analysis of N-linked glycans in murine kidney tissues. Principal component analysis (PCA) of treated, control, and
calibrant files. A, Overlay of all principal component (PC) scores. B-D, Principal components 1, 3, and 4 that discriminate treated and control tissue or different kidney
compartments. I = treated kidney1, II = treated kidney?2, III = control kidney, IV = calibrants.

The first training explains data upload in Galaxy and de-
scribes the quality control of mouse kidney tissue section in
which peptides were imaged with an old MALDI-TOF [60]. The
dataset contains peptide calibrants that allow the control of
the digestion efficiency and m/z accuracy. Export of MSI data
into TSV files and further filtering of those files is explained
as well.

The second training explains the examination of the spatial
distribution of volatile organic compounds in a chilli section.
The training roughly follows the corresponding publication and
explains how average mass spectra are plotted and only the rel-
evant m/z range is kept, as well as how to automatically gener-
ate many m/z distribution maps and overlay several m/z feature
maps [19].

The third training determines and identifies N-linked gly-
cans in mouse kidney tissue sections with MALDI-TOF and addi-

tional LC-MS/MS data analysis [61, 62]. The training covers com-
bining datasets, preprocessing as well as unsupervised and su-
pervised statistical analysis to find potential N-linked glycans
that have different abundances in the PNGase F-treated kidney
section compared to the kidney section that was treated with
buffer only. The training further covers identification of the po-
tential N-linked glycans by matching their m/z values to a list of
N-linked glycan m/z that were identified by LC-MS/MS. The full
dataset is used as a case study in the following section.

Case study

To exemplify the utility of our MSI tools we re-analyzed the N-
glycan dataset that was recently made available by Gustafsson
et al. via the PRIDE repository with accession PXD009808 [62, 63].
The aim of the study was to demonstrate that their automated
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with different distribution in the kidney. The ion distribution images and the overlay image were generated with contrast enhancement by suppression on TIC-
normalized data. I = treated kidney1, II = treated kidney?2, III = control kidney, IV = calibrants.

sample preparation method for MALDI imaging of N-linked gly-
cans successfully works on formalin-fixed paraffin-embedded
(FFPE) murine kidney tissue [61]. PNGase F was printed on 2
FFPE murine kidney sections to release N-linked glycans from
proteins while in a third section 1 part of the kidney was cov-
ered with N-glycan calibrants and another part with buffer to
serve as a control. The tissues were measured with a MALDI-
TOF/TOF mass spectrometer and a spatial resolution of 100 um
that leads to oversampling of the 250-um PNGase F array [61].
We downloaded all 4 imzML files (2 treated kidneys, control and
calibrants) from PRIDE and uploaded them with the composite
upload function into Galaxy. To obtain an overview of the files
we used the “MSI Qualitycontrol” tool. We resampled the m/z
axis, combined all files, and reran the “MSI Qualitycontrol” tool
to directly compare the 4 subfiles (Additional File 4). Next, we
performed TIC normalization, smoothing, and baseline removal
by applying Cardinal algorithms [21]. Spectra were aligned to the
stable peaks that are present in >80% of all spectra [64]. Spec-
tra in which <2 stable peaks could be aligned were removed.
This affected mainly spectra from the control file. Peak pick-
ing, detection of mono-isotopic peaks, and binning were per-
formed on the average spectra of each subfile [64]. The obtained
m/z features were extracted with Cardinal’s “peaks” algorithm
from the normalized, smoothed, baseline-removed and aligned
file. Next, principal component analysis with 4 components was

