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ABSTRACT Periodontal disease is an inflammatory condition caused by polymicrobial
infection. The inflammation is initiated at the gingiva (gingivitis) and then extends to
the alveolar bone, leading to tooth loss (periodontitis). Previous studies have shown dif-
ferences in bacterial composition between periodontal healthy and diseased sites.
However, bacterial metabolic activities during the health-to-periodontitis microbiome
shift are still inadequately understood. This study was performed to investigate the bac-
terial characteristics of healthy, gingivitis, and periodontitis statuses through metatran-
scriptomic analysis. Subgingival plaque samples of healthy, gingivitis, and periodontitis
sites in the same oral cavity were collected from 21 patients. Bacterial compositions
were then determined based on 16S rRNA reads; taxonomic and functional profiles
derived from genes based on mRNA reads were estimated. The results showed clear
differences in bacterial compositions and functional profiles between healthy and perio-
dontitis sites. Co-occurrence networks were constructed for each group by connecting
two bacterial species if their mRNA abundances were positively correlated. The cluster-
ing coefficient values were 0.536 for healthy, 0.600 for gingivitis, and 0.371 for perio-
dontitis sites; thus, network complexity increased during gingivitis development,
whereas it decreased during progression to periodontitis. Taxa, including Eubacterium
nodatum, Eubacterium saphenum, Filifactor alocis, and Fretibacterium fastidiosum,
showed greater transcriptional activities than those of red complex bacteria, in conjunc-
tion with disease progression. These taxa were associated with periodontal disease pro-
gression, and the health-to-periodontitis microbiome shift was accompanied by altera-
tions in bacterial network structure and complexity.

IMPORTANCE The characteristics of the periodontal microbiome influence clinical
periodontal status. Gingivitis involves reversible gingival inflammation without alveo-
lar bone resorption. In contrast, periodontitis is an irreversible disease characterized
by inflammatory destruction in both soft and hard tissues. An imbalance of the
microbiome is present in both gingivitis and periodontitis. However, differences in
microbiomes and their functional activities in the healthy, gingivitis, and periodonti-
tis statuses are still inadequately understood. Furthermore, some inflamed gingival
statuses do not consistently cause attachment loss. In this study, metatranscriptomic
analyses were used to investigate the specific bacterial composition and gene
expression patterns of the microbiomes of the healthy, gingivitis, and periodontitis
statuses. In addition, co-occurrence network analysis revealed that the gingivitis site
included features of networks observed in both the healthy and periodontitis sites.
These results provide transcriptomic evidence to support gingivitis as an intermedi-
ate state between the healthy and periodontitis statuses.
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The periodontium comprises the soft tissue and bone surrounding the tooth, and
periodontal diseases are representative polymicrobial diseases that involve a

microbiome imbalance known as dysbiosis, which triggers periodontal inflammation
(1, 2). Gingivitis is a reversible disease that comprises local gingival inflammation with-
out the loss of connective tissue attachment or alveolar bone (3), while periodontitis is
an irreversible disease characterized by inflammatory destruction in both soft and hard
tissues (4, 5). Periodontitis leads to tooth loss and oral functional decline, and there is
increasing evidence that it is associated with the onset or progression of various sys-
temic diseases (5–9).

As a major etiologic factor in periodontal diseases, the presence of specific bacteria
has been extensively investigated to characterize links with periodontal disease pro-
gression. Numerous studies have shown that specific Gram-negative anaerobic bacte-
ria and/or their toxic products are associated with inflammatory destruction in peri-
odontal disease (10–12); however, most of these oral bacteria have not yet been
cultivated. The availability of new and improved sequencing technologies has
expanded the understanding of the periodontal microbial ecosystem (13), Notably,
some studies using DNA-based target sequencing and whole-genome sequencing
assays have revealed differences in species composition and function between perio-
dontally healthy and disease-associated microbiomes (4, 14). However, these analyses
are unable to differentiate between live and dead cells, thus potentially overestimating
the bacterial community richness and leading to misunderstandings concerning bacte-
rial characteristics (15). RNA-based sequencing analyses can identify only live and met-
abolically active cells (16–18). Some studies have shown differences in bacterial com-
position and gene expression between periodontally healthy and diseased sites by
using metatranscriptomic sequencing (19, 20). Jorth et al. compared microbiomes
between periodontitis and healthy sites; they found that Fusobacterium nucleatum was
associated with butyrate metabolism, which led to a pathological periodontal environ-
ment (19). Nowicki et al. showed the increased abundance of some genera (e.g.,
Oribacterium and Leptotrichia) and the overexpression of virulence-related genes in
Leptotrichia buccalis, Prevotella nigrescens, and F. nucleatum in gingivitis (20). However,
there remains an inadequate understanding regarding the specific bacterial composi-
tion and/or gene expression patterns of the microbiomes during the alteration from
health to periodontitis, because microbiome variations related to individual differences
were not considered in most previous studies (21). In this study, we compared micro-
biomes among the healthy, gingivitis, and periodontitis statuses to clarify bacterial fea-
tures involved in the onset and progression of periodontal diseases. To our knowledge,
this is the first study to use metatranscriptomic analysis to investigate differences in
bacterial composition and bacterial gene expression profiles among the healthy, gingi-
vitis, and periodontitis statuses within a single oral cavity.

