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Treatment of Common Sunflower 
(Helianthus annus L.) Seeds with 
Radio-frequency Electromagnetic 
Field and Cold Plasma Induces 
Changes in Seed Phytohormone 
Balance, Seedling Development 
and Leaf Protein Expression
Vida Mildažienė   1, Vesta Aleknavičiūtė1, Rasa Žūkienė1, Giedrė Paužaitė1, Zita Naučienė1, 
Irina Filatova2, Veronika Lyushkevich2, Perttu Haimi3, Inga Tamošiūnė3 & Danas Baniulis   3

Treatment of plant seeds with electromagnetic fields or non-thermal plasmas aims to take advantage 
of plant functional plasticity towards stimulation of plant agricultural performance. In this study, the 
effects of pre-sowing seed treatment using 200 Pa vacuum (7 min), 5.28 MHz radio-frequency cold 
plasma (CP −2, 5, and 7 min) and electromagnetic field (EMF −5, 10, 15 min) on seed germination 
kinetics, content of phytohormones, morphometric parameters of seedlings and leaf proteome were 
assessed. CP 7 min and EMF 15 min treatments caused 19–24% faster germination in vitro; germination 
in the substrate was accelerated by vacuum (9%) and EMF 15 min (17%). The stressors did not change 
the seed germination percentage, with exception of EMF 5 min treatment that caused a decrease by 
7.5%. Meanwhile both CP 7 min and EMF 15 min treatments stimulated germination, but the EMF 
treatment resulted in higher weight of leaves. Stressor-specific changes in phytohormone balance were 
detected in seeds: vacuum treatment decreased zeatin amount by 39%; CP treatments substantially 
increased gibberellin content, but other effects strongly varied with the treatment duration; the 
abscisic acid content was reduced by 55–60% after the EMF treatment. Analysis of the proteome 
showed that short exposure of seeds to the EMF or CP induced a similar long-term effect on gene 
expression in leaves, mostly stimulating expression of proteins involved in photosynthetic processes 
and their regulation.

An interdisciplinary field of research on low temperature non-equilibrium plasma, also termed cold plasma (CP) 
and electromagnetic field (EMF) applications for agriculture1,2 is directed towards exploiting the potential of plant 
functional plasticity. Seed treatment with CP or EMF is a modern eco-agricultural technology for increasing plant 
agricultural performance. Numerous studies have demonstrated that such treatments are effective for enhancing 
agronomic seed quality and have potential to be used for seed decontamination, activation of germination and 
seedling growth.

The majority of studies in this area are focused on assessment of CP and EMF effects on physiological (germi-
nation), structural (changes in seed coat surface) and morphometric (early seedling growth) estimates (reviewed 
by3–5). A few reports have also considered changes in biochemical characteristics, such as amount of pigments 
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and secondary metabolites, enzymatic activities or antioxidative capacity6–12. Stressor-induced changes in phys-
iological or biochemical activities are associated with selective modulation of protein expression in the growing 
seedling, e.g., activation of photosynthesis is expected to be related to changes in the leaf proteome13,14. Although 
several studies described morphological, genotoxic or biochemical changes induced by the CP and EMF treat-
ments14–19, the proteomic profiles of plant response to CP and EMF treatments have not been reported so far.

On the other hand, although germination tests are commonly used as a hallmark of the response to treat-
ments, until now there has been no attempt to estimate CP and EMF effects on the content of seed phytohor-
mones, which are known to be key regulators of germination20. Plant hormones regulate seed dormancy and 
germination through an integrated network of interactions where the primary role belongs to an antagonistically 
acting duo: inhibitor of germination abscisic acid (ABA) and stimulators of germination gibberellins (GAs)21,22. 
Numerous other hormones exert impact on germination by modulating the effects of ABA/GA balance: auxin 
IAA (indole-3-acetic acid) is known to be a negative regulator of germination; ethylene, citokinins, brasinoster-
oids, and strigolactones can stimulate germination by various modes; salicylic acid (SA) and jasmonate (stress 
hormones) may affect germination positively or negatively depending on the situation20.

Our study is aimed to gain insight into the molecular mechanisms underlying the effect of physical stressors 
(vacuum, CP and EMF) on plants. The effects of pre-sowing seed treatments on phytohormone content in seeds, 
germination kinetics and growth of the seedlings of the common sunflower (Helianthus annuus L.) has been 
assessed. This plant is often used for seed physiology studies23 and is characterized by the physiological (controled 
by phytohormones) dormancy24. It became a model plant species for numerous eco-physiological studies due 
to the economic importance, available information on genome sequences and transcriptomic data25. Bearing in 
mind that germination is affected by a mutually interactive network of phytohormones, we have estimated the 
effects of vacuum, CP and EMF treatments on the amount of ABA, GA, auxins IAA and IBA (indole-3-butyric 
acid), citokinin zeatine (Z), and SA in dry seeds. In addition, changes in protein expression patterns in leaves and 
roots of sunflower seedlings have been determined. The study has revealed that the effects of CP and EMF treat-
ments on seed germination are related to changes in phytohormone content, and the effects on seedling growth 
mostly have been related to differences in photosynthetic machinery protein expression.

