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Abstract

Background: Next-generation sequencing is revolutionising diagnosis and treatment of rare diseases, however its
application to understanding common disease aetiology is limited. Rare disease applications binarily attribute
genetic change(s) at a single locus to a specific phenotype. In common diseases, where multiple genetic
variants within and across genes contribute to disease, binary modelling cannot capture the burden of pathogenicity
harboured by an individual across a given gene/pathway.
We present GenePy, a novel gene-level scoring system for integration and analysis of next-generation sequencing data
on a per-individual basis that transforms NGS data interpretation from variant-level to gene-level. This simple and
flexible scoring system is intuitive and amenable to integration for machine learning, network and topological
approaches, facilitating the investigation of complex phenotypes.

Results: Whole-exome sequencing data from 508 individuals were used to generate GenePy scores. For each
variant a score is calculated incorporating: i) population allele frequency estimates; ii) individual zygosity, determined
through standard variant calling pipelines and; iii) any user defined deleteriousness metric to inform on functional
impact. GenePy then combines scores generated for all variants observed into a single gene score for each individual.
We generated a matrix of ~ 14,000 GenePy scores for all individuals for each of sixteen popular deleteriousness metrics.
All per-gene scores are corrected for gene length. The majority of genes generate GenePy scores < 0.01
although individuals harbouring multiple rare highly deleterious mutations can accumulate extremely high
GenePy scores.
In the absence of a comparator metric, we examine GenePy performance in discriminating genes known to
be associated with three common, complex diseases. A Mann-Whitney U test conducted on GenePy scores
for this positive control gene in cases versus controls demonstrates markedly more significant results (p = 1.37 × 10− 4)
compared to the most commonly applied association tool that combines common and rare variation (p = 0.003).

Conclusions: Per-gene per-individual GenePy scores are intuitive when assessing genetic variation in individual patients
or comparing scores between groups. GenePy outperforms the currently accepted best practice tools for combining
common and rare variation. GenePy scores are suitable for downstream data integration with transcriptomic and
proteomic data that also report at the gene level.
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Background
In the last decade, next-generation sequencing (NGS)
has emerged as an effective tool for detecting single nu-
cleotide variants (SNVs) causing rare conditions [1]. Re-
cent retrospective studies have demonstrated an increase
of 25–31% in diagnostic yield of rare diseases due to the
application of exome or whole genome sequencing in a
clinical framework [2, 3]. Through comparison against
human genome reference sequence, high quality NGS
data on individual patients can be used to identify vari-
ation in variant call files (VCF). These files typically con-
tain in excess of 30,000 variants when based on whole
exome data that captures sequence on the protein cod-
ing region of the genome only and runs to many mil-
lions when based on whole genome data. The successful
identification of disease causing variation is critically
dependent upon annotation and subsequent filtering of
these data. Filtering strategies typically focus on very
rare variants in panels of genes empirically implicated as
related to the clinical manifestation or phenotype of
interest. Further exclusion of synonymous variants that
have no impact on protein amino acid sequence and var-
iants that occur at a frequency substantially greater than
that of the disease of interest are also deprioritised.
These steps can reduce the search space for causal vari-
ation by orders of magnitude to smaller sets of hundreds
or even tens of genetic changes that are then prioritised
by in silico methods [4].
Many in silico tools have been developed in order to

estimate the potential impact of genetic variants on
gene/protein function. Predicting pathogenicity or dele-
terious impact can be achieved through a variety of algo-
rithms that focus on one or more specific biological
aspect(s). Three broad classes of deleteriousness predic-
tion metrics are: (i) conservation metrics, (ii) function al-
teration metrics and (iii) composite scores. Conservation
metrics such as GERP++ [5], phastCons [6] and phyloP
[7] assign a high deleteriousness to variants where the
homologous position in other species has remained con-
strained over evolutionary history. Scores focused on
predicting the potential disruption of protein functional-
ity, for example through alteration of resultant protein
amino acid sequence, include SIFT [8], FATHMM [9],
fathmm-MKL [10], PolyPhen2 [11], MutationTaster [12],
PROVEAN [13] and VEST3 [14].
To date, no single in silico metric has proven unilat-

eral superiority in estimating consequent severity, des-
pite an expanding list [15] of metrics based on subtly
different foundations and assumptions. While individual
metrics have the ability to perform well in isolation, dis-
cordant evidence when assessing the same data with
multiple metrics has led to increased uncertainty in
choice of prediction tool [16]. This in turn has led to the
development of a range of composite prediction tools

applying statistical and machine learning methodologies
that combine metrics assessing both conservation and
functionality in order to obtain higher accuracy [17].
The most utilised composite scores include CADD [18],
MetaSVM and MetaLR [19], M-CAP [20], Eigen [21],
hyperSMURF [22] and DANN [23] with no one method
emerging as optimal [24]. For this reason, when asses-
sing variant deleteriousness it is still necessary to ob-
serve consensus prediction based on multiple scoring
metrics rather than focusing on any single score [25].
This remains the case when studying rare Mendelian
disease where single gene mutations imparting severe
consequence are expected to represent the most extreme
set of deleterious variants.
In contrast to rare diseases, common genetic diseases

such as ischemic heart disease, asthma, inflammatory
bowel disease (IBD) or Alzheimer’ disease are caused by
the combined action of multiple genetic variants each
differentially impacting risk and disease severity while
working in combination with environmental exposures
[26]. Collectively, common diseases impose an enormous
economic burden and arguably have the greatest unmet
need for diagnosis and stratified treatment [27]. The set
of genes and variants imparting increased susceptibility
vary from one patient to the next even when clinical
presentation and molecular pathology appear indistinct.
Prior to transformative NGS approaches, genome-wide