RESULTS
Clinical characteristics of participants. In total, 21 patients (7 men [including 1

smoker] and 14 women) were recruited for this study. The mean age was 61.2 years
(range, 36 to 88 years). The clinical characteristics of the participants are summarized
in Table 1. Both mean probing depth (PD) and radiographic bone loss were signifi-
cantly greater at periodontitis sites than at healthy or gingivitis sites (referred to as the
P, H, and G sites throughout Results).

Evaluation of bacterial compositions based on 16S rRNA sequences. In total,
43,487,892 sequence reads were generated, corresponding to a mean of 690,284
(range, 71,876 to 1,590,068) reads per sample. The mean numbers of reconstructed
16S rRNA (here referred to as rc-rRNA) operational taxonomic units (OTUs) were
37.3 6 18.6, 45.5 6 21.8, and 37.6 6 26.2 in the H, G, and P sites, respectively (see
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Fig. S1A in the supplemental material). There were no significant differences in OTU
numbers (P = 0.165) and Shannon indexes (P = 0.156), which were used to compare
alpha diversities among the three periodontal statuses (Fig. S1A and B). Rarefaction
curve assessment indicated that the number of obtained reads was sufficient for 16S
rRNA analyses (Fig. S1C).

The rc-rRNAs were assigned to 77 genera; 62, 70, and 62 genera were identified in the
H, G, and P sites, respectively. Analysis of bacterial composition at the genus level showed
that Porphyromonas was the predominant genus in the P site (Fig. S2). In contrast, the
predominant genera in the H and G sites varied among patients. At the species level, the
rc-rRNAs were assigned to 225 bacterial taxa; 168, 192, and 157 taxa were identified in
the H, G, and P sites, respectively (Table S1A). The total abundance of the red complex
species (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) (10) was
greater in the P (34%) site than in the H (4%) and G (13%) sites (Fig. 1A). Relative 16S rRNA
abundances of 35 species that comprised .50% of samples significantly differed among
the three periodontal statuses; differences were observed mainly in comparisons of the P
site with the H or G site. The abundances of Desulfobulbus sp., Eubacterium [XI][G-5] saphe-
num, Filifactor alocis, Fretibacterium fastidiosum, Fretibacterium sp., Mogibacterium timidum,
P. gingivalis, T. forsythia, T. denticola, and Treponema sp. were significantly greater in P sites
than in H or G sites.

Principal-coordinate analysis (PCoA) plots based on Bray-Curtis dissimilarity were
constructed to examine differences in beta diversity among the three periodontal sta-
tuses (Fig. 1B). These results were supported by permutational multivariate analysis of
variance (PERMANOVA), which revealed that bacterial compositions were dissimilar
among the three periodontal statuses (F = 5.86 and P = 1.00E–4). PCoA confirmed that
all PCoA plots from the smoker were within the standard deviation zone for each of
the three periodontal statuses.

Comparison of functional profiles among microbiomes. Using the SEED subsys-
tems, 2,481, 2,636, and 2,050 bacterial genes were assigned to the H, G, and P sites,
respectively (Table S1B). The numbers of bacterial genes did not significantly differ
among the three periodontal statuses (P = 0.101); 1,575 bacterial genes were com-
monly expressed among all three periodontal statuses. Among the level 1 SEED sub-
systems, “Protein Metabolism” (H, 26.5%; G, 26.0%; and P, 19.3%), “RNA Metabolism”

(H, 9.1%; G, 12.9%; and P, 28.1%), “Clustering-based subsystems” (H, 13.0%; G, 12.1%;
and P, 9.2%), and “Carbohydrates” (H, 12.8%; G, 11.9%; and P, 7.8%) were predominant
in all three periodontal statuses (Fig. 2A). PCoA (Fig. 2B) and PERMANOVA confirmed
the significant difference in the level 1 SEED subsystem composition among the three
periodontal statuses (F = 17.06 and P = 1.00E–4). Sixteen functional categories of the
level 1 SEED subsystems significantly differed among the three periodontal statuses.
Some functions (e.g., branched-chain amino acids, fermentation, flagellar motility, and
amino acid metabolism) showed significantly greater expression in P sites than in H or
G sites.