Results
Changes in sunflower germination kinetics and seedling morphology induced by seed treat-
ment with a vacuum, CP and EMF.  The performed germination tests showed that pre-sowing treatment 
of sunflower seeds with vacuum, CP and EMF induced changes in both germination kinetics in vitro (Fig. 1A) 
and in the substrate (Fig. 1B), and these changes depend on the treatment duration and germination conditions.

Analysis of the germination curves (Fig. 1) using Richards plots and calculated germination indices were used 
to quantitate the observed changes (Table 1). None of the used seed treatments affected the germination yield or 
final germination percentage (Vi), except CP5 treatment that slightly (by 7.5%) decreased Vi for germination in 
vitro. The median germination time (Me) in vitro decreased in the groups of seeds treated with CP7, EMF10 and 
EMF15 by 20, 24 and 19%, respectively, indicating that the germination rate was enhanced in vitro. However, 
when seeds germinated in the substrate, CP7 and EMF10 treatments were not effective, instead Me was slightly 
smaller (by 7%) in the vacuum treated group. Only the EMF15 treatment increased germination rate by 16% in 
comparison to the control, similarly to the germination in vitro (Table 1).

After germination in the substrate sunflower seedlings were grown for two weeks and the effects of pre-sowing 
sunflower seed treatment on early seedling growth were estimated (Table 2). The results of morphometric seed-
ling analysis revealed negative effects of CP7 treatment on early seedling development – compared to the control, 
length and weight, shoot length and weight of seedlings derived from CP7 treated seeds was smaller by 19, 15, 14 
and 14%, respectively. Thus, early growth of CP7 seedlings was obviously suppressed despite the stimulation of 
germination in vitro (Table 1). Negative effects of vacuum and CP2 treatments on seedling growth were observed 
as well, but only as a reduction in seedling length by 11 and 13%, respectively. The only positive effect of seed 
treatments was 14% increased weight of leaves in EMF15 group. EMF15 seedlings did not differ from the control 

Figure 1.  Germination dynamics of sunflower seeds in vitro (A) and in substrate (B). The points represent 
mean values of three replicates ± standard error of mean. Seed treatments for all experimental conditions were 
replicated three times (n = 30 for one replicate).
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seedlings by any other morphometric parameters. Thus, seedlings from EMF15 group exhibited the most positive 
response and those from CP7 group – the most negative response to seed treatment at the stage of early growth. 
To further assess the molecular basis of the effects, seedlings from the CP7, EMF 15, vacuum and control groups 
were selected for leaf proteome analysis.

Changes in phytohormone content induced by seed treatment with vacuum, CP and EMF.  The 
results of phytohormone analysis performed four days after seed treatment revealed significant changes in phy-
tohormone content that were induced by the pre-sowing treatments of sunflower seeds. Vacuum treatment did 
not induce changes in seed ABA, GA, and SA content but significantly changed the auxin/cytokinin balance – in 
vacuum treated seeds, IAA dropped down below a detectable level, IBA amount increased more than 4 times and 
Z amount decreased by 39%. As a result (IAA + BA)/Z ratio decreased more than 5 times, compared to the con-
trol. All CP treatments substantially increased GA3 while decrease in Z amount was similar to that of the vacuum 
treatment. Effects on content of other hormones varied and were dependent on seed treatment duration. E.g., 
ABA amount increased in CP2, decreased in CP5 and did not change in CP7 group, while only CP7 treatment 
elicited increase in seed IAA content. All durations of EMF treatment reduced the amount of ABA in sunflower 
seeds by more than 50%, substantially increased IAA (4.4–5.4 fold) and SA (35–50 fold) but did not change GA, 
IBA and Z content.

Differential protein expression in sunflower seedlings and protein function analysis.  Proteomics 
analysis was used to assess differential protein expression of sunflower seedlings germinated from the seeds 
treated with vacuum, CP or EMF. Since a narrow isoelectric point (pI) range and protein solubility would be 
preferable for efficient protein separation via 2D electrophoresis, the acidic range of pH 4–7, corresponding to 
dominant pI value of cytosolic proteins26,27, was selected for fractionation using isoelectrical focusing. After gel 
alignment, the average number of detected protein spots was 1910 ± 327 per gel (Supporting Material Fig. S1). 
Among the four experimental groups (control, vacuum, CP or EMF treatment), 104 proteoforms had statistically 
significant (p < 0.01) and > 1.5-fold variations in abundance in shoot samples (Fig. 2). Meanwhile all differences 
among the experimental groups in the root samples were below the significance threshold. Vacuum treatment had 
no specific effect on sunflower seedling proteome.

Through liquid chromatography – tandem mass spectrometry (LC-MS/MS) fingerprinting of trypsin digested 
peptides, 41 proteoforms differentially expressed in shoots were unequivocally identified, corresponding to 33 
unique sunflower proteins (data are shown in Supporting material Table S1).

