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Dendritic cells (DCs) and natural killer (NK) cells shape each other’s functions early during
immune responses. DCs activate NK cells and NK cells can mature or kill DCs. In this
review we will discuss which DC and NK cell subsets are mainly affected by this interac-
tion, where these encounters might take place and which signals are exchanged. Finally,
we will point out what the clinical benefit of understanding this interaction might be and
how it changed our view on NK cells as innate lymphocytes.
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INTRODUCTION
Natural killer (NK) cells have originally been described by their
function to spontaneously lyse tumor and infected cells (1–3).
However, it has recently become apparent that they require mostly
cytokine mediated activation to differentiate into effector cells and
execute different effector functions – at least in humans – depen-
dent on their differentiation stage (4–6). Three prominent cell
populations that trigger this NK cell activation and differentiation
have been identified. These are dendritic cells (DCs), neutrophils,
and CD4+ T cells (7–12). In this review we will focus on the
interaction of NK cells with DCs, with an emphasis on its role in
augmenting NK cell function during the innate phase of immune
responses.

Human DCs are composed of different subpopulations (13) of
which the two main subpopulations are conventional and plasma-
cytoid DCs (cDCs and pDCs). While pDCs are primarily found in
primary and secondary lymphoid tissues, including bone marrow,
thymus, lymph nodes, and spleen as well as blood in steady-state
conditions, cDCs can be found both in lymphoid tissues and
peripheral organs. Human cDCs can be subdivided in two addi-
tional subsets, CD1c+ (BDCA1+) and CD141+ (BDCA3+) DCs,
which have now been found in the skin, liver, and lung, in addi-
tion to primary and secondary lymphoid tissues (14). In addition
to these constitutive DC populations, which are at least to a sub-
stantial part dependent on Flt3L in their development (15, 16),
inflammatory DCs can develop from monocytes. This DC lin-
eage is dependent on GM-CSF for its development and therefore,
GM-CSF constitutes an integral component of human monocyte-
derived DC differentiation in vitro (16). Finally, Langerhans cells
constitute a human DC population in the epidermis and at least
in mice their steady-state maintenance is dependent on stromal
IL-34 (17, 18). To fulfill their function DCs are equipped with
molecules that sense the environment and in contrast to mice,

the human DC populations have quite restricted expression pat-
terns of pathogen associated molecular pattern (PAMP) receptors
(19). For example, the toll-like receptor (TLR) nine for unmethy-
lated DNA, which can be stimulated by CpG oligonucleotides, is
only expressed by pDCs in humans, as is TLR7 for single-stranded
RNA. In contrast, the double-stranded RNA receptor TLR3 is
highest expressed on CD141+ cDCs and elicits high IL-12 and
IFN-α/β/λ production from this subset. Interestingly, the IFN-α
production by CD141+ cDCs reaches similar levels as IFN-α pro-
duction from pDCs after TLR7 stimulation (20, 21). Therefore, all
of these human DC populations need to be considered for NK cell
activation and differentiation and will be discussed below.

HUMAN NATURAL KILLER CELL SUBSET DISTRIBUTION
Natural killer cell reactivity is guided by the balance of activat-
ing and inhibitory receptors (22). Both are acquired sequentially
during development where inhibitory receptors are also instruc-
tive in NK cell education (23, 24). NK cell differentiation can in
part be driven by both IL-15 and IL-2 in humans (25, 26). It is
now assumed that the first functionally competent NK cell sub-
set are CD56brightCD16− NK cells, which have lost c-kit (CD117)
and IL-7Rα (CD127) expression (26, 27). These seem to acquire
the intermediate affinity activating FcγRIII/CD16, successively
down-regulate the inhibitory HLA-E receptor NKG2A/CD94 and
acquire more and more inhibitory killer immunoglobulin-like
receptors (KIRs) upon differentiation (28). Interestingly, at any
stage CD57 expression seems to terminally differentiate the respec-
tive NK cell subset and diminish its capacity to further expand.
While CD56brightCD16− NK cells respond to cytokine stimu-
lation primarily with cytokine production, further differenti-
ated CD56dimCD16+ NK cells display increased cytotoxicity and
can produce a rapid, but transient cytokine burst upon tumor
or infected cell encounter (25, 29). Interestingly, the successive
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up-regulation of KIRs seems to influence the reactivity of the later
NK cell differentiation stages, depending on the expression of the
cognate HLA class I ligands (24). Namely, NK cells with KIRs
specific for self-HLA class I molecules have a higher reactivity
against HLA class I negative tumor cell targets (30). These so-called
licensed NK cells accumulate preferentially during some viral
infection, primarily during persistent human cytomegalovirus
(HCMV) infection (31). Some of these NK cell subset expan-
sions allow for a more rapid response to secondary challenge with
the same pathogen, which could be interpreted as an immuno-
logical memory function of the NK cell compartment (32, 33).
These infection-experienced NK cells have been suggested to be
enriched in the CXCR6 expressing hepatic NK cell subset, at least
in mice (34).