Based on analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database, 1,489, 1,447, and 1,079 bacterial genes were assigned to the H, G, and P sites,
respectively (Table S1C). The numbers of bacterial genes did not significantly differ
among the three periodontal statuses (P = 0.097). In total, 883 bacterial genes were
commonly expressed among all three periodontal statuses; 310, 232, and 72 genes

TABLE 1 Clinical characteristics of study participantsa

Site PD (mm) Radiographic bone loss (mm) BOP (% of patients)
Healthy 2.46 0.6† 2.706 1.08† 0
Gingivitis 2.66 0.5* 2.766 1.08* 100
Periodontitis 6.46 1.3*† 5.986 1.78*† 100
aValues represent means6 standard deviations. The mean age of patients was 61.26 15.3 years. Seven patients
were male, and 14 were female. PD, probing depth; BOP, bleeding on probing. *, significant difference between
gingivitis and periodontitis sites; †, significant difference between healthy and periodontitis sites.
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FIG 1 Relative 16S rRNA abundances of bacterial taxa and PCoA plot of 16S rRNA profiles. (A) Mean rank
distributions of the taxonomic origins of reconstructed 16S rRNA (rc-rRNA) clusters in healthy, gingivitis, and
periodontitis sites. Mean rc-rRNA abundances detected in .11 samples (.50% of samples) for any status are
shown in descending order. The bars show mean 6 standard error (SE) relative abundances. *, significant
difference between gingivitis and periodontitis site; †, significant difference between healthy and
periodontitis sites; §, significant difference between healthy and gingivitis sites. (B) PCoA was conducted to
examine the Bray-Curtis dissimilarity; 21 samples from healthy, gingivitis, and periodontitis sites were plotted

(Continued on next page)
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were identified solely in H, G, and P sites, respectively. Moreover, 44, 252, and 80 genes
were identified only in G and P sites, only in H and G sites, and only in H and P sites,
respectively. PCoA (Fig. 2C) and PERMANOVA revealed dissimilar functional profiles
among the three periodontal statuses (F = 2.21 and P = 0.045). Some functions (e.g.,
fatty acid biosynthesis, lipopolysaccharide biosynthesis, carbon fixation pathways, bac-
terial chemotaxis, and flagellar assembly) had significantly greater expression in P sites
than in H or G sites. Functional pathways detected in 11 or more samples were visual-
ized (Fig. 2D) to reveal the predominant pathways that were active in H, G, and P sites;
37 pathways (e.g., tricarboxylic acid cycle, fatty acid biosynthesis and degradation,
methane metabolism, and amino acid metabolism) were predominant in all three peri-
odontal statuses. In contrast, five pathways (benzoate degradation, dioxin degradation,
synthesis and degradation of ketone bodies, tryptophan metabolism, and xylene deg-
radation) were active only in G and P sites. Five other pathways (D-alanine metabolism,
D-glutamine and D-glutamate metabolism, inositol phosphate metabolism, nitrogen
metabolism, and selenocompound metabolism) were active only in H and G sites.
Functional profiles estimated based on the National Center for Biotechnology
Information nonredundant (NCBI nr) protein database, the Virulence Factors of
Pathogenic Bacteria database, and MvirDB are described in Text S1.