An assessment of the relationship among the experimental groups by principal component analysis revealed 
that the first two principal components clearly differ among all four groups (Fig. 3). The largest variance, repre-
sented by the first component, was observed between the control and vacuum treatment groups and the two CP 

Treatment

Germination in vitro Germination in substrate

Vi,% Me, days Vi,% Me, days

Control 91.7 ± 2.2 3.52 ± 0.21 86.7 ± 5.1 4.7 ± 0.1

Vacuum 90.8 ± 4.6 3.03 ± 0.15 78.9 ± 1.1 4.3 ± 0.1*

CP2 85.0 ± 6.5 3.15 ± 0.10 77.8 ± 1.1 5.2 ± 0.8

CP5 87.5 ± 5.2 3.57 ± 0.17** 83.3 ± 1.9 5.2 ± 0.4

CP7 87.5 ± 2.5 2.82 ± 0.27*,** 81.1 ± 2.2 5.2 ± 0.6

EMF5 84.2 ± 2.1* 3.65 ± 0.31 — —

EMF10 91.7 ± 1.7 2.67 ± 0.27* — —

EMF15 91.7 ± 2.9 2.87 ± 0.25* 81.1 ± 2.9 3.9 ± 0.2*

Table 1.  Indices of germination kinetics of sunflower seeds derived from Richards plots. Mean 
values ± standard error of mean are presented (n = 3 replicates, 30 seeds in one replicate), *significantly different 
from the control group (p ≤ 0.05); **significantly different from the vacuum group (p ≤ 0.05).

Treatment

Seedling Roots Shoot Leaves

Length, cm Weight, g Length, cm Weight, g Length, cm Weight, g Weight, g

Control 21.6 ± 1.0 1.36 ± 0,06 9.8 ± 0.9 0.13 ± 0.03 11.7 ± 0.6 1.23 ± 0.06 0.70 ± 0.03

Vacuum 19.1 ± 0.9* 1.37 ± 0.07 8.5 ± 1.0 0.12 ± 0.01 10.8 ± 0.5 1.25 ± 0.07 0.74 ± 0.04

CP2 18.9 ± 0.9* 1.40 ± 0.10 7.9 ± 1.0 0.12 ± 0.01 11.0 ± 0.5 1.28 ± 0.09 0.75 ± 0.06

CP5 19.4 ± 1.0 1.32 ± 0.68 8.7 ± 1.1 0.13 ± 0.01 10.7 ± 0.7 1.20 ± 0.06 0.70 ± 0.05

CP7 17.6 ± 0.9* 1.15 ± 0.08* 7.9 ± 0.9 0.09 ± 0.01 10.1 ± 0.4* 1.06 ± 0.07* 0.65 ± 0.06

EMF15 21.0 ± 0.1 1.46 ± 0.08 9.9 ± 1.2 0.11 ± 0.01 10.8 ± 0.8 1.35 ± 0.08 0.80 ± 0.05*

Table 2.  Morphometric parameters of sunflower seedlings 2 weeks after sowing. Mean values ± standard error 
are presented (n = 17–24 seedlings), *significantly different from the control group (p ≤ 0.05).
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or EMF treatment groups. Additional differences between the control and vacuum treatment groups and between 
the CP or EMF treatment groups were revealed by the second component.

A hierarchical cluster analysis of protein abundances revealed several distinct expression patterns among the 
104 differentially expressed proteoforms (Fig. 4). The largest group (Fig. 4, set 1) included 62 proteoforms that 
were upregulated by the CP or EMF treatment as compared to the control and/or vacuum treatment. This group 
could be further divided into two smaller subsets. The first subset (1A) includes 26 proteoforms with lower overall 
protein abundance differences (from 1.6 to 2.4-fold) within the protein group. Meanwhile, statistically significant 
differences were mostly observed for the CP treatment as compared to the vacuum treatment. The proteoforms 
of the subset 1B were upregulated to similar extent by both treatments. Another large cluster included 34 pro-
teoforms that were downregulated upon the CP/EMF treatment (Fig. 4, set 3). The EMF-induced differences were 
larger compared to the differences observed upon the CP treatment in this cluster. The remaining 8 differen-
tially expressed proteoforms mostly represented differences among the treatment experimental groups and were 
assigned to two separate clusters (Fig. 4, set 2 and 4). The identified proteoforms of chloroplastic proteins, rubisco 
activase (RCA) and translationally-controlled tumor homolog (TCTP), were among the four protein spots (subset 
2A) that were specifically upregulated by the EMF treatment.

Figure 2.  Venn diagram of protein abundance differences (p < 0.01 and >1.5-fold variations) in the sunflower 
shoots germinated from seeds treated with vacuum, CP or EMF radiation. Numbers outside and inside brackets 
indicate differences when the treated experimental group is compared to untreated control or vacuum treated 
experimental groups, respectively.

Figure 3.  Principal component analysis of the differentially expressed protein data in sunflower shoots 
germinated from the seeds treated with vacuum and/or CP and EMF. Spots of the same color represent four 
biological replicates.
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Biological processes were assigned based on gene ontology (GO) data of the identified proteins and the sum-
mary of the GO terms of biological process provided in Supporting Information Fig. S2. For 2 of the identified 
proteins of the set 2, no biological process GO terms were assigned. Twenty-three unique proteins included in 