The different NK cell differentiation stages have been
found to be enriched at distinct anatomical sites (35). While
CD56dimCD16+ NK cells predominate in the blood, most other
tissues harbor high frequencies of CD56brightCD16− NK cells.
This IFN-γ producing NK cell subset has been originally found to
mainly populate lymph nodes, tonsils, and splenic white pulp (25,
36–38). However, this NK cell differentiation stage has recently also
been found to be enriched in liver, skin, uterus, joints, and tumor
tissue (39–43). The CXCR6 positive NK cell subset with memory-
like features might preferentially home to liver (34). Therefore,
different NK cell differentiation stages can be preferentially found
in distinct organs and their location might determine with which
human DC populations they can preferentially interact.

SITES OF INTERACTION BETWEEN HUMAN DCs AND
NK CELLS
While DCs can be found in all tissues, after activation, also called
maturation, by for example TLR ligands, they migrate to or remain
in secondary lymphoid tissues (13). Therefore, the interaction
between mature DCs and resting NK cells would probably pref-
erentially take place in secondary lymphoid tissues. Consistent
with this notion, human NK cells and cDCs have been found to
be enriched in the T cell zones of lymph nodes (36, 44). More-
over in mice, activation of NK cells in different infectious settings
required DCs and homing of NK cells to secondary lymphoid tis-
sues (45). Furthermore, injection of mature DCs resulted in the
attraction of NK cells to secondary lymphoid tissues in mice (46)
and brief contacts of NK cells with DCs have been observed in
lymph nodes after adoptive transfer of mature DCs or in vivo
activation with TLR3 and 4 ligands (47). Human secondary tis-
sues might be especially predestined for these interactions, because
CD56brightCD16− NK cells preferentially home to these sites via
CCR7 and CD62L expression and are enriched at these sites
(36, 44). Moreover, mature monocyte-derived DCs preferentially
stimulate CD56brightCD16− NK cells to proliferate and produce
cytokines (37, 44, 48). Thus, NK cell activation by mature DCs
probably happens primarily in the T cell zones of secondary
lymphoid tissues including lymph nodes.

Once activated, these NK cells might then leave secondary lym-
phoid tissues and home to sites of inflammation. Indeed, it has
been observed that NK cells and DCs co-localize in inflamed
skin (49). These activated NK cells might kill immature DCs at
this site in order to prevent them from transmitting tolerogenic