Characterization of taxonomic mRNA origins and detection of viable taxa with
high mRNA abundance. A previous metatranscriptomic study of the oral cavity
showed that the 16S rRNA sequence-based bacterial composition differed from the
taxonomic mRNA profile-based bacterial composition (17, 18). Using data that were
functionally annotated from the NCBI nr protein database, we first assessed the taxo-
nomic origin of each gene identified in the mRNA clusters (Fig. S3 and Table S1D). The
total numbers of taxa at the species level in H, G, and P sites were 2,058, 2,279, and
2,129, respectively; in total, 1,228 taxa were commonly detected among all three peri-
odontal statuses. In P sites, the most predominant taxon was P. gingivalis; conversely,
Actinomyces sp. was the most predominant taxon in H and G sites. Assessments using
PCoA and analysis of similarities (ANOSIM) showed differences in the bacterial compo-
sitions of mRNA and rc-rRNA clusters based on read abundances in each site (H site,
R = 0.130, P = 1.00E–4; G site, R = 0.135, P = 6.00E–4; and P site, R = 0.267, P = 1.00E–4)
(Fig. S4). Taxa detected in both the rc-rRNA and mRNA profiles were defined as viable
taxa with in situ functions (VTiF), and VTiF with an mRNA/16S rRNA read abundance of
.1 were used to define active taxa with high activity. In total, 122, 139, and 112 VTiF
were identified in the H, G, and P sites, respectively. Of these, 116, 134, and 105 VTiF in
the H, G, and P sites, respectively, were regarded as active taxa. Among active taxa, the
activities of four taxa (F. fastidiosum, Eubacterium nodatum, F. alocis, and Prevotella sp.)
were greater than the activities of red complex bacteria in P sites. We also defined “sig-
nificant” active taxa as taxa in which the read abundance of mRNA was significantly
higher than the read abundance of rc-rRNA. The results showed 26, 45, and 20 signifi-
cant active taxa in the H, G, and P sites, respectively (Fig. 3A and Table S2). Rates of
enhancement of mRNA/16S rRNA ratios for each taxon are shown in Fig. 3B.
Comparison of mRNA/16S rRNA ratios between the H and G sites revealed that F. fas-
tidiosum showed the greatest rate of enhancement; E. nodatum showed the greatest
rate of enhancement in the comparison between G and P sites.

VTiF in co-occurrence networks and interacting core taxa. Co-occurrence net-
work analysis using the SparCC correlation coefficient showed 36, 45, and 26 nodes, as
well as 3.06, 3.15, and 1.73 mean edges per node, in the H, G, and P sites, respectively
(Fig. 4A). Clustering coefficients were 0.536, 0.600, and 0.371 in the H, G, and P sites,
respectively. The significant active taxa (26, 45, and 20 taxa in the H, G, and P sites,
respectively) were prevalent in each network (Fig. 4A, Table 2, and Table S3). Some sig-

FIG 1 Legend (Continued)
with three coordinates. The mean and standard deviation in each axis are indicated by an ellipse for each
status. Dots corresponding to three periodontal statuses from the same patient are connected by a broken
line.
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FIG 2 mRNA profiles obtained following assignments with the SEED subsystems and the KEGG database. (A) Mean rank distributions
of functional categories based on the level 1 SEED subsystems in healthy, gingivitis, and periodontitis sites. The bars show mean 6

(Continued on next page)
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nificant active taxa also exhibited significant positive SparCC correlations; these taxa
were regarded as interacting core taxa. Although two interacting core taxa were pres-
ent in P sites, more interacting core taxa were detected in H sites (nine interacting core
taxa) and G sites (23 interacting core taxa) (Fig. 4A and B). In addition, the gingivitis co-
occurrence network appeared to comprise three subnetworks that included features of
healthy and periodontitis microbiomes (Fig. 4A). Subgroup 1 included mainly taxa that
exhibited co-occurrence relationships with red complex bacteria; these taxa were
detected in both G and P sites. The subgroup 2 subnetwork included mainly taxa that
were detected only in G sites. Subgroup 3 included mainly taxa that were detected in
both H and G sites.

DISCUSSION

Periodontitis is a highly prevalent infectious disease among adults, especially
seniors, worldwide. Approximately 10.8% of the global population (743 million people)
has been affected by severe periodontitis (22). Although the presence of highly patho-
genic bacteria and virulence factors has been reported, changes in biofilm composition
alone do not explain the onset or development of periodontal diseases. A better
understanding of the alteration of the bacterial composition together with the meta-
bolic activities of the microbiome during early and progressed states of periodontal
disease will help to identify the underlying cause of this disease (21); this understand-
ing may also help to establish a targeted approach to suppress disease progression. In
the present study, differences in microbiomes among the healthy, gingivitis, and perio-
dontitis statuses were investigated using metatranscriptomic and network analyses. To
minimize the influences of individual differences, subgingival plaque samples were col-
lected from a healthy, a gingivitis, and a periodontitis site from each patient.

Based on 16S rRNA analysis, the read abundances of bacteria and PCoA assessments
clarified differences in microbiomes between periodontitis sites and either healthy or
gingivitis sites. These results suggested the presence of diseased-microbiome specific-
ity in periodontitis sites and supported a previous finding that individual differences in
microbiomes were smaller among periodontitis samples than among healthy samples
(19). In periodontitis sites, high abundances of red complex bacteria and F. nucleatum
were observed, consistent with previous findings (16, 17, 23). However, well-known pu-
tative periodontopathic bacteria were also present in healthy and gingivitis sites.
Periodontopathic bacteria have been found in the microbiomes of a periodontally
healthy site, although they exhibit very low abundances (23, 24). These results implied
the need to consider whether such bacteria are simply present or functionally active in
healthy sites. Accordingly, we assessed bacterial activities based on mRNA/16S rRNA
read abundances; we found that red complex bacteria demonstrated increased activity
in conjunction with disease progression. Furthermore, taxa such as F. fastidiosum, E.
nodatum, F. alocis, and E. saphenum showed greater rates of mRNA/16S rRNA read
abundance enhancement than did red complex bacteria, in conjunction with disease
progression. We presumed that, during the development of periodontal diseases,
these species might be keystone species (25, 26) and/or inflammophilic pathobionts
(27, 28).