Figure 4.  Hierarchical cluster analysis results of the abundance data of proteoforms differentially expressed 
in sunflower shoots germinated from the seeds treated with vacuum, CP or EMF radiation. Numbers on the 
left indicate four major clusters based on expression patterns. Colors indicate a decrease (green) or increase 
(red) in protein abundance compared to control. Star symbols in columns 1–5 indicate statistically significant 
(p < 0.01) differences between the cold plasma treatment and control (1), electromagnetic field treatment and 
control (2), vacuum treatment and control (3), cold plasma and vacuum treatment (4), and cold plasma and 
electromagnetic field treatment (5). Spot number and protein name are shown in column 6.
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the first set were associated with 92 GO terms that were summarized as 22 distinct biological processes based on 
semantic similarity (Fig. S2, panel A). The proteins were related to cell metabolism (56.1% frequency), and their 
more specific function was related to broad range of processes that included oxidation-reduction (7.5%), proteol-
ysis (5.5%), carbohydrate metabolism (4.7%), response to cold (1.6%) and photosynthesis (1.1%) and other lower 
frequency processes mostly related to carbon fixation and utilization or metabolism of biological molecules (fruc-
tose, GDP-mannose, glycerol ether, glyoxalate, inositol, tyrosine, pigments). Nine proteins that were identified 
in the set 3 were associated with 35 GO terms and summarized as 8 distinct and rather unique processes related 
to oxidation-reduction (7.5%), carbohydrate metabolism (4.5%), translation (3.3%), ribosome biogenesis (2.1%), 
photosynthesis (1.1%), glucose (0.2%) and glyoxylate (0.04%) metabolism (Fig. S2, panel B).

To assess interactions among the identified proteins, 33 homologous proteins of A. thaliana were queried into 
the String database. The results revealed a network of six closely interlinked interaction clusters centered around 
proteins that were mainly involved in energy metabolism (photosynthesis, glycolysis) and protein metabolism 
(Fig. 5). Two interaction clusters (circled in green and purple) consisted exclusively of the proteins that increased 
in abundance upon the CP/EMF treatment, and the remaining clusters included proteins that had contrasting 
expression regulation in response to the seed treatment.

The core of the protein network (circled in green in Fig. 5) includes enzymes involved in Calvin cycle reac-
tions (rubisco small subunit 1B (RBCS1B), phosphoribulokinase (PRK), phosphoglycolate phosphatase (HAD)), 
proteins directly involved in photosynthetic electron transfer and regulation of the linear and cyclic electron flow 
(ferredoxin-NADP+ reductase (FNR1), thioredoxin M4 (TRX-M4)28), as well as the regulatory ZKT protein that 
was proposed to act as a molecular adaptor in chloroplasts, relaying information in signal transduction path-
ways29. Several proteins in the closely interlinked cluster (circled in yellow) were also related to photosynthetic 
electron transfer activity in chloroplasts and included the chlorophyll a-b binding protein (LHCA1) and subunit 
2.2 (LHCB2.2) of the light harvesting complexes I and II, O-2 (PSBO2), P-2 (PSBP2) and rubisco activase (RCA) 
subunits of the photosystem II, as well as the lumenal electron carrier plastocyanin (PETE1).

Functional or gene expression data linked the majority of the remaining protein interaction clusters to the 
described network of proteins involved in the photosynthetic apparatus. Three chloroplastic proteins (blue circles) 
are directly linked to photosynthetic process such as ATP synthase delta-subunit (ATPD)30, chloroplastic lipoca-
lin (CHL)31, and the 30S ribosomal S6 (RPS6) protein32,33. A function of several proteins responsive to the CP/
EMF-treatment is localized mainly to the cytosolic compartment and is involved in protein synthesis and gene 
expression regulation that often has wider implications including modulation of photosynthetic energy transfer 
and carbon metabolic processes. These included cytosolic glyceraldehyde-3-phosphate dehydrogenase 1 (GAPC1) 
and fructose-bisphosphate aldolase (FBA1)34–36, phosphomannomutase (PMM)37, ribosomal protein S27A 
(RPS27AA)38, peptidyl-prolyl cis-trans isomerase (CYP19–2)39 and protein disulfide isomerase (PDIL1–2)40,41.

Discussion
Radio-frequency low-pressure plasma or CP is a complex stressor and its different components including high 
frequency electromagnetic radiation, UV radiation, vacuum, charged particles and subsequently formed reactive 
chemical species could have an impact on biological systems2,42. In comparison to CP, vacuum and EMF are less 
complex physical stressors, but their effectiveness in inducing changes in germination and plant growth is com-
parable1,16. However, the detailed mechanisms of action are poorly established3.

Figure 5.  A protein interaction network using A. thaliana proteins most closely related to the proteins (groups 
1 and 4) that were differentially expressed in sunflower shoots germinated from the seeds treated with vacuum, 
CP or EMF radiation. The protein interaction network was built using the String database. Circles connecting 
solid and dashed lines indicate protein interactions within and between clusters, respectively. Circle colors 
represent protein clusters assigned based on the protein interaction data. Circle line color represents a decrease 
(green), increase (red) or contrasting regulation of protein abundance for different proteoforms (orange) 
compared to control. Dashed circle line indicates regulation specific to the EMF treatment.
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In comparison to the positive effects of sunflower seed treatments with a static magnetic field reported earlier43,  
we revealed rather moderate effects of seed treatment with vacuum, CP and EMF on germination and early 
growth of sunflower. The comparison of the effects on germination in vitro and germination in the substrate 
revealed a dependence of the observed effects on conditions of seed germination. EMF15 treatment caused 
faster germination under both conditions; vacuum induced a similar effect only for germination in the substrate, 
whereas CP7 only stimulated germination in vitro. Similar differences have been previously detected in germina-
tion of the Norway spruce seeds12. That could be explained in several ways. Germination in vitro reflects an early 
or sensu stricto germination44 stage, whereas germination in the substrate is linked to a later stage of germination. 
Slower penetration of water, reduced oxygen and light supply45, presence of various compounds in the substrate 
or interaction with microorganisms may also cause differences of seed germination in the substrate compared to 
that in a Petri dish.