association studies (GWAS) made substantial advances
in explaining the molecular bases of complex diseases.
These studies tagged up to a million common single nu-
cleotide markers across the genome and identified statis-
tically significant distributions of bialleleic markers in
large cohorts of independent patients compared to eth-
nically match controls. Genetic regions implicated by
GWAS were assumed to harbour genes or regulatory el-
ements underpinning the disease of interest. However,
because these genetic breakthroughs were achieved
using necessarily huge cohorts of patients compared to
controls, while their findings hold true for massive pa-
tient groups, they are largely uninformative on an indi-
vidual patient basis. Importantly, the relevance and value
of GWAS findings to individual patients has therefore
not translated through to clinical practice in terms of ei-
ther diagnosis or treatment.
Application of NGS to improve our understanding of

common oligogenic diseases have been largely limited to
burden tests that extend the association testing frame-
work to integrate information about common and rare
variation across discrete genomic regions such as genes.
While this approach harnesses the power of NGS
through inclusion of rare variants that can only be de-
tected by sequencing approaches, they are most often
implemented through collapsing multiple variants into a
single value for univariate analysis. The limited success
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of these approaches are partly attributed to their intrin-
sic lack of biological information and inclusion of both
causal and benign genetic variation [28, 29]. In order to
overcome this limitation, Neale et al. developed the
C-alpha test, correcting for both protective and deleteri-
ous variants but at the cost of losing statistical power.
Currently, SKAT (and SKAT-O optimised for small sam-
ple size) [30] represents the most sensitive approach to
test for association between a genomic region and a
phenotype. SKAT jointly assesses both rare and common
variants maximising the statistical power and represent-
ing a new class of analysis lying between burden and as-
sociation tests and has been successfully applied to a
large variety of complex diseases [31–35].
While NGS is proving a transformative technology for

the diagnosis and treatment of rare diseases, its relatively
modest application in common diseases is limited by a
lack of analytical approaches that incorporate individual
profiles of genetic variation ascertained through NGS
annotated with biologically meaningful information on
their frequency and consequence.
Instead of variant focussed approaches typical for rare

disease or large cohort approaches that distinguish
GWAS, contemporary analyses of complex polygenic
disorders require the development of tools that combine
both mutational burden and biological impact of a per-
sonalised set of mutations into single scores for discrete
sub-genomic units such as genes. A matrix of such a set
of scores for any one individual could then be analysed
using various methodology including machine learning.
In this study, we describe the development and imple-

mentation of GenePy, a novel gene-level scoring system
for integration and analysis of next-generation sequen-
cing data on a per-individual basis. The goal of the Gen-
ePy scoring system is not to create a statistical tool for
burden or association tests, but to generate a novel scor-
ing system that transforms NGS data interpretation from
variant level to gene level. The aim is to enable a gene
based scoring system for individuals that can be used to
compare single gene pathogenicity between individuals
or to prioritise genes with high pathogenic loading for
scrutiny for any single individual. In addition, GenePy
aims to increase the intrinsic biological information con-
tent by incorporating data on allele frequency and ob-
served zygosity in addition to any user-defined variant
deleteriousness metric. The GenePy scoring system aims
to transform typical sequencing data output into a for-
mat suitable for integration into downstream network
analyses or machine learning approaches for stratifica-
tion. In the absence of other comparator scoring
systems, we validate GenePy performance on three
complex diseases: paediatric inflammatory bowel dis-
ease (IBD), Parkinson’s disease (PD) and primary open
angle glaucoma (POAG).

Implementation
Sample data
Whole exome sequencing (WES) data were derived from
two sources. This first group comprised 309 patients diag-
nosed in childhood with IBD. This cohort (further de-
scribed in [36]) includes unrelated, Caucasian patients
ascertained and recruited through Southampton Children’s
Hospital who were diagnosed under the age of 18 years ac-
cording to the modified Porto criteria [37]. Additional WES
data from a cohort of 199 anonymised individuals diag-
nosed with an infectious disease but unselected for any
form of autoimmune disease were also used to give a total
cohort size of 508 individuals with WES data.
Genomic DNA was extracted from peripheral venous

blood and fragmented DNA subjected to adaptor
ligation and exome library enrichment using the Agilent
SureSelect All Exon capture kit versions 4, 5 and 6.
Enriched libraries were sequenced on Illumina HiSeq
systems.

WES data processing
Raw sequencing fastq sequencing data from all 508 sam-
ples were processed using the same custom pipeline.
VerifyBamID [38] was utilised to check the presence of
DNA contamination across our cohort of 508 individ-
uals. Alignment was performed against the human refer-
ence genome (GRCh38/hg38 Dec. 2013 assembly) using
BWA [39] (version 0.7.12). Aligned BAM files were
sorted and duplicate reads were marked using Picard
Tools (version 1.97). Following GATK v3.7 [40] best
practice recommendations [41], base qualities were
recalibrated in order to correct for systematic errors
produced during sequencing. Finally, variants were
called using GATK HaplotypeCaller was applied to
produce a gVCF file for each sample. Samples were
processed on the University of Southampton IRIDIS
cluster requiring an average of 4 h run time per sam-
ple on a 16-processor node.
While the standard VCF format reports only alterna-

tive calls, the gVCF format identifies non-variant blocks
of sequencing data and returns reference calls for loci
therein. This enables affirmative calling of homozygous
reference loci when combining call sets from multiple
samples. Multi-sample variant calling was achieved
through calling each individual sample separately and
then merging all gVCFs using GATK GenotypeGVCFs.
Processing efficiency was optimised for the set of 508 in-
dividual samples through batching into six subsets using
GATK’s CombineGVCFs (approx. 6 h/batch on a 16 pro-
cessor node) and the resultant six gVCF files were
merged for genotyping with GenotypeGVCFs (approx 1
h on a 16 proc. node). Annotation of this composite file
applied Annovar v2016Feb01 using default databases
refSeq gene transcripts (refGene), deleteriousness scores
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databases (dbnsfp33a) and dbSNP147). Variant allele fre-
quencies were sourced through Annovar (ExAc03 [42])
or ensembl human variation API [43] where ExAc data
were missing.