To clarify interactions among the bacteria in each microbiome, we performed co-
occurrence network analyses. Compared with networks in healthy and gingivitis sites,
the bacterial network in periodontitis sites had fewer taxa and showed smaller cluster-
ing coefficient values, indicating that the selected taxa engage in dysbiosis, which con-

FIG 2 Legend (Continued)
SE relative abundances. *, significant difference between gingivitis and periodontitis sites; †, significant difference between healthy
and periodontitis sites; §, significant difference between healthy and gingivitis sites. (B) PCoA plot prepared from mRNA profiles
assigned via the SEED subsystem analysis, as described in the legend of Fig. 1B. (C) PCoA plot prepared from mRNA profiles
assigned via the KEGG database analyses, as described in the legend of Fig. 1B. (D) Active KEGG pathways present in any of the 21
samples for each periodontal status (left maps) and status-specific pathways detected in $11 samples (right maps), with
corresponding colors in the box below.
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FIG 3 Comparison of taxonomic profiles of 16S rRNA and taxonomic mRNA. (A) mRNA/rc-rRNA abundance ratios calculated for each VTiF;
predominant taxa with significant differences between rc-rRNA and mRNA are shown in descending order. The bars show mean 6 SE

(Continued on next page)
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tributes to the establishment of periodontitis. P. nigrescens, an interacting core taxon
in periodontitis, was associated with both healthy and diseased periodontal sites (29–
32). Szafra�nski et al. suggested that this bacterium may become an accessory pathogen
in a dysbiotic community (23). P. nigrescens reportedly possesses a virulence-related
gene, Gingipain R1 (20), which encodes a cysteine protease that serves as a primary vir-
ulence factor for P. gingivalis. Our findings suggest that P. nigrescens plays an impor-
tant role in the pathogenesis of periodontitis. Regarding the gingivitis microbiome, the
co-occurrence network included bacterial features of healthy and periodontitis sites;
this finding was consistent with the results of PCoA. The microbiome associated with
gingivitis suggested that gingivitis represents a transitional stage between health and
periodontitis. The interacting core taxa of subgroup 1 in the gingivitis microbiome
comprised E. nodatum, E. saphenum, F. alocis, F. fastidiosum, M. timidum, and T. denti-
cola. As mentioned above, the rates of mRNA/16S rRNA read abundance enhance-
ments of these taxa were highly varied, in conjunction with periodontal disease pro-
gression; thus, we presumed that they were important bacteria involved in the
pathogenesis of periodontal disease. Immune inactivation activities of E. nodatum, E.
saphenum, F. alocis, Parvimonas micra, and Porphyromonas endodontalis have been
reported (33); co-occurrence relationships among these taxa were also observed in the
present study. Additionally, F. alocis has been reported to invade epithelial tissues and
substantially affect the formation of periodontal microorganism communities (34).
Interactions among E. nodatum, E. saphenum, F. alocis, P. micra, and P. endodontalis pre-
sumably modulate the host immune response; in this study, the co-occurrence rela-
tionships among these taxa were associated with the progression of gingival inflam-
mation. The higher mRNA expression levels of genes from these bacteria might
represent characteristics of the gingivitis microbiome, while indicating a future micro-
biome shift toward periodontitis; therefore, monitoring these bacteria might be helpful
for evaluation of disease status. In the present study, red complex bacteria exhibited
unexpected behaviors in bacterial networks. All red complex bacteria were present in
both the gingivitis and periodontitis networks, while co-occurrence relationships of all
three species were observed only in the gingivitis network. Furthermore, P. gingivalis
and T. forsythia were interacting core taxa in healthy and gingivitis sites, indicating
that these bacteria were both present and functionally active in healthy and gingivitis
sites. Previous studies showed that these bacteria affected primary polymicrobial bio-
film formation (35). Our results suggest that interspecies interactions between red
complex bacteria and other taxa are essential for the establishment of a dysbiotic com-
munity, while the roles of red complex bacteria as periodontal pathogens diminish dur-
ing subsequent stable disease.