Changes in seed phytohormone content induced by a short (2–15 min) treatment with vacuum, CP and EMF 
were estimated for the first time. Contrary to the common expectation for exceptional seed stress resistance, the 
obtained results demonstrated that short pre-sowing treatment of sunflower seeds resulted in significant shift in 
phytohormone balance. Moreover, the pattern of the induced changes was obviously stressor-specific. Vacuum 
treatment affected auxin/cytokinin balance; CP treatments substantially increased GA amount, while the other 
effects varied strongly with the treatment duration; EMF treatments decreased the amount of ABA and increased 
IAA and SA levels without changes in GA, IBA and Z content. However, the relationship between changes in 
phytohormone amount (Table 3) and germination kinetics (Table 1) was not straightforward. For example, the 
stimulation of germination in the substrate by vacuum (for germination in vitro the effect was not statistically 
significant) may be related to a decrease in IAA content. Despite the decreased ABA and increased GA3 amount, 
germination of CP5 seeds was not stimulated. Although changes in phytohormone balance were similar for 
all EMF treated seeds, the germination yield in vitro decreased in the EMF5 group, and the germination rate 
increased only in EMF10 and EMF15 groups. This indicates that a certain important part of the information 
about key hormonal determinants is still missing, possibly because a limited selection of phytohormones that 
are involved in seed germination has been used. Since phytohormones function in a complex network involving 
mutual regulation or functional cross-talk13, an integrated phytohormone analysis is required to better under-
stand the obtained results.

The effects of seed treatments on germination did not directly correlate with the changes induced in early 
seedling growth. Although CP7 increased germination rate in vitro, it affected morphometric growth parame-
ters negatively. Similarly, vacuum reduced germination half-time in the substrate but slightly decreased seedling 
length. Only EMF15 treatment resulted in higher rate of germination and an increase in leaf weight, the rest of the 
morphometric indices did not differ from the control. Leaf proteome analysis was performed aiming to link the 
induced changes in seedling growth with a pattern of changes in protein expression levels.

Sunflower seedling proteome analysis showed that vacuum treatment of sunflower seeds had no specific effect 
on protein abundance in germinated plants (Fig. 2). This implies that upon CP treatment, gene expression dif-
ferences were more likely to be specifically induced by exposure to radiation or chemical components of the CP. 
Furthermore, the seed treatment with CP or EMF triggered similar protein expression changes in sunflower 
shoots as illustrated by a similar pattern of upregulated and downregulated genes (clusters 1 and 3 in Fig. 4). This 
further supported the notion that radio-frequency radiation component of CP and EMF treatment of seeds could 
be the main cause of the changes in protein expression of the germinated sunflower shoots.

Although understanding about effects of CP on plant physiology is vague, several studies focused on 
radio-frequency EMF irradiation-induced gene expression regulation in plant cells were published previously 
(reviewed by46) and demonstrated that direct exposure to low power high frequency EMF radiation evokes 
changes in plant gene expression and modifies numerous metabolic activities (reactive oxygen species metabo-
lism, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, and gene expression)46–50. 
Further, it has been demonstrated that the response could occur not only in directly exposed tissues but could 
spread systemically to unaffected tissues through Ca2+ mediated signalling51.

Plant exposure to abiotic or biotic stress stimuli leads to activation of specific stress response pathways that 
results in accumulation of pathogenesis related proteins, chaperones implicated in protein stabilization, such as 
pathogenesis-related (PR) and heat shock proteins (HSP), and antioxidative enzymes involved in detoxification of 

Treatment

Seed phytohormone amount, mean concentration ± SEM (µg/g seed weight)