performed (Fig. 5) [21]. To find potential N-linked glycans, the
2 treated tissues were compared to the control tissue with the
supervised spatial shrunken centroids algorithm [53]. Spatial
shrunken centroids is a multivariate classification method that
was specifically developed to account for the spatial structure
of the data (Fig. 6A) [53]. The supervised analysis provided us
with 28 m/z features that discriminated between the 2 PNGase F-
treated kidneys and the control kidney with a spatial shrunken
centroids P-value < 0.05 and higher abundance in the treated
kidneys. Mapping those features to N-glycans reported in the
original publication ([61], Supplementary Table S2) revealed the
identity of 16 N-glycans with an average m/z error of 49 ppm
(Table 1). Fifteen of those N-glycans match to the findings of
the original publication. Whilst our workflow did not identify
the reported N-glycan at 1,647.635 m/z, an additional N-glycan
at 1,542.62 m/z was found. The intensity distribution for 4 N-
glycans on the TIC-normalized dataset is depicted in Fig. 6B-E,
and 3 of them are overlaid in Fig. 6F.

The complete analysis was performed in the European
Galaxy instance with MSI tools based on Cardinal version 1.12.1
and MALDIquant 1.18 [21, 29]. Despite having used different al-
gorithms for preprocessing and statistical analysis, we reached
similar findings as compared to [61]. The reproducibility of the
results shows the capacity of our pipeline. To enable full “meth-
ods reproducibility” we provide the analysis history and work-



Table 1: N-linked glycans identified in the re-analysis

Adjusted
m/z Centers t-Statistics P-values M+Na+
1,257.47424 38.24 51.97 0 1,257.41
1,743.68713 32.11 48.56 0 1,743.57
1,419.55334 40.68 48.2 0 1,419.47
1,905.68713 48.61 44.78 0 1,905.63
2,304.91211 43.53 42.36 0 2,304.83
1,850.71216 25.3 42.01 0 1,850.65
1,581.62573 18.07 40.64 0 1,581.53
1,809.72461 10.81 38.15 0 1,809.63
2,158.88721 14.77 38.03 0 2,158.77
1,663.66638 10.27 32.26 0 1,663.57
1,688.71509 8.68 28.29 0 1,688.61
1,485.62378 8.67 26.89 0 1,485.53
2,012.78394 7.3 26.72 0 2,012.71
2,816.11206 6.92 26.35 0 2,816.01
2,067.75903 5.69 14.52 0 2,067.67
1,542.61902 5.59 8.08 0 1,542.55

Composition ppm
(Hex),+(Man)s;(GlcNAc), 51
(Hex)s+(Man)3(GIcNAc), 67
(Hex)s+(Man)s;(GlcNAc), 59
(Hex)s+(Man)3(GIcNAc), 30
(Hex), (HexNAc)s(deoxyhexose)s;+(Man);(GlcNAc), 36
(Hex), (HexNAc)s(deoxyhexose); +(Man)s; (GlcNAc), 34
(Hex)s+(Man)s(GlcNAc), 61
(Hex), (HexNAc), (deoxyhexose); +(Man)s;(GlcNAc), 52
(Hex), (HexNAcC)3 (deoxyhexose), +(Man)3 (GlcNAc), 54
(Hex), (HexNAc),+(Man)s(GlcNAc), 58
(HexNAc)s(deoxyhexose); +(Man);(GlcNAc), 62
(HexNAc);(deoxyhexose); +(Man);(GlcNAc), 63
(Hex), (HexNAcC)3 (deoxyhexose); +(Man)3 (GlcNAc), 37
(Hex)s (HexNAc)s(deoxyhexose); +(Man)s; (GlcNAc), 36
(Hex);+(Man)s(GlcNAc), 43
(HexNAc)3-+(Man)s(GlcNAc), 45

We could identify 16 N-linked glycans by matching the m/z features of the MSI data (col. 1) to the identified m/z features of the LC-MS/MS experiment (col. 5). We
allowed a maximum tolerance of 300 ppm and multiple matches. Only single matches occurred with an average m/z error of 46 ppm (col. 6). Centers, t-statistics and
adjusted p-values obtained by the spatial shrunken centroid algorithm are reported in column 2-4. Glycan composition in column 6: Hex: Hexose, Man: Mannose,

GlcNAc: N-Acetyl-D-glucosamine, HexNAc: N-Acetyl-D-hexosamine

flow in this publication as supporting information. Those can be
easily published on the Galaxy platform and provide more in-
formation than requested by the minimum reporting guidelines
MSI MIAPE and MIAMSIE (minimum information about a mass
spectrometry imaging experiment) [6, 16]. The Galaxy software
itself but also the shared histories and workflows fulfill the FAIR
principles [27].