In this study, status-specific metabolic pathways were detected by the KEGG database
analysis. For example, the inositol phosphate metabolism and nitrogen metabolism path-
ways were found to be active only in H and G sites. A recent study of metabolomic pro-
files in periodontitis showed that inositol levels of gingival crevicular fluid were signifi-
cantly higher in periodontally healthy subjects than in patients with periodontitis (36).
Furthermore, Hoffman et al. noted that nitrogen metabolism prevailed in a Prevotella-
dominant bacterial community (37). We also found a high rate of Prevotella intermedia
mRNA/16S rRNA ratios between H and G sites, which is consistent with the previous
results. However, the relationships between the other active pathways and periodontal
bacteria that were present in each status need further clarification. Analyses based on the
SEED subsystems and the KEGG database indicated that bacterial chemotaxis and flagel-
lar assembly were enriched in conjunction with periodontal disease progression. Duran-
Pinedo et al. and Yost et al. considered that increases in these metabolic activities were

FIG 3 Legend (Continued)
mRNA/rc-rRNA abundance ratios. (B) Comparison of mRNA/16S rRNA ratios between healthy and gingivitis sites and between gingivitis
and periodontitis sites; rates of enhancement of mRNA/16S rRNA ratios for each taxon are depicted, showing significant differences in
read abundance between rc-rRNA and mRNA in periodontitis sites. mRNA/16S rRNA ratios for each taxon are also depicted. Rates of
enhancement of mRNA/16S rRNA ratios are indicated by color gradient. Red complex taxa are indicated in a red font.
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FIG 4 Co-occurrence networks and interacting core taxa in VTiF profiles. (A) All networks are shown, with each bacterial taxon and co-occurrence
relationship indicated by a node and an edge, respectively. Active taxa are indicated with bold circles, and interactions with significant co-occurrence

(Continued on next page)
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significant in defining severe periodontitis (16, 38). Furthermore, the genes involved in
these metabolic activities were upregulated in the context of periodontitis, in a manner
driven by F. alocis, F. fastidiosum, and red complex bacteria (39). In the present study, rates
of mRNA/16S rRNA read abundance enhancement and interactions of co-occurrence net-
works related to these bacteria were observed in the gingivitis and periodontitis micro-
biomes. Additionally, several types of amino acid metabolism (e.g., glutamate and aspar-
tate metabolism) were upregulated in conjunction with periodontal disease progression.
Previous metatranscriptomic analyses of the periodontal microbiome suggested that
amino acid metabolism tended to be enriched in periodontitis sites (38, 40). In addition,
fatty acid biosynthesis was presumably related to the presence of red complex bacteria
and the onset of periodontal disease (41). These findings suggest that the stricter anaero-
bic environment in deep periodontal pockets is more suitable for anaerobe-predominant
microbiomes and the expression of genes within anaerobic metabolic pathways (e.g., fer-
mentation and fatty acid biosynthesis). However, robust expression patterns of genes
related to aerobic metabolism (e.g., ATP synthases and sugar-related metabolism) were
observed in both healthy and gingivitis sites, implying similar surrounding environments.
These results are supported by the similarity of co-occurrence networks in healthy and
gingivitis sites in this study; more taxa were commonly detected and the clustering coeffi-
cient values were greater in both healthy and gingivitis sites than in periodontitis sites.
These findings imply an invertible transition between the healthy and gingivitis statuses.

A notable limitation of this study is that the microbiological analyses were con-
ducted with a limited amount of cross-sectional microbiological data. Longitudinal
investigations of microbiomes and their clinical relationships with a larger number of
samples are needed to elucidate bacterial changes during the health-to-periodontitis
shift and confirm the findings reported in this study. Also, we should recognize that
the metatranscriptome does not necessarily represent the final metabolic products
generated by the microbial community. Future studies using omics approaches are
necessary to clarify the bacteria and/or virulence factors that are truly associated with
the development of periodontal diseases.

In conclusion, we elucidated differences in bacterial compositions and gene expres-
sion profiles among the healthy, gingivitis, and periodontitis statuses. Co-occurrence
network analysis revealed that the gingivitis network included features of networks
observed in healthy and periodontitis sites. In particular, interacting core taxa in the
gingivitis microbiome (e.g., E. nodatum, E. saphenum, F. alocis, F. fastidiosum, M. tim-
idum, and T. denticola) may play important roles and offer bacterial targets for evalua-
tion of disease progression.