ABA GA3# IAA IBA Z SA

Control 2.0 ± 0.5 ND 13.7 ± 1.8 0.4 ± 0.1 4.1 ± 0.7 0.1 ± 0.0

Vacuum 1.8 ± 0.2 ND ND 1.7 ± 0.1* 2.5 ± 0.6* ND

CP2 3.3 ± 0.4* 6.0 ± 0.5* ND 0.2 ± 0.1 2.1 ± 0.4* ND

CP5 1.0 ± 0.2* 14.0 ± 2.2* ND 1.1 ± 0.2 1.2 ± 0.6* 1.3 ± 0.6*

CP7 2.2 ± 0.2 19.7 ± 4.1* 27.9 ± 3.2* 0.5 ± 0.1 2.7 ± 0.3* ND

EMF5 0.8 ± 0.1* ND 60.5 ± 11.2* 0.7 ± 0.2 4.3 ± 0.6 4.0 ± 0.5*

EMF10 0.8 ± 0.3* ND 66.4 ± 6.2* 0.5 ± 0.1 4.1 ± 1.1 5.0 ± 0.7*

EMF15 0.9 ± 0.1* ND 73.3 ± 3.1* 0.5 ± 0.1 3.2 ± 0.9 3.5 ± 0.5*

Table 3.  The amount of phytohormones in sunflower seeds four days after treatment. #The amount GA7 
was below detectable level in seed of all experimental groups. *Significantly different from the control group 
(p ≤ 0.05).
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reactive oxygen species14,52. It could be presumed that the CP or EMF treatment induced changes in seed phyto-
hormone content might have seed-priming effect similar to results obtained by other seed-priming techniques53. 
Significant upregulation of the extracellular papain type cysteine proteinase family enzyme that participate in 
immune response in plants54 was detected upon the CP/EMF treatment. However, the role of the enzyme in the 
germinated sunflower seedlings is ambiguous as the treatment did not induce significant accumulation of PR or 
HSP proteins or other broad qualitative differences in protein expression pattern characteristic to abiotic stress 
response proteome14.

The consistent (low biological variance) low amplitude (-2.3 to 1.6, -2.6 to 3.9 and -3 to 2.7-fold for vacuum, 
CP and EMF treatment, respectively) differences in gene expression revealed by the proteome analysis imply that 
the treatment of seeds did not trigger distinct defense response or other stress induced developmental program 
in sunflower shoots, but rather predetermined a subtle modulation of plant metabolic processes that led to the 
observed phenotypic differences of the seedlings. Such gene expression changes are characteristic to low inten-
sity stress (eustress) stimuli such as has been described for low intensity UV-B treatment that affects mainly the 
expression of genes that play role in the regulation of the cellular redox balance (enzymes involved in glutathione, 
pyridoxine, and phenolic metabolism) (reviewed by55). An increase in abundance of chloroplastic enzymes 
glutathione S-transferase and lipocalin, that are implicated in antioxidative function in chloroplasts31,56,57, was 
detected. In addition, a role of polyphenol oxidase in protection against low-level, chloroplastically derived oxida-
tive stress has been recently proposed58. Since no differences in the expression of cytosolic redox balance regulat-
ing enzymes could be detected, it appears that the eustress-like response to the CP/EMF stimulus of the sunflower 
seedlings was mainly localized to chloroplasts.

Recent proteomic study on microwave (1.8 GHz) electromagnetic radiation effect on Microcystis aerugi-
nosa algal cells grown in a bioreactor system revealed that the treatment downregulates accumulation of pho-
tosynthetic pathway proteins50 which is contradictory to our findings concerning a long-term effect of seed 
pre-treatment with EMF. Upregulated expression of enzymes involved in photosynthetic electron transfer (FNR1, 
plastocyanin, regulatory subunits O-2 and P-2 of photosystem II) or carbon fixation (rubisco subunit 1B, phos-
phoribulokinase, phosphoglycolate phosphatase) suggests that seed treatment resulted in a photosynthetic activ-
ity stimulating effect in the germinated sunflower shoots. This is further supported by the detected changes in 
differential expression of several proteoforms linked to PSBP2, the regulator of oxygen evolving complex activity 
in the PSII. In addition, several other chloroplastic or cytosolic proteins implicated in regulation of alternative 
photosynthetic pathways (ZKT protein29, thioredoxin M428, ATP synthase59), and carbon metabolism (GAPC160) 
were differentially expressed.

The CP or EMF treatment-specific differences were mostly limited to a slight variation in protein expression of 
proteins assigned to clusters 1 and 3 (Fig. 4). In addition, more pronounced qualitative differences were detected 
for two identified proteins of cluster 2, rubisco activase (RCA) and translationally-controlled tumor homolog 
proteins (TCTP). The RCA is the regulatory subunit of the PSII that regulates dark-light transitions under chang-
ing environmental conditions61. Further investigation would be required to understand the significance of this 
RCA proteoform in plant response to high-frequency radiation treatment. Another protein, TCTP, has been spe-
cifically upregulated by the EMF treatment. The protein is highly conserved among many eukaryotic organisms 
and is an important regulator of cellular growth in plants62, is involved in abiotic stresses response63,64 and plays 
crucial role in DNA repair65. The latter function of TCTP is important for cellular response to UV or ionizing 
radiation treatment but appears irrelevant to our experimental setup where non-ionizing EMF radiation was 
used. Therefore, EMF treatment-specific upregulation of TCTP is more likely a consequence of priming of stress 
response in seeds or regulation of cell growth.

The majority of the differentially expressed proteins identified in our study are involved in tightly linked net-
work related to photosynthetic energy transfer, carbon fixation, carbohydrate metabolism or other chloroplastic 
and cytosolic processes implicated in the regulation of the photosynthetic activity (Fig. 5). The specific effect of 
the CP/EMF-treatment on the photosynthetic process is consistent with the finding that no significant protein 
expression differences could be detected in seedling roots. The later fact also supports a notion that the protein 
expression differences are not a consequence of treatment-induced difference in seed germination timing, as this 
could be expected to result in significant differences in root proteome, as well.