Quality control framework
In order to reduce heterogeneity, it is necessary to con-
trol for bias encountered due to alternative capture kit
versions and variant quality. For the entire cohort of
508 samples, exon enrichment was performed using
Agilent SureSelect capture kits but at different
time-points. For this reason, there is inter-capture kit
variability across the 508 cohort with kit versions 4, 5
and 6 being applied. To correct for disparity in the re-
gions targeted by respective versions, all downstream ana-
lyses were restricted to the set of overlapping targeted
genomic locations (as defined by respective kit BED files)
using BEDtools v2.17 [44].
Following GATK best practice guidelines, Haplotype-

Caller default settings were utilised, implying that only
variants with a minimum Phred base quality score of 20
were called.

GenePy score
Individuals typically have multiple variants across the
coding region of genes making the interpretation of their
combined effect challenging. We hypothesised that for
each individual sample h within our cohort H = {h1, h2,
…, hn}, the loss of integrity of any given gene g in the
RefGene database G = {g1, g2, … gm} can be quantified as
the sum of the effect of all (k) variants within its coding
region observed in that sample, where each biallelic mu-
tated locus (i) in a gene is weighted according to its pre-
dicted allele deleteriousness (Di), zygosity and allelic
frequency (fi). The GenePy score Sgh for a given gene (g)
in individual (h) is

Sgh ¼ −
Xk

i¼1

Di log10 f i1∙ f i2ð Þ

At any one variant locus (i), we represent both paren-
tal alleles using fi1 and fi2 to embed the population fre-
quency of allele1 and allele2 and, in doing so, model
observed biological information on both frequency and
zygosity. Any homozygous genotype therefore is simply
the observed allele frequency squared whereas the product
of each of the observed alleles is calculated for heterozy-
gous genotypes. The latter can therefore accommodate
variant sites with multiple alleles in addition to the typic-
ally encountered bialleleic single nucleotide polymor-
phisms (SNPs). Hemizygotic variation from male X-
chromosomes are treated as homozygotic. Where a vari-
ant may be novel to an individual or absent from reference
databases, we impose a lower frequency limit of 0.00001.

This lower limit is arbitrarily set to conservatively reflect
the lowest frequency that can be observed in the largest
current repository of human variation (ExAc03). The log
function is applied to upweight the biological importance
of rare variation.
The GenePy algorithm represents a genetic mixed

model, combining the known multiplicative effect of two
alleles at a single diploid locus [45] (the frequencies of
both observed alleles are multiplied) but with an additive
effect at the gene level (variant scores are summed
within a gene). The contribution of all variation within a
gene is modelled in this additive fashion in order to en-
able the cumulative pathogenicity incurred from the ef-
fects of multiple small/modest effects imposed by
individual mutations thus reflecting the non Mendelian
inheritance pattern in common diseases. An additive
model is assumed to be most universally applicable
model particularly in the non-Mendelian situation rele-
vant to many common diseases [46].
Deleteriousness metrics were developed to assess dam-

age induced by nonsynonymous variation, therefore struc-
tural variants such as frameshifts or stop mutations that
truncate proteins are not routinely assigned deleterious-
ness values. Due to their highly detrimental impact to
function we assign all protein truncating mutations the
maximal deleteriousness value of 1. Synonymous and spli-
cing variants are not routinely annotated by ANNOVAR
and were not included in the current assessment.
Importantly, the choice of variant deleteriousness

score is user-defined, and therefore the GenePy score is
able to take into account different definitions of patho-
genicity depending on context. Herein we examine the
relative attributes of using any one of sixteen of the most
commonly applied scores (Table 1). Sixteen of the most
common deleteriousness (D) metrics were selected for
implementation within the GenePy algorithm. Five of
these metrics (shown in bold) are unbounded. In order
to implement unbounded metrics in GenePy it was ne-
cessary to impose lower and upper limits by applying
the respective minimum and maximum values observed
in the dbnsfp33a database of 83,422,341 known SNV
mutations. These limits were used to transform observed
values in our cohort scaled to 0–1.
As a function of their size alone, larger genes have

greater opportunity to accrue higher deleterious GenePy
scores through having a greater number of variants thus
inflating GenePy scores. We therefore generated GenePy
scores corrected for the length of targeted gene regions
(GenePycgl) by dividing the GenePy score by the targeted
length in base pairs and then multiplying by the median
observed targeted gene length in our data (1461 base
pairs). A final set of 16 deleteriousness metrics, each
with a range of 0–1 where highest values were most
deleterious, were individually implemented in the model.
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GenePy score validation on the IBD dataset
In the absence of any comparable gene based scoring sys-
tem for individuals, GenePy performance was benchmarked
by assessing the power to determine significantly different
score distributions in disease cases compared to controls
for a known causal gene through a Mann-Whitney U test.
Using the same variant data, the statistical difference in
GenePy scores was compared against that of SKAT-O - the
most commonly applied gene level association test. The co-
hort comprised 309 individuals diagnosed with inflamma-
tory bowel disease (IBD) and 199 controls unselected for
autoimmune conditions. The analysis focussed on the
NOD2 gene - the most strongly and repeatedly associated
common disease gene conferring strong association specif-
ically with the Crohn’s disease (CD) subtype of IBD [47–
49]. NOD2 was selected as a positive control gene, whereby
evidence for increased burden of deleterious mutation
encoded in CD patient DNA compared to either ulcerative
colitis (UC) or control DNA is expected.
The matrix of NOD2 GenePy scores calculated for all

508 samples was split into controls and cases with the
latter further divided into UC and CD subtypes. Statis-
tical significance of GenePy score distribution difference
between groups was calculated using the Mann-Whitney
U test for unpaired data. Using the same variant input
data, the SKAT-O gene based test for association was
performed twice using default settings: firstly by consid-
ering all variants called within NOD2 and secondly in-
cluding only rare variants (MAF < 0.05) as per developer
recommendations [30].

Association tests succumb to false positive results due
to spurious association brought about by population
stratification or systematic differences in case versus
control data. We excluded non-Caucasian individuals
identified through comparison against the 1000 Ge-
nomes Project [50] using Peddy software [51] for ethnic
imputation. We enforced parity in sequencing depth
(known to impact power to call genetic variation [52])
for case-control data by limiting all score validation data
to variants called in gene regions with a minimum read
depth of 50X.