MATERIALS ANDMETHODS
Ethical statement. This study was performed in accordance with the Ethical Guidelines for Clinical

Studies (2008 notification number 415 of the Ministry of Health, Labor, and Welfare) and was approved
by the Ethics Committee of Tokyo Medical and Dental University (D2015-535). All patients provided writ-
ten, informed consent prior to participating in this study. The study was conducted in accordance with
the principles of the Declaration of Helsinki, as revised in 2013.

Study population. Twenty-one patients seeking dental treatment in the Dental Hospital of Tokyo
Medical and Dental University were recruited for this study. The patients had healthy (PD # 3 mm with-
out bleeding on probing [BOP]), gingivitis (PD # 3 mm with BOP), and periodontitis (PD $ 4 mm with
BOP, clinical attachment loss, and radiographic bone loss) sites in maxillary or mandibular anterior teeth
(42, 43). These patients were systemically healthy and had not received systemic antibiotics or anti-
inflammatory agents within 3 months prior to the start of this study (17, 44). Clinical periodontal param-
eters (PD and BOP) were measured at six sites per tooth: mesiobuccal, buccal, distobuccal, mesiolingual,
lingual, and distolingual sites.

Sample collection and RNA extraction. Subgingival plaque samples were obtained from the deep-
est pocket with or without BOP in the healthy, gingivitis, and periodontitis sites, respectively (three sin-

FIG 4 Legend (Continued)
are indicated with bold lines. Interacting core taxa are indicated in red text for each status. The gingivitis microbiome network is presented as three
subgroups according to their characteristics. (B) VTiF with significant differences between rc-rRNA and mRNA. Interacting core taxa are shown with
star symbols (red, taxa constituted interacting core taxa in periodontitis sites; orange, taxa constituted interacting core taxa in gingivitis sites; blue,
taxa constituted interacting core taxa in healthy sites).
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gle sites per patient). The sampling sites were isolated with sterile cotton rolls, and supragingival plaque
was removed by sterile cotton pellets. The sites were dried by air spray, and 10 sterilized paper points
were inserted into the pocket for 60 s each. The points were then collected in a sterilized tube and
stored at280°C until use.

RNA was extracted using the PowerMicrobiome RNA isolation kit (MO BIO Laboratories, Carlsbad,
CA, USA) and purified using the NucleoSpin miRNA kit (Clontech, Mountain View, CA, USA), the Dr.
GenTLE precipitation carrier (TaKaRa Bio, Shiga, Japan), and TURBO DNase (Ambion, Austin, TX, USA), in
accordance with a published method (17, 18). Purified RNA was quantified using a Quantus fluorometer
(Promega, Madison, WI, USA), and RNA quality was evaluated by capillary electrophoresis with an
Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

cDNA synthesis, library preparation, and Illumina sequencing. Purified RNA was polyadenylated
using the A-Plus poly(A) polymerase tailing kit (Epicentre, Madison, WI, USA) in accordance with the
manufacturer’s protocol and then concentrated by ethanol precipitation using the Dr. GenTLE precipita-
tion carrier. The polyadenylated RNA was reverse transcribed into cDNA; 15 cycles of amplification were
conducted using the SMART-Seq v4 ultralow-input RNA kit for sequencing (TaKaRa Bio), in accordance
with the manufacturer’s protocol. Sequencing libraries were prepared with the Nextera XT DNA sample
preparation kit (Illumina, San Diego, CA, USA), in accordance with the manufacturer’s protocol.
Amplified cDNA was quantified by real-time PCR on a LightCycler (Roche Diagnostics, Mannheim,
Germany) with the KAPA library quantification kit of Illumina (KAPA Biosystems, Wilmington, MA, USA),
in accordance with the manufacturer’s protocol; DNA quality was evaluated by capillary electrophoresis
with an Agilent 2100 bioanalyzer. Prepared samples from 21 patients (63 samples in total) were pooled,
and the Illumina MiSeq platform was used to generate 300-bp paired-end reads.

Processing and analyzing of Illumina sequencing data. Processing and analysis of Illumina sequenc-
ing data (see Table S4 in the supplemental material) were performed in accordance with a published
protocol (17, 18). Briefly, the data were initially processed using Trimmomatic software, version 0.32 (45),
for quality trimming and adapter clipping. In addition, sequences of human origin (9,196,859 total reads;
mean proportion, 21.1%) were removed using DeconSeq software, version 0.4.3 (46). The data were
then further processed using cmpfastq software for separation of paired and unpaired reads (47).