Conclusion
We report for the first time that short treatments of sunflower seeds induce stressor specific pattern of changes 
in the content of seed phytohormones involved in the control of germination: vacuum treatment affected auxin/
cytokinin balance; CP treatments substantially increased gibberellin content while other effects varied with 
treatment duration; EMF treatment was effective in decreasing abscisic acid content. Such a finding indicates 
that despite high resistance to environmental stresses in a dehydrated state, seeds rapidly respond even to short 
pre-sowing treatments with physical stressors on the level of phytohormone balance. Our results show that expo-
sure of seeds to radio-frequency EMF or CP could induce a similar long-term effect on gene expression and the 
development of germinated plants suggesting that radio frequency radiation component of CP and EMF could be 
the main cause of the observed effect. The treatment has a moderate stimulating effect on expression of proteins 
mostly involved in photosynthetic pathways or their regulation and the protein expression differences are not 
related to defense or stress response priming in seeds.

The results of phytohormone balance and protein expression analysis provide an original insight into the 
molecular basis of plant phenotypic plasticity upon radio-frequency radiation treatment. These findings pave the 
way for further studies on seed germination physiology and regulation of photosynthetic activity in response to 
stressors.
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Methods
Plant material.  Seeds of the common sunflower confectionery variety ‘Nyķrségi fekete’ harvested in 2016 
were received from the Institutes for Agricultural Research and Educational Farm, University of Debrecen 
(Hungary). Seeds were visually checked for quality, packed into plastic bags and transported for treatment with 
CP and EMF.

Pre-sowing seed treatment with vacuum, CP and EMF.  Seed treatments were carried out at the B. 
I. Stepanov Institute of Physics, NAS of Belarus (Minsk, Belarus). The equipment and conditions used for seed 
treatment have been described earlier in more detail19.

Seed treatment with radiofrequency (RF) EMF was carried out under the following experimental conditions: 
RF generator frequency − 5.28 MHz; root-mean-square value of magnetic H and electric E components of EMF 
strength were equal respectively 590 А/m (В ≈ 0.74 mT) and 12.7 kV/m; amplitude values H* =  H2  and 
E* =  E2  of 835 A/m (В ≈ 1 mT) and 17.96 kV/m, respectively. Packed seeds were placed in plastic bags on the 
container at the center of the induction coil and treatment was performed for 5, 10, and 15 minutes (these treat-
ments are further abbreviated as EMF5, EMF10 and EMF15, respectively) at atmospheric pressure and room 
temperature.

The planar geometry reactor for seed treatment by CP consisted of two plane-parallel, water-cooled copper 
electrodes (120 mm diameter) placed in a stainless-steel vacuum chamber. The low-pressure capacitively cou-
pled RF discharge in this reactor operated at 5.28 MHz in air (at a pressure of 200 Pa), and the specific power of 
0.35 W/cm3 was applied. Seeds were evenly dispersed on the surface of an open, sterile Petri dish and placed on 
the grounded electrode before pumping air from the chamber. In every CP experiment, before plasma ignition 
between the electrodes, a pressure of 200 Pa (partial vacuum) was achieved by pumping air from the chamber for 
approximately 7 min. Thus “vacuum” treatment was used as an additional control in the CP experiments. Further 
CP treatment lasted for 2, 5, or 7 minutes (these treatments are abbreviated as CP2, CP5 and CP7, respectively).

Treatments for all experimental conditions were replicated three times. After treatment with CP and EMF 
seeds were stored in plastic bags at room temperature (20–22 °C) until the further investigation.

Measurement of seed germination and seedling morphological parameters.  Germination tests 
were started four days after the treatment both in vitro and in the substrate. For germination test in vitro seeds 
were evenly distributed on three layers of filter paper in 13.5 mm diameter plastic Petri dishes (three replicates of 
30 seeds each) and watered with 6 mL distilled water. Petri dishes with seeds were placed in a climatic chamber KK 
750 (Pol-Eko-Aparatura, Poland) with automatic control of moisture (60%), light, and temperature. Alternating 
light and temperature regimes were maintained in the chamber (darkness: 14 °C for 8 h; light: 21 °C for 16 h). 
Seeds were provided with additional water in a Petri dish, if necessary, to prevent drying. Germinated seeds 
(judged by the appearance of a visible 1-mm radicle) were counted daily until their number stopped increasing. 
For the germination tests in the substrate, the seeds were sown into plastic containers (12 × 18 × 30 cm) filled 
with peat substrate, placing the seeds in 0.5 cm depth from the substrate surface. Germination tests were repli-
cated three times for all experimental conditions including control seeds (3 × 30 seeds, n = 30 for one replicate). 
Germinated seeds were counted daily as judged by the appearance of the top of green sprout from the surface of 
the substrate.

The germination results of each experimental replicate were analyzed using the application of Richards’ 
function66 for the analysis of germinating seed population67. The indices of germination kinetics derived from 
Richards plots were: Vi (%) – final germination percentage indicating seed viability, Me (days) – median germina-
tion time (t50%) indicating the germination halftime of a seed lot or germination rate67.

The containers with grown seedlings were kept for 2 weeks in the climatic chamber with constant humidity 
(60%) and alternating light and temperature regimes (darkness: 14 °C for 8 h; light: 21 °C for 16 h). For morpho-
metric analysis seedlings were carefully removed from containers, their roots washed to remove the substrate and 
wiped well with a moisture absorbent paper. Fresh weight and length of all seedlings and their parts (roots, shoots 
and leaves) was estimated.