GenePy score validation on the Parkinson’s disease
dataset
A second validation of the GenePy score was performed
using WES from the Parkinson’s Progression Marker Ini-
tiative (PPMI) [53]. Six hundred and ten Caucasian pa-
tients diagnosed with Parkinson’s disease (PD) were
selected from this cohort. No control data were gener-
ated within this cohort.
Parkinson’s disease is a common complex condition in-

volving the central nervous system. Disease aetiology is
complex and only partially understood, but the increased
risk of occurrence driven by family history of disease indi-
cates a strong genetic component [54]. To date, several
genes have been associated with Parkinson’s disease, how-
ever only few have been validated as disease causing. In
our approach, we focussed on the panel of six genes rou-
tinely tested in clinical settings: LRRK2, PRKN (PARK2),
PARK7, PINK1, SNCA and VPS35. The gene panel and

Table 1 Pathogenicity scores for SNVs and their reported ranges in the dbsnfp database

Metric Type Implementation Actual range Imposed range for transformation

CADD Composite Score -∞ to +∞ −7.53 to 35.79

DANN Composite Score 0 to 1 –

FATHMMa Functionality 1-Score -∞ to +∞ −16.13 to 10.64

fathmm-MKL Composite Score 0 to 1 –

GERP++_RS Conservation Score -∞ to +∞ −12.3 to 6.17

M-CAP Composite Score 0 to 1 –

MetaLR Composite Score 0 to 1 –

MetaSVM Composite Score -∞ to +∞ −2 to 3

MutationTastera Functionality 1-Score if N/P; Score if A/D 0 to 1 –

phastCons Conservation Score 0 to 1 –

phyloP Conservation Score -∞ to +∞ −13.28 to 1.2

Polyphen2_HDIV Functionality Score 0 to 1 –

Polyphen2_HVAR Functionality Score 0 to 1 –

PROVEANa Functionality 1-Score −14 to 14 –

SIFTa Functionality 1-Score 0 to 1 –

VEST3 Functionality Score 0 to 1 –
aIn order to maintain uniform directionality, the complement (1 – score) of a value was taken so that across scores, a value of 0 consistently indicated benign
variation and a value of 1 inferred maximal pathogenicity
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technical notes are further described the UK Genetic Test-
ing Network database (https://ukgtn.nhs.uk).
Whole exome sequencing data for this cohort was

generated using Illumina 2500 sequencing machines and
Nextera Rapid Capture Expanded Exome Kit. Raw se-
quencing data were processed as per those for the IBD
cohort. GenePy scores, implementing the CADD delete-
riousness metric (given CADD’s high performance and
more complete gene annotation), were generated for 610
PD samples for the six genes included in the panel. Gen-
ePy distributions in PD cases were compared using a
Mann-Whitney U test against non-PD samples. In the
absence of within-cohort control data, IBD and control
samples described above were used as non-PD controls
for these tests. In order to assure compatibility, GenePy
scores were calculated only for common regions targeted
by both Nextera and Agilent exon enrichment capture
kits used by the respective studies (intersection of bed
files). Statistical significance was compared with results
obtained through a SKAT-O test as previously described.
We further tested the ability of GenePy to detect ex-

treme gene differences between PD patients and non-PD
individuals. A one-tailed Mann-Whitney U test was con-
ducted between the highest 5% of the GenePy distribu-
tion scores from the PD patients and the highest 5% of
the non-PD cohort for each gene investigated.

GenePy score validation on the primary open angle
Glaucoma cohort
The third validation of GenePy was performed on a cohort
of Caucasian patients (n = 358) affected by primary open
angle glaucoma (POAG) [55], a glaucoma subtype charac-
terised by an open and normal anterior chamber angle, in-
creased intraocular pressure and no other concurrent
adverse phenotypes [56]. POAG is a common complex
condition with a strong genetic component with first-de-
gree relatives of affected individuals harbouring an eight-
fold increased risk [57]. Previous studies have established
MYOC as causative gene in approximately 3% of the
POAG diagnoses [58].
Sequencing data for the POAG cohort were generated

using Nextera Rapid Capture Custom Enrichment kit, the
Nextera 500 sequencing platform and the same best practice
bioinformatic pipeline as applied in the IBD cohort [59].

Mann-Whitney U was applied to test whether GenePy
was capable of detecting a statistically significant differ-
ence between the POAG cohort and non-POAG samples
(using IBD and control samples as a proxy for matched
controls as above) within the MYOC gene. Regions com-
mon to the Nextera Rapid Capture Custom Enrichment
kit and Agilent SureSelect Capture chemistries were se-
lected using bed file data to ensure compatibility of Gen-
ePy scores.

The difference between extreme GenePy scores in the
POAG patients compared to non-POAG individuals was
assessed. Given the known frequency of MYOC patho-
genic mutations of 3%, statistically significant differences
within the extreme top 3% distribution of both groups
was compared as above.

Results
QC results
All WES data (n = 508, nibd = 309, nctrl = 199) underwent
quality control assessment for contamination using Veri-
fyBamID and were confirmed free of contamination
(free-mix statistic < 0.01). Out of 508 individuals, we
identified three pairs of first degree relatives, one set of
monozygotic twins and one mother-father-child trio. In
order to correct for relatedness, which would bias asso-
ciation tests, for each pair, the sample with poorest
coverage data was excluded. For the trio, the child data
were excluded and unrelated parents retained.

GenePy score behaviour – impact of allele frequency and
zygosity
Figure 1 shows the results of simulated GenePy score
(y-axis) calculated across a range of deleterious metric
scores (0.1, 0.5, 0.75, 0.9, 0.95, 0.99) with varying minor
allele frequency (x-axis) and further depicts the conse-
quence of heterozygote versus homozygote states. The
plot reveals the logarithmic nature of GenePy scores for
a single locus only (whereas for any individual, their per
gene GenePy score is weighted sum of all variant scores
observed in that individual across that gene). For any
single variant, the theoretical maximum observable Gen-
ePy value of ten occurs only with highest deleteriousness
value (D), the lowest minor allele frequency (MAF =
0.00001) and in the homozygous state whereas the upper
limit for a heterozygote with the same deleteriousness
and frequency settings is five. The logarithmic scale im-
plemented in GenePy algorithm confers rapidly increas-
ing scores as the MAF approaches novelty.