Only paired reads were used for 16S rRNA analysis and OTU identification by expectation maximization
iterative reconstruction of genes from the environment (EMIRGE) (48). The number of reads in each rc-rRNA
OTU was calculated as the abundance value of each 16S rRNA OTU. The representative sequence of each
16S rRNA OTU was aligned for a nucleotide similarity search against sequences in the Human Oral
Microbiome Database, version 13.2 (49), using Basic Local Alignment Search Tool N (BLASTN) (https://blast
.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch). The abundance values of all 16S rRNA OTUs were nor-
malized by conversion to reads per kilobase of transcript per million reads (RPKM). The parameters used for
these tools were established in accordance with a previous study (17, 18).

The community diversities of all samples were estimated by comparing complexities among healthy,
gingivitis, and periodontitis sites using RPKM values. Alpha diversity indexes were estimated from the
number of OTUs and the Shannon index. Rarefaction curves were drawn from abundance values before
conversion into RPKM values with the rarefaction.single command in mothur software, version 1.33.3
(50). Beta diversity was estimated by PCoA using the R software package ape (https://github.com/cran/
ape). Dissimilarity matrixes were generated on the basis of Bray-Curtis dissimilarity using the R software
package vegan (https://github.com/vegandevs/vegan); the matrixes were used to perform PCoA in
which each sample was plotted with three coordinates.

Paired and unpaired reads were annotated for mRNA analysis to confirm functional categories, meta-
bolic pathways, and bacterial genes. The Metagenomics Rapid Annotation using Subsystem Technology
pipeline (51) was used to investigate functional categories and metabolic pathways. All abundance val-
ues were normalized by conversion to reads per million reads. Bar plots were used to illustrate the com-
positions of mRNA profiles by assignments made with the level 1 SEED subsystems. Active pathways in
the KEGG database (52) were visualized using iPath3 (53). For confirmation of bacterial genes, paired
reads were merged by fastq-join (54). Furthermore, all reads, including nonmerged and unpaired reads,
were formed into OTUs by Cluster Database at High Identity with Tolerance software. OTUs derived from
16S rRNA were removed by similarity comparison with BLASTN against SILVA (release 119) (55). The
remaining OTUs were considered to be derived from mRNA. The mRNA OTUs were used to assign pro-
tein functions by BLASTX against the NCBI nr protein database (as of 31 October 2014). Abundance val-
ues of all mRNA OTUs were normalized by conversion to RPKM values, which were also used to deter-
mine the abundances of taxonomic origins. The parameters used for these analyses were established in
accordance with those of a previous study (17, 18).

The mRNA OTUs were also used to identify putative virulence factors by using BLASTX against VFDB
(as of 9 February 2015) and MvirDB (as of 9 October 2014). Differences in taxonomic profiles between
16S rRNA and mRNA OTUs were used to evaluate the activities of individual taxa. Taxa that were
assigned both 16S rRNA and mRNA OTUs were listed, while the remaining taxa were excluded from this
analysis. Taxa that were detected in both 16S rRNA and mRNA profiles were defined as VTiF (17, 18). To
compare the abundances of 16S rRNA OTUs and mRNA OTUs, the abundance values of all 16S rRNA
OTUs were normalized by conversion into RPKM values. The VTiF with mRNA/16S rRNA read abundance
was regarded as an indicator of the viability and functionality of bacterial taxa responsible for disease
etiology (17, 18). VTiF with an mRNA/16S rRNA read abundance of .1 were used to define active taxa.
To understand detailed co-occurrence relationships in mRNA profiles of VTiF, VTiF present in at least six
patients (.25% of the participants) were extracted, followed by the creation of network structures (i.e.,
co-occurrence networks). The co-occurrence coefficients were calculated using SparCC software (56) by
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mRNA taxonomic abundances. Taxon pairs with SparCC values of $0.3 were regarded as positive co-
occurrence relationships, and networks were visualized using Cytoscape software, version 3.7.2 (57).

Statistical analysis. PERMANOVA was conducted to compare species compositions and functions in
microbiomes among the three periodontal statuses. One-way analysis of variance of Friedman’s test
with the Dunn post hoc test was used for comparisons of clinical parameters, alpha diversities, and read
abundances of rc-rRNA OTUs and bacterial genes among the three periodontal statuses (58). ANOSIM
was used to test the significance of dissimilarity among statuses in the bacterial compositions of mRNA
and rc-rRNA clusters based on read abundances. Wilcoxon’s signed-rank test was used to test for signifi-
cant differences between mRNA and rc-rRNA read abundances in each taxon. In all statistical tests, P val-
ues of ,0.05 were considered statistically significant. All analyses were performed using R software, ver-
sion 3.1.1 (R Foundation for Statistical Computing, Vienna, Austria).

Data availability. The data sets generated for this study can be found in the DNA Data Bank of
Japan (DDBJ) with the following accession number for RNA sequencing: DRA011737.
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