Phytohormone extraction from seeds and detection by HPLC analysis.  For the extraction of plant 
hormones 1 g of seeds was ground and extracted in 5 mL of 85% methanol for 24 hours at 4 °C. The homogenate 
was centrifuged at 13500 × g for 5 min, the supernatant was collected and kept at −80 °C until HPLC analysis. 
Extractions were performed in triplicates.

Seed extracts were treated and analysed by a modified method of Bendokas et al.68 Plant hormones were sep-
arated and quantified using high performance liquid chromatography (HPLC). Agilent 1200 series HPLC system 
(Agilent Technologies Inc., USA) with a diode array detector and a reversed phase column (Spherisorb ODS2, 
4 × 125 mm, Waters Corporation, USA) were used. Quaternary solvent (A 50% methanol, B 50% methanol, 1.2% 
acetic acid, C water, D methanol) gradient elution was used as follows: initial conditions 10% B, 60% C; 10.5 min 
50% B, 15.75 min 50% B; 23 min 40% B, 60% D, 30 min 40% B, 60% D, and 32 min 10% B, 60% C. Gibberellins 
(GA3 and GA7) and ABA were detected at a wavelength of 254 nm, while auxins (IAA and IBA), Z and SA − at 
280 nm. Peak positions of analytes were identified by the retention time, peak spiking and spectral properties. 
Hormone concentrations were valued via a linear regression equation of standard calibration curves. The analyses 
were performed in triplicate and the results were presented as mean ± standard error of mean.

Sunflower seedling proteome analysis using two-dimensional electrophoresis.  Seedlings grown 
from the control and vacuum, CP and EMF treated seeds were maintained in a climatic chamber as described 
above and the analysis was performed after 2 weeks of cultivation. Four and three biological repeats of pro-
tein samples from shoots and roots, respectively were prepared using phenol extraction and ammonium acetate 
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precipitation, as described previously69. Internal standards were prepared from a pooled mixture of all protein 
extracts. Protein separation and detection was performed using a differential gel electrophoresis procedure as 
described previously70. Sample aliquots of 50 µg were labeled with Cy3 and Cy5 fluorescent dyes, and the inter-
nal standard was labeled with Cy2 dye (Lumiprobe, USA). For the preparative gel, 500 µg of unlabeled internal 
standard was mixed with 50 µg of Cy2 labeled internal standard. Isoelectric focusing was performed on 24 cm IPG 
strips with a linear gradient of pH 4–7 using Ettan IPGphor (GE Healthcare, USA). Further, the proteins were 
separated on 1-mm thick 10–16% polyacrylamide gradient gels using Ettan DALTsix (GE Healthcare, USA). Gels 
were scanned using a fluorescence scanner FLA 9000 (GE Healthcare, USA). Relative protein quantification was 
performed using DeCyder 2-D Differential Analysis Software, v.7.0 (GE Healthcare, USA).

Preparative gel was fixed in 50% methanol and 10% acetic acid. Protein spots were excised manually and 
subjected to protein digestion with trypsin, according to a method described previously71. Protein digests were 
loaded and desalted on a 100 μm × 20 mm Acclaim PepMap C18 trap column and separated on a 75 μm × 150 mm 
Acclaim PepMap C18 column using an Ultimate3000 RSLC system (Thermo-Scientific, USA), coupled to a 
Maxis G4 Q-TOF mass spectrometer detector with a Captive Spray nano-electrospray ionization source (Bruker 
Daltonics, Germany). Peptide identification was performed using the MASCOT server (Matrix Science, USA) 
against Helianthus annuus L., genome database v.1.025. Threshold value for the identification of proteins was a 
Mascot score of >50 and at least 2 peptides.

Blast2GO software72 was used for the annotation and gene ontology analysis of the protein sequences identi-
fied with the NCBI Protein database. The obtained GO terms were summarized using the REVIGO server73, the 
A. thaliana database and the SimRel semantic similarity method with the level set at 0.7 value. A. thaliana homo-
logues of the identified proteins were obtained by a search against TAIR10 gene models using the BLAST tool at 
the Sunflower Genome Database (https://sunflowergenome.org/blast/) and interactions were assessed using the 
String database with default settings74.

Statistical data analysis.  The Biological Variation Analysis module of the DeCyder software was used to 
match protein spots in biological repeats across different gels and ANOVA analysis was used to identify statisti-
cally significant (p ≤ 0.01) differences in protein abundance. Additionally, a threshold value of at least a 1.5-fold 
difference in protein abundance was used. Since CP treatments require application of a vacuum, the effect of CP 
treatment was compared to control and vacuum treated experimental groups.

Means of various parameters between the control and treatment groups were compared using Student’s t-tests 
for independent samples, as there was no reason for comparing different conditions of affected groups. The dif-
ferences were considered to be statistically significant at p ≤ 0.05. The number of measured seeds or plants in 
the control and treatment groups varied from 17–24 (analysis of morphometric parameters) to 30 (germination 
tests and estimation of phytohormones content) for one replicate. Data are presented as means of 3 independent 
experiments ± standard error of mean.
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