GenePy score behaviour – impact of deleteriousness
metric
While there are 27,238 genes annotated in RefSeq, we
aimed to generate GenePy scores only for the overlap-
ping subset of 21,577 target genes captured by all ver-
sions of the SureSelect capture kits applied. The GenePy
scoring algorithm was executed for each of sixteen com-
monly applied metrics (Table 1). There is fluctuation in
the number of genes for which variants were annotated
with deleteriousness metric data using ANNOVAR ran-
ging from 12,921 for M-CAP (one of the most recently
released scores) to 14,745 genes annotated scores for
Polyphen2_HDIV (one of the earliest developed deleteri-
ousness scores) (Table 2). Among the 508 individuals

Mossotto et al. BMC Bioinformatics          (2019) 20:254 Page 6 of 15

https://ukgtn.nhs.uk


that underwent GenePy scoring of exome data, the ma-
jority of genes are invariant within any one individual
(e.g. median 9917 for CADD metric). This is expected
for intrinsically sparse genomic data. However, across
the cohort, no single gene returns a GenePy score of
zero in all individuals indicating all genes have at least
one rare variant observed amongst the 508 individuals.
The vast majority of genes are scored with GenePy
values of less than 0.01 and correction for gene length
marginally increases the number of genes achieving low-
est scores. More than 97% of genes achieve a score of
less than 0.01 when the M-CAP metric is used whereas
FATHMM scores approximately 65% of genes in the 0–
0.01 range. The inflated percentage of invariant genes
observed when implementing M-CAP is explained by its
tendency to depress weight for benign variants com-
pared to other tested metrics [20].
Across the ~ 14,000 genes achieving GenePy scores, the

observed score mean (uncorrected for length) in our co-
hort of 508 samples ranges from 0.02 to 0.40 depending
on the applied deleteriousness metric. Correction of all
scores for gene length has only a modest effect on the
range of the mean scores observed (0.02–0.31), however,
gene length correction increases the spread of the data
reflected by an approximate two-fold increase in the coef-
ficient of variation (CV) for GenePy scores observed
across all sixteen deleteriousness metrics. This is despite
the fact that for all deleteriousness metrics, correction for
gene length subtly increases the proportion of genes with
lowest scores confirming that genes of exceptional size in-
curred inflated scores due to length. GenePy scores gener-
ated with M-CAP are least impacted by gene length
correction but maintain the largest CV.

In order to further investigate the behaviour of GenePy
scores across genes, we calculated the median number
of genes exhibiting scores falling within non-overlapping
bins across the entire cohort. Figure 2 shows the profiles
for the 0.01 to 6 range of GenePy scores and a bin size
of 0.01. Genes with scores < 0.01 are overrepresented
(Table 2) and not shown. Across most of the sixteen
metrics, a distinct pattern characterised by two spikes
around uncorrected GenePy scores of 0.6 and 5 repre-
sent genes strongly influenced by a single highly deleteri-
ous common homozygous variants (D = 1, MAF = 0.5) or
a single highly deleterious very rare heterozygous variant
(D = 1, MAF = 0.00001) respectively. This profile was ap-
parent for most deleteriousness metrics (except CADD,
FATHMM, MetaSVM and VEST3, see Additional file 1:
Figure S1). These two distinctive spikes are not observ-
able once GenePy scores are corrected for the targeted
gene length (Fig. 1, lower panel and Additional file 1:
Figure S2). We did not observe further spikes or other
anomalies in the long right tail of the distribution of
scores greater than 6.
For a subset of 6 patients we plot the gene-level

scores for 17 genes across two different molecular
pathways important to immune function (Fig. 3). This
graphically demonstrates how individual patients diag-
nosed with the same non-Mendelian condition have
unique gene-level deleteriousness score profiles. Indi-
vidual patients can be genetically compromised within
the same or distinct molecular pathways.

GenePy score validation - IBD cohort
Bias conferred by NOD2 gene coverage, related samples
and non-Caucasian ethnicity (Additional file 1: Figure S3)

Fig. 1 Single variant GenePy score distribution under fixed deleteriousness values. Impact of varying zygosity and minor allele frequency (MAF)
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was removed from all IBD cases (n = 6<50x, n = 1relative and
n = 20non-Caucasian) and non-IBD control samples (n =
16<50x, n = 4relatives and n = 13non-Caucasian) respectively.
There remained 282 IBD cases for analysis of which 172
were diagnosed with Crohn’s disease, 100 with ulcerative
colitis and a further 10 patients had a diagnosis of IBD un-
determined (IBDU). There was a corresponding number
of 166 controls.
The NOD2 GenePy scores for the 282 IBD and 166

control individuals were calculated using all sixteen
deleteriousness metrics. (Additional file 1: Figure S4).
Given NOD2 gene variant association is specific to
the CD subtype of IBD, we calculated GenePy scores
for both subtypes and grouped separately (Additional
file 1: Table S1).
The Mann-Whitney U test comparison of the distribu-

tion of NOD2 GenePy scores between all IBD, CD and
UC subtypes against controls identified statistically
significant differences (Table 3). Only modestly signifi-
cant differences for just three of the implemented delete-
riousness metrics (M-CAP, fathmm-mkl and MutTaster)

were observed comparing all IBD against controls in this
relatively small sample. When the cases were stratified
by disease subtype, UC samples had significantly lower
GenePy scores compared to controls but only for two of
the implemented deleteriousness metrics (MetaLR,
phastCons). As expected, the most significant difference
in NOD2 score distribution was observed when com-
paring CD patients only against controls. Without ex-
ception, a highly significant difference was observed
using every deleteriousness metric with M-CAP the
most significant (p = 1.37 × 10− 4) all of which would
withstand correction for the three independent tests
performed. Regardless of which deleteriousness metric
is used, the mean GenePy score is consistently higher
in CD patient when compared with controls.
Interestingly, similar results were observed for the