signals to secondary lymphoid tissues (50). Indeed, NK cell
killing of preferentially immature DCs has been observed, espe-
cially when activated NK cells outnumber DCs (51, 52). In light
of the fact that in most peripheral human tissues, inflamed
organs, or tumor microenvironment, it has been shown that
CD56brightCD16−KIR− NK cells are enriched (35), it is interest-
ing that this NK cell subset again might be preferentially killing
DCs in the autologous setting without compromised MHC class
I expression (53). However, NK cell reactivity might be curbed by
regulatory T cells at these sites, who have been suggested to impair
IL-2 and IL-15 mediated expansion and activation in mice (54–56).
Furthermore, myeloid derived suppressor cells (MDSCs) might
inhibit anti-tumor NK cell responses (57, 58) and their depletion
by chemotherapeutika could augment their reactivity in tumors
(57, 59). Only in conditions of infection induced down-regulation
of MHC class I, as for example during HCMV infection, terminally
differentiated KIR+NKG2C+CD57+ NK cells might accumulate
and then be enriched in peripheral tissues (33). Thus, NK cells
might be stimulated in secondary lymphoid tissues by mature
DCs and afterward might kill immature DCs at peripheral sites.
Since both immature and mature DCs express significant levels of
MHC class I molecules as ligands for inhibitory NK cell receptors,
like KIRs, preferentially CD56brightCD16−KIR− NK cells might be
involved in both interactions.

SIGNALS IN HUMAN DC INTERACTION WITH NK CELLS
According to these two different sites of interactions for DCs and
NK cells, the stimulatory and killing signals that are exchanged
require different molecules (Figure 1). In secondary lymphoid tis-
sues, probably primarily cytokines are exchanged. Interleukin-12
and -18 have mainly been identified to activate cytokine pro-
duction by NK cells (37, 44, 60). In response to IL-12, NK cells
primarily produce IFN-γ, TNF-α, and GM-CSF. In contrast, IL-15
is involved in DC-stimulated NK cell proliferation, survival, and
pre-activation (44, 45, 61). Interestingly, IL-15 only reaches the cell
surface of the producing cell in complex with IL-15Rα (62), and
trans-presentation might facilitate cell contact dependent IL-15
signaling. Finally, type I IFN augments NK cell cytotoxicity (37,
63). Depending on their cytokine secreting potential, different DC
subsets are therefore capable of triggering one or the other NK cell
function. PDCs stimulate primarily NK cell cytotoxicity via their
type I IFN producing function (63). CD1c+ conventional and
monocyte-derived human DCs are capable of producing IL-12,
particularly after maturation with a TLR3 agonist (37, 63). Finally,
Langerhans cells can support NK cell survival via their ability to
present IL-15 on their surface (64). Thus, different human DC
subsets stimulate distinct NK cell effector functions primarily via
secretion of cytokines.

The respectively activated NK cells can then however signal
back to DCs and presumably spread immune activation to neigh-
boring secondary lymphoid tissue resident DCs (Figure 1). It has
been shown that NK cell produced TNF-α can mature DCs (52,
65). This maturation can initiate adaptive T cell mediated immune
responses against for example tumors (66, 67). Moreover, NK cell
produced IFN-γ can assist in the polarization of Th1 responses by
DCs (46, 68–70). Particularly, IL-18 activated NK cells up-regulate
secondary lymphoid tissue homing markers like CCR7, and can
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FIGURE 1 | Interactions of human NK cells with DCs. (A) Mature
DCs activate resting NK cells via IL-12, IL-15, and type I IFN. At the
same time NK cells receive an inhibitory signal via killer
immunoglobulin-like receptors (KIRs) or CD94/NKG2A to prevent them
from killing mature DCs. (B) Activated NK cells can mature DCs via

secretion of TNF-α, polarize them to produce IL-12 for Th1 induction with
IFN-γ, and attract them via the CCR5 ligands CCL3 and CCL4. (C) If
they, however, outnumber immature DCs they can kill these targets by
perforin mediated lysis after engagement of the activating receptors
NKp30 and DNAM-1.

stimulate IL-12 production by DCs (71). These NK cell stimu-
lated DCs also up-regulate CCR7 and migrate in response to its
ligand CCL21 (72). Furthermore, these so-called “helper” NK cells
can also stimulate DCs to produce chemokines, primarily CXCL9,
CXCL10, and CCL5, which allows attraction of effector CD8+ T
cells (73). Therefore, NK cells can mature DCs to preferentially
home to secondary lymphoid tissues and prime Th1 responses.