With the integration of the MSI data analysis toolset, we have
incorporated an accessible and reproducible data analysis plat-
form for MSI data in the Galaxy framework. Our MSI tools com-
plement the multitude of already available Galaxy tools for pro-
teomics and metabolomics that are maintained by Galaxy-M,
Galaxy-P, Phenomal, and Workflow4Metabolomics [34-38]. We
are in close contact with those communities and would like to
encourage developers of the MSI community to join forces and
make their tools available in the Galaxy framework. We currently
focused on reproducible and accessible data analysis, but we are
planning to integrate interactive visualizations, more support
for very large files, and more tools for specific use cases into the
Galaxy framework. Last, we would like to invite the MSI commu-
nity to use the advantages of the Galaxy framework to advance
MSI data analysis.

Project name: Mass spectrometry imaging workbench in Galaxy
RRID number:SCR_017410 (https://scicrunch.org/resolver/RRID:
SCR_017410)

Project homepage: https://github.com/galaxyproteomics/tools-
galaxyp and https://github.com/BMCV/galaxy-image-analysis
Galaxy Toolshed: https://toolshed.g2.bx.psu.edu/

Operating system(s): Unix (platform independent with Docker)

Training repository: https://galaxyproject.github.io/training-m
aterial/ “mass spectrometry imaging” tutorials can be found in
the sections “metabolomics” and “proteomics.”

Docker image: https://github.com/foellmelanie/docker-galaxy-
msi

License: MIT

Galaxy workflow to convert Bruker ROLxml files: https:
//usegalaxy.eu/u/melanie-foell/w/msi-workflow-bruker-xml-c
onversion-to-tabular-file

Galaxy workflow to convert Bruker spotlists: https:
//usegalaxy.eu/u/melanie-foell/w/bruker-spotlist-conversio
n-to-tabular-file

Galaxy workflow co-registration: https://usegalaxy.eu/u/melan
ie-foell/w/co-registration-of-msi-image-and-real-image-with-
landmarks

Galaxy workflow N-linked glycans re-analysis: https:
//usegalaxy.eu/u/melanie-foell/w/msi-workflow-complete
-n-glycan-analysis

Galaxy history N-linked glycans re-analysis: https:
//usegalaxy.eu:/u/melanie-foell/h/re-analysis-of-pride-data
set-pxd009808---maldi-imaging-of-n-linked-glycans-in-mur
ine-kidney-specimens

Archival copies of the code and workflows are available from the
GigaScience GigaDB repository [65].

Additional File 1: Overview of R-functions in the MSI tools. For
each Galaxy MSI tool the R-functions that do not belong to the
basic R-package are listed.

Additional File 2: Overview of available preprocessing options
Additional File 3: Collection of direct links to the toolshed loca-
tion for each tool

Additional File 4: Exemplary quality control plots for the com-
bined N-glycan imaging file
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FAIR: findable, accessible, interoperable, and re-usable; FFPE:
formalin-fixed paraffin-embedded; FTP: file transfer protocol;
H&E: hematoxylin-eosin; LC-MS/MS: liquid chromatography
tandem mass spectrometry; MALDI: matrix-assisted laser des-
orption/ionization; MIAMSIE: minimum information about a
mass spectrometry imaging experiment; MIAPE: minimum in-
formation about a proteomics experiment; MSI: mass spectrom-
etry imaging; PRIDE: proteomics identifications; ROI: region of
interest; TIC: total ion current; TOF: time of flight; TSV: tab-
separated values.
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