SKAT-O gene test of association when using all variant
frequency data but lost significance when restricted to
rare variation (MAF < 0.05). Importantly, the magnitude
of the difference between CD patients and control

Fig. 2 GenePy profiles observed for all genes across the whole cohort for all sixteen deleteriousness metrics. Uncorrected GenePy scores (upper
panel) exhibit characteristic spikes reflecting gene scores strongly influenced by the effect of: single highly deleterious (D = 1) common
homozygous variants (red) or; single highly deleterious very rare/novel variants (MAF = 0.00001) (blue). GenePycgl score profiles (lower panel) do
not display these spikes. Invariant genes conferring a GenePy score < 0.01 are overrepresented and not shown here by commencing the x-axis
with the 0.01–0.02 bin. All sixteen versions of the GenePy score exhibit long tails in the GenePy score distribution truncated here at a score of six
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groups was statistically weaker (p = 0.0346) and less ro-
bust to correction for multiple testing.
Although not the purpose of this comparison, we con-

firmed GenePy whole gene comparison provided statistical
evidence two orders of magnitude greater than any single
variant association result (Additional file 1: Table S1).

GenePy score validation - Parkinson’s disease cohort
Of the six genes investigated for different GenePy distri-
butions between the PD cohort (n = 610) and the
non-PD (n = 465) cohort, statistically significant results
were observed for the PINK1 gene only (p = 0.013)
(Table 4). The SKAT-O test did not detect significant as-
sociations for any of the six genes.
Restricting the analysis to just the extreme right tail

of the GenePy distribution for each of the six PD
genes, statistically significant differences were ob-
served between PD and non-PD individuals for
LRRK2 (p = 0.002), PINK1 (p = 0.010), PRKN (p =
0.021) and VPS35 (p = 0.036). Patients with severe
PINK1 and PRKN mutations present early onset
forms of Parkinson’s disease and have been reported
in this PD cohort [60]. The most significant result for
each gene from traditional single variant association
tests reported significant results for two genes only
-LRRK2 (rs10878245, p = 0.034) and PINK1 (rs148871409,

p = 0.042) although this required the analysis of multiple
SNVs (see Table 4) within each gene.

GenePy score validation - primary open angle glaucoma
(POAG) cohort
Comparison of GenePy scores between the POAG co-
hort (n = 358) and the non-POAG cohort (n = 465)
did not reveal a statistically significant difference for
the MYOC gene (p = 0.18). Similarly, significance was
not detected using SKAT-O methodology (p = 0.66).
However, performing a Mann-Whitney U test of

GenePy scores between the extreme end of the right
tail of the GenePy distribution (this time limited to
3% to reflect the known biology) of the POAG cohort
and the top 3% of the non-POAG cohort, we ob-
served a statistically significant difference (p = 0.048).
In a single variant association test framework, 18 SNVs

within the MYOC gene were tested for association and
only one (rs61730974) reached statistical significance
without correcting for multiple testing (p = 0.0318).

Discussion
Next generation sequencing is a disruptive technology set
to transform biological assessment. Globally, it is rapidly
integrating into the medical sector with numerous coun-
tries already funding whole genome sequencing of patient

Fig. 3 GenePy score profiles for seven independent patients diagnosed with IBD across selected genes from the NOD2 and TLR pathways.
GenePy scores shown were implemented using the M-CAP deleteriousness (D) metric. To facilitate plotting, raw GenePy scores were transformed
to Z-scores for each gene. Different colours depict individual patient profiles. Despite being diagnosed with the same disease, all individuals
exhibit distinctive profiles across key genes implicated in key immune pathways. Some individuals have evidence of gene pathogenicity within
the same pathway (e.g. IBD5 and IBD6) this is conferred through accumulated mutation in different genes – IBD6 has elevated gene-level scores
for TAB1, CARD6 and MAPK3 while IBD5 may have impaired function in this pathway due to combined mutation in MAPK13, BP1 and NFKB1.
Similarly, IBD1, IBD3 and IBD4 exhibit pathogenic profiles in TLR pathway genes only. These individual level data can be combined with disease
phenotype, severity and treatment outcome data in machine learning models to better stratify patient cohorts and realise the promise of
personalised medicine
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samples for diagnosis and treatment of rare disease and
cancer. Multiple metrics have emerged that aim to anno-
tate individual mutations with a view to sensitively impli-
cating causal versus non-causal variation. However, for
common complex diseases where the action of an un-
known number of multiple variants converge to in-
crease susceptibility, the molecular assessment of
mutation profiles is necessarily less binary. Further-
more, in order to bring interpretation from bench to
bedside, it is important that methodology provides
discriminatory evidence for individual patients and
not just evidence of modest genetic effects between
large cohorts.

We describe the implementation of GenePy represent-
ing a novel alternative to examine genomic data that
provides a quantitative measure of the combined loading
of mutation across each gene for each individual. The
scoring system has the freedom to harness the intrinsic
properties of any user-defined variant-level deleterious-
ness metric. By summing across genes, GenePy further
integrates biological information on frequency and zy-
gosity and when being used to examine between genes
or subsets thereof, should be corrected for gene length.
Different measures of deleteriousness impact the coeffi-

cient of variation in the GenePy scoring system but as yet
none are proven superior. The logarithmic distribution

Table 3 NOD2 GenePy score statistics (maxima and means) and Mann-Whitney U tests across groups for all sixteen deleteriousness
metrics. p-values smaller than 1 × 10−2 or smaller than 5 × 10−2 are highlighted by two (**) or one (*) asterisks respectively. SKAT-O
gene association results comparing patient groups against controls provided below thick line