Finally, the third outcome of interactions between DCs and
NK cells is killing of DCs (Figure 1). It has been shown that this
occurs between activated NK cells and immature DCs (51–53). At
least monocyte-derived DCs are recognized by activated NK cells
via their NKp30 and DNAM-1 activating receptors (51, 74–76).
Mature DCs are protected from this NK cell lysis by up-regulation
of MHC class I molecules, including the non-classical HLA-E mol-
ecule (51, 53). Thus, DCs express ligands for activating receptors
on human NK cells, but are after maturation protected from NK
cell lysis by increased expression of MHC class I molecules.

IMMUNOLOGICAL SYNAPSES THAT MEDIATE NK CELL
INTERACTION WITH DCs
Natural killer cells interact with target cells usually via the estab-
lishment of one of two types of immunological synapses. If
activating signals dominate the interaction,an activating immuno-
logical synapse is observed with actin polymerization in the NK
cell, polarization of the microtubule organizing center (MTOC)
to the synapse and cytotoxic granule release through the center of
the synapse, which leads to the killing of the target cell (77). On
the contrary, if inhibitory signals prevail, inhibitory immunologi-
cal synapses do not mature with cytoskeleton rearrangement, are
short lived and the NK cell dissociates from the target cell without
mobilizing any effector functions (78). NK cells also interact with
DCs through immunological synapses (61, 79–81). However, the
outcome of the interaction between mature DCs and NK cells is
NK cell activation without killing of the conjugated DC. There-
fore, we termed this immunological synapse regulatory. It seems

to be designed to efficiently exchange paracrine IL-12, IL-18, and
IL-15 from DCs to NK cells, in order to stimulate cytokine produc-
tion and survival of NK cells (61, 79, 80). This becomes especially
important when maturation stimuli allow DCs only to produce
limited amounts of these cytokines and other leukocyte popula-
tions in the lymph node environment can consume these cytokines
in addition to NK cells (37, 79). At the same time, inhibitory inter-
actions are exchanged at the regulatory immunological synapse
between mature DCs and NK cells. Inhibitory receptors like KIRs
accumulate in other membrane domains than NK cell stimula-
tory IL-15/IL-15Rα complexes, although both are located in the
center of immunological synapses of mature DCs with resting NK
cells (61). This compartmentalization of inhibitory and activating
domains occurs rapidly within 5 min after interaction between
these two leukocyte populations. Upon longer interaction, the
immunological synapse between mature DCs and NK cells is then
stabilized by cytoskeletal rearrangements, including actin poly-
merization at the synapse in the conjugated DC (81). Interestingly,
these cytoskeletal rearrangements seem to primarily support the
inhibitory signals that are exchanged at the synapse between DCs
and NK cells, because inhibition of actin polymerization in DCs
by for example decreasing the expression of Wiskott Aldrich Syn-
drome Protein (WASP), which organizes the actin cytoskeleton
at immunological synapses, leads to conversion of the immuno-
logical synapse into an activating NK cell synapse with actin
polymerization in the conjugated NK cells and killing of DCs.
Therefore, human DCs seem to coordinate their interaction with
NK cells via a regulatory immunological synapse, which allows
exchanging at the same time stimulatory signals for NK cells and
signals that inhibit them from killing DCs.

While these long-lasting synapses have been observed with
human cells in vitro, DCs, and NK cells establish only short inter-
actions, usually below 3 min, in mouse lymph nodes (47). It is so
far unknown, which species differences might cause these diver-
gent interaction kinetics. One possibility, however, could be that
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the possible NK cell subpopulation counterpart in mice (82) of the
CD56brightCD16− NK cell population, which preferentially forms
conjugates with human mature DCs (61), engages in these long-
lasting synapses, and the respective murine NK cell subset is too
rare to be readily observed in mouse lymph nodes in vivo. Alter-
natively, however, the short interactions in vivo could also result
from additional stimuli like chemokine gradients that could sus-
tain NK cell mobility and shorten NK cell interactions with DCs.
Further in vivo imaging studies could clarify such heterogeneity
of immunological synapse formation between DC and NK cell
subpopulations.