Metric Controls (n = 166) IBD (n = 282) UC (n = 100) CD (n = 172)

max mean max mean Mann-Whitney U
comparison against
controls

max mean Mann-Whitney U
comparison against
controls

max mean Mann-Whitney U
comparison against
controls

CADD 2.71 0.28 3.52 0.40 1.04 × 10−1 2.66 0.20 1.38 × 10−1 3.52 0.54 4.62 × 10−4 **

DANN 5.92 0.84 7.62 1.06 1.36 × 10−1 5.62 0.57 1.22 × 10−1 7.62 1.38 8.16 × 10− 4 **

FATHMM 3.33 0.49 4.34 0.66 1.04 × 10−1 3.14 0.38 1.47 × 10− 1 4.34 0.84 4.84 × 10− 4 **

fathmm-MKL 4.53 0.37 6.24 0.55 4.54 × 10−2 * 3.78 0.25 3.15 × 10− 1 6.24 0.76 1.79 × 10− 4 **

GERP++_RS 5.30 0.64 7.00 0.87 1.26 × 10− 1 4.95 0.42 1.27 × 10− 1 7.00 1.17 6.95 × 10− 4 **

M-CAP 1.87 0.12 3.39 0.22 1.58 × 10− 2 * 1.73 0.08 4.62 × 10− 1 3.39 0.32 1.37 × 10− 4 **

MetaLR 2.42 0.16 3.39 0.29 2.71 × 10− 1 1.81 0.10 2.34 × 10− 2 * 3.39 0.42 1.63 × 10−3 **

MetaSVM 2.67 0.30 3.61 0.43 9.88 × 10− 2 2.50 0.22 1.50 × 10− 1 3.61 0.57 4.39 × 10− 4 **

MutationTaster 4.38 0.26 5.10 0.39 4.48 × 10− 2 * 2.65 0.13 4.37 × 10− 1 5.10 0.57 7.47 × 10− 4 **

phastCons 4.66 0.35 5.24 0.56 2.86 × 10− 1 3.54 0.24 2.70 × 10− 2 * 5.24 0.77 2.16 × 10− 3 **

phyloP 6.32 1.02 7.93 1.27 1.23 × 10− 1 5.92 0.75 1.38 × 10− 1 7.93 1.62 7.09 × 10− 4 **

Polyphen2_HDIV 5.32 0.68 7.03 0.82 2.02 × 10− 1 2.30 0.33 6.22 × 10− 2 7.03 1.13 1.20 × 10− 3 **

Polyphen2_HVAR 4.86 0.46 5.31 0.64 1.65 × 10− 1 2.07 0.21 7.22 × 10− 2 5.31 0.92 7.90 × 10− 4 **

PROVEAN 4.33 0.66 5.23 0.86 1.04 × 10− 1 4.08 0.49 1.45 × 10− 1 5.23 1.10 4.84 × 10− 4 **

SIFT 5.91 0.95 7.61 1.14 1.47 × 10− 1 5.43 0.64 1.16 × 10− 1 7.61 1.47 9.64 × 10− 4 **

VEST3 3.28 0.30 4.21 0.44 1.36 × 10− 1 2.24 0.17 1.13 × 10− 1 4.21 0.62 7.48 × 10− 4 **

SKAT-O (all variants) – – 5.41 × 10− 1 9.76 × 10− 2 3.46 × 10− 2 *

SKAT-O (MAF < 0.05) – – 4.63 × 10− 1 1.37 × 10− 1 5.02 × 10− 2

Table 4 Comparison of PD versus non-PD individuals. Significant results are shown in bold type. For each gene the most significant
result only of all SNV association tests is shown and for each these the rs id is provided. Additionally, the number of SNV association
test conducted within each gene is indicated in brackets. No correction is made for testing of six genes nor for testing multiple
SNVs within any given gene

Test PD vs non-affected samples LRRK2 PARK7 PINK1 PRKN SNCA VPS35

GenePy 0.178 0.445 0.013 0.983 0.828 0.206

SKAT-O 1 0.557 0.157 0.427 0.712 0.741

Top 5% comparison 0.002 0.107 0.010 0.021 0.347 0.036

Most significant SNV
(# tested)

0.034
rs10878245
(88)

0.081
rs71653621
(6)

0.042
rs148871409
(21)

0.051
rs1801582
(27)

0.433
rs548523899
(7)

0.433
rs168745
(17)

Mossotto et al. BMC Bioinformatics          (2019) 20:254 Page 11 of 15



confers weight to rare pathogenic variants and these are
additive across a gene and theoretically limited only by the
number of variant sites within that gene. GenePy returns
a score of zero for the majority of genes for any one indi-
vidual - this reflects the sparse nature of genomic data
and is exacerbated when considering whole exome se-
quencing data where historical negative selection has lim-
ited variation in regions that code for proteins.
We provide proof of principle that testing GenePy

scores with a non-parametric statistical test improves
sensitivity to detect clinically meaningful gene perturba-
tions. Such performance compares favourably against
the most commonly applied gene based association test
optimised for small data sets (SKAT-O). Superiority to
detect the subtle effects of genes in complex disease is
likely attributable to the additional modelling of innate
biological features of mutations.
Power to determine significant GenePy score differ-

ences between IBD patient and control groups was con-
sistent across sixteen different metrics of variant
deleteriousness whereby all concordantly reported a
similar level of significance despite differing underlying
principles. It is noteworthy that the M-CAP deleterious-
ness metric that enriches for very deleterious, rare vari-
ants proved most significant in our specific test case
(although this metric annotated fewer genes than other
deleteriousness metrics). This result may suggest a more
important role for rare variants in the NOD2 gene that
went largely undetected through GWAS studies. Recent
publications have similarly evidenced an important role
for rare variants in select patients with IBD [61–64].
While GenePy scores generated using M-CAP metric
returned the most significant difference in CD patients
compared to controls, it is likely that no metric will
prove optimal in all situations. The GenePy scoring sys-
tem can simply accommodate new and improved variant
deleteriousness metrics that are constantly evolving with
more widespread use and interpretation of NGS data.
We demonstrated the ability of GenePy to model bio-

logical variability from next generation sequencing data
on two additional common complex disorders, showing
its simple implementation and flexible application to dif-
ferent scenarios. In a Parkinson’s Disease (PD) cohort of
very modest sample size compared to contemporary
GWAS studies, GenePy successfully identified associ-
ation with the PINK1 gene but failed to reach signifi-
cance for five other known genes when looking across
the entire distribution of scores. SKAT-O did not return
significant associations with any of the six genes. Inter-
estingly, restricting the analysis to the extreme distribu-
tion scores in the case/control comparison framework,
GenePy did detect association for four of the six PD
genes. This compares well against the SNV association
tests within these known genes where only two genes