THERAPEUTIC POTENTIAL OF NK CELL INTERACTIONS WITH
DCs
Both NK cell activating as well as DC restricting functions in
the interaction of NK cells with DCs might be harnessed for
therapeutic benefit. NK cell activation by DCs during vaccina-
tion might generate a stimulatory environment for the priming
of Th1 responses. Along these lines, TLR3 agonists mature DCs
for optimal NK cell stimulation in vitro (37). Moreover, synthetic
double-stranded RNA induced a profile beneficial for NK cell stim-
ulation in healthy volunteers (83) and was able to augment NK cell
responses against tumor cells in mice with reconstituted human
immune system components (84). Therefore, the right choice of
adjuvant could harness NK cells during vaccination. Cytokine pro-
duction by activated NK cells can improve maturation of DCs to
expand tumor specific T cells more efficiently and acquire hom-
ing markers for secondary lymphoid tissues (72). Thus, NK cell
activation by DCs during vaccination could feed-back to antigen
presenting cells to increase their Th1 polarizing potential.

However, a completely different clinical benefit of DC interac-
tion with NK cells was revealed when it was noticed that allore-
active NK cell therapy by haploidentical bone marrow transplan-
tation against acute myeloid leukemia (AML) relapse also dimin-
ished graft-versus-host-disease (GvHD) (85, 86). It was noted that
NK cells were not only able to target HLA mismatched leukemia
cells, but also allogeneic DCs, which then no longer can prime
donor T cells, specific for the host MHC allotype, to attack the host.
This NK cell reactivity against MHC mismatched DCs might also
be beneficial in other transplantation settings. At least in experi-
mental animal models, it is well documented that alloreactive NK
cells eliminate DCs from allogeneic grafts (87–90). In MHC mis-
matched skin, pancreatic β-islet and lung transplantation, it was
shown that host NK cells eliminate donor DCs from the trans-
plant, which subsequently led to decreased priming of host derived
alloreactive T cell responses. The resulting diminished rejection
allowed the respective transplants to survive longer and to perform
better. These data suggest that allogeneic DC targeting by NK cells
that lack KIRs against the MHC haplotype of the graft can amelio-
rate GvHD by donor NK cell cytotoxicity or transplant rejection
by host NK cell cytotoxicity. These clinical benefits might be aug-
mented by adoptively transferring alloreactive NK cell lines, which
could be either stimulated with TLR3 agonist matured DC popu-
lations or their cytokines in vitro. IL-12, IL-15, IL-18, and IFN-α
should be considered as stimulatory monokines that could be used
to expand functionally competent NK cell lines in vitro. Adoptively
transferred NK cell lines that have been activated and expanded in

this fashion might confer protection against leukemia relapse and
GvHD in a haploidentical transplantation setting until NK cell
populations have reconstituted from transplanted hematopoietic
progenitor cells.

CONCLUSION
In recent years it has become apparent that DCs can in addition to
being superior antigen presenting cells for T cell priming, activate
innate lymphocytes (69). In fact, the parallels between CD8+ T cell
priming and NK cell activation by DCs are quite striking. For both
lymphocyte populations, activation happens in secondary lym-
phoid tissues, is dependent on IL-12 and requires IL-15 for survival
(91). DCs form immunological synapses with CD8+ T cells and
NK cells, which are stabilized by the DC cytoskeleton. Further-
more, both of them acquire cytotoxicity through this activation
and loose initial cytokine production during further differentia-
tion. Alongside, and presumably as a protective mechanism against
immunopathology mediated by these cytotoxic lymphocytes, both
CD8+ T cells and NK cells up-regulate inhibitory receptors, which
safe-guard their activation upon target cell encounter. Finally, they
both can kill DCs either after viral antigen presentation or virus
induced MHC class I down-regulation. Therefore, it is tempting
to speculate that NK cells are the evolutionarily older cousins of
CD8+ T cells. However, it still needs to be clarified if they can also
develop some sort of memory to infections through for example
NK cell subset expansion in response to pathogens (33).
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