(LRRK2 and PINK1) harboured SNVs that achieved
nominal significance without correction for the add-
itional tests incurred by such an approach.
When testing GenePy performances against SKAT-O

within the glaucoma cohort, neither SKAT-O or com-
parison of the entire GenePy distribution between cases
and controls could discriminate significant differences
between the POAG and non-POAG groups. However,
by restricting the analysis to the extreme tail of the dis-
tribution, GenePy was able to determine a statistical
difference presumably driven by only a minority of pa-
tients in whom disease is mediated by the MYOC gene.
In addition to identifying genes harbouring statisti-

cally significant different mutational loadings between
case and control groups, selecting samples from the
extreme distribution of GenePy scores concurrently
identifies the specific individuals whose disease is
(partially) explained by these genes and so facilitates
clinical translation.
As with all large-scale data, GenePy scoring is

dependent upon data integrity and elimination of sys-
tematic bias or technical artefacts. High quality individ-
ual DNA samples must be sequenced to sufficient depth
to return confident variant calls. For larger scale analyses
using multiple samples, parity of capture kits, sequen-
cing platforms and informatic pipelines must be ensured.
While these pre-processing quality control steps and
generation of the multi-calling VCF file represent the
highest computational burden, GenePy score calculation
on cleaned vcf files is amenable to batching and compu-
tationally trivial.
Many of the currently available deleteriousness scores

implemented herein fail to annotate synonymous, spli-
cing or protein truncating variation. While we arbitrarily
imposed maximum deleteriousness scores to protein
truncating mutations, we standardised the set of variants
examined across metrics by excluding synonymous and
splicing variants from this analysis. Deleteriousness met-
rics based on conservation alone are calculable for all
genomic variation and could be implemented for the as-
sessment sliding windows of non-coding regions derived
from whole genome sequencing. Due to association test-
ing in Caucasian samples only, we restricted allele fre-
quency annotation to that ethnic group. Arguably, there
is merit in implementation of global allele frequency
estimates or those from more ancestrally diverse
populations.
Further refinements of the GenePy scoring system

might be realised by integration of gene essentiality [65]
(and conversely gene redundancy) or gene damage indi-
ces (GDI) [66]. Long read NGS data enabling the dis-
crimination of gametic phase would substantially
advantage integration of inheritance models and
haploinsufficiency.
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Conclusions
The key advantage of GenePy is its provision of a con-
tinuous quantitative measure of biological integrity of a
gene within individuals, resulting in a score that is easily
integrated into downstream analyses. GenePy scores are
not dependent on cohort size and can be calculated and
assessed on per-patient patient basis. GenePy scores are
suited to pathway analyses where scores can be overlaid
and summed across defined molecular cascades. This
enables users to assess the combinatorial effect of vari-
ants in multiple genes involved in complex diseases. For
the particular assessment of complex disease, machine
learning tools that integrate multi-omic and extensive
biomarker ‘big data’ to determine cryptic patterns are in-
creasingly applied. Currently, all machine learning appli-
cations are obliged to incorporate genetic data derived
from NGS analyses on a variant-by-variant basis and
most do so in either a binary (present/absent) manner
or through counting for allelic load (0, 1 or 2) [67]. Both
approaches ignore much of the additional biological in-
formation already available. Furthermore, these methods
often impose arbitrary and subjective filters or thresh-
olds for the inclusion of variants (e.g. frequency) that
may be incorrect for Mendelian disease and will cer-
tainly reduce power for complex disease. GenePy re-
duces the dimensionality of genomic data from multiple
SNVs within a single gene to the resolution of a single
gene. This reduces the number of tests to be performed
and impacts statistical power in small cohort studies.
GenePy facilitates integration with other ‘omics data that
also reports at the level and resolution of a gene e.g.
transcriptomic, metabolomic proteomic data and so fa-
cilitates integration across these contemporary ‘omic ap-
proaches in a machine learning and network analysis
frameworks. Furthermore, the assessment of individual
gene pathogenicity loadings for individual subjects is
simple and intuitive in a clinical setting and allows clus-
tering of independent patients each with cumulatively
deleterious burden of mutations in a given gene – even
when no specific variants are shared between patients –
a situation common for sparse genomic data.
Machine learning approaches aim to define patient

subgroups on a molecular genetic basis for the advance-
ment of personalised treatment. Such approaches will
directly benefit from the refined scores provided by Gen-
ePy for the stratification of different patient subgroups.
The ability to input biologically rich information and the
gene and individual level represents an important step
change from the more traditional methods of assessing
genetic data at the variant and cohort level.

Availability and requirements Project name: GenePy.
Project home page: https://github.com/UoS-HGIG/

GenePy

Operating system(s): Unix.
Programming language: Bash, Python 2.7.
Other requirements: GATK 3.x, Annovar.
License: GNU GPL.
Any restrictions to use by non-academics: no licence

needed.
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Additional file 1: Table S1. All single nucleotide variants in the NOD2
gene used in GenePy validation. Figure S1. Median whole gene
GenePyuncorrected score profiles observed across the cohort of 508
patients with WES data depicted separately for each of the sixteen
deleteriousness metrics. Figure S2. Median whole gene GenePycgl score
profiles observed across the cohort of 508 patients with WES data
depicted separately for each of the sixteen deleteriousness metrics.
Figure S3. Ethnicity imputation. Figure S4. GenePy scores profiles for
the NOD2 gene in the CD and control groups for each of the sixteen
implemented deleteriousness metrics. (DOCX 1054 kb)
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