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Abstract: Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing
genes, holding great promise in the treatment of human diseases, including malignant cancers.
In recent years, with the development of chemical modification and delivery technology, several
siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases.
Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major transla-
tional challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and
intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting
and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and
inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery
systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies
to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of
non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and
the combination with other therapeutic modalities. In addition, we also provide an outlook on the
ongoing challenges and possible future developments of siRNA-based cancer therapeutics during
clinical translation.

Keywords: small interfering RNA; nanoparticles; gene delivery; cancer; targeting; combination strategies

1. Introduction

RNA interference (RNAi) is an evolutionary-conserved mechanism that degrades
homologous target genes via double-stranded RNA (dsRNA) [1]. Small interfering RNA
(siRNA) therapy belongs to RNAi technology, which silences the target messenger RNA
(mRNA) through the formation of RNA-induced silencing complex (RISC) by double-
stranded RNA (dsRNA) and argonaut 2 helicase in the cytoplasm to block the translation of
corresponding protein [2]. Theoretically, siRNA could silence any specific disease-related
genes in the way described above. Therefore, siRNA has been recognized as an indispens-
able tool to study the function of single genes and a new potential therapeutic strategy.

Cancer seriously affects human health and is the second leading cause of death in the
world. There were 19.3 million new cancer cases and 10.0 million deaths worldwide in 2020.
It is estimated that cancer incidence cases will rise to 28.4 million in 2040 [3]. The main
cancer treatment modalities include surgery, radiotherapy, chemotherapy, targeted therapy,
and immunotherapy [4]. However, poor selectivity, unwanted adverse drug reaction (ADR)
and drug resistance of antineoplastic drugs limit their application. In addition, cancer
is a gene-driven disease characterized by the diversity of gene mutations between and
within individuals [5,6]. Identification of genetic drivers is crucial for advancing cancer
therapeutics. In this regard, siRNA therapy has attracted more and more attention due to
its great potential in sequence-specific gene regulation. Compared with other therapeutic
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modalities, siRNA has become a promising platform in the field of cancer therapy due to
its inherent advantages. Firstly, siRNA expands the range of therapeutic targets. To date,
although 700 oncogene targets have been identified, most of them are “undruggable” [7].
These “undruggable” targets often have undefined structures or lack ligand-binding pock-
ets that are difficult or impossible to target by traditional small compound molecules [8].
RNAi treats diseases at the transcriptional level, which is a form of post-transcriptional
gene silencing technology. Since siRNA has the potential to silence any therapeutic gene,
and will vastly expand the proportion of therapeutic targets in the human genome, making
“undruggable” targets druggable. Secondly, the essence of siRNA drug development is to
design the correct nucleotide sequence of the target mRNA, to target any gene you are in-
terested in, making the treatment more precise and personalized. Thirdly, the time required
for siRNA drug development is relatively short compared with conventional drugs such as
small molecules and antibodies. The development of small molecule drugs or monoclonal
antibodies costs a huge amount of money and time, and the target protein is prone to
drug resistance once the protein configuration changes, which makes the development
of next-generation drugs more difficult. Lastly, siRNA-based therapeutics is safer than
cell therapy or gene editing technology because it targets mRNA rather than permanently
modifying DNA. In addition, it has been reported that long-term gene silencing efficiency
can be achieved by administering siRNA drugs at intervals of six months or even longer,
which will offer treatment compliance [9]. Consequently, siRNA-based therapy is a unique
and potent way to regulate gene expression by specifically triggering the degradation of
mRNAs, and therefore provides an effective therapeutic prospect for cancer patients.

So far, four siRNA drugs have been approved by the Food and Drug Administration
(FDA) and European Medicines Agency (EMA) (Table 1). Unfortunately, none of them are
used for cancer treatment. Despite their great potential in cancer therapy, siRNA drugs
still face some obstacles in clinical application, such as the targeted and effective delivery
of siRNAs to extrahepatic tumors and the cytosol of cancer cells. In addition, due to the
biological complexity of cancer, combination strategies are usually required to control
tumor growth [10].

Numerous outstanding reviews have elaborated the common delivery systems used in
siRNA drug development [11–14]. In this review we focus on recent advances in delivery
strategies of siRNA drugs in cancer treatment, including lipid-based nanoparticles (NPs),
polymer-based NPs, siRNA-ligand conjugates and exosomes. These nanocarriers are
expected to selectively deliver siRNA to cancer cells or immune cells to achieve tumor
targeted therapy or tumor immunotherapy. In addition, we also summarize the related
therapeutic targets and combined treatment strategies of siRNA drugs according to the
characteristics of tumor biology.

Table 1. Currently approved siRNA therapeutics for non-cancerous diseases.

Name
(Market Name) Company Gene

Targets/Indications Organ Route of
Administration

Delivery
System Approval

Patisiran
(Onpattro) Alnylam

TTR/hereditary
transthyretin

amyloidosis (hATTR)
Liver Intravenous LNP

August
2018

(FDA)

Givosiran
(Givlaari) Alnylam ALAS1/acute hepatic

porphyria (AHP) Liver Subcutaneous GalNAc
conjugate

November 2019
(FDA)

Lumasiran
(Oxlumo) Alnylam

HAO1/primary
hyperoxaluria type 1

(PH1)
Liver Subcutaneous ESC-GalNAc

conjugate

November
2020

(FDA, EMA)

Inclisiran
(Leqvio) Novartis PCSK9/hyperlipidemia Liver Subcutaneous ESC-GalNAc

conjugate
2020

(EMA)

2. Development and Challenges of siRNA-Based Therapeutics

RNA silencing technology was first proposed in 1998 [15]. In 2001, researchers suc-
cessfully silenced related mRNAs in mammals by siRNA [16]. In 2003, pharmaceutical
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companies began distributing RNA-silencing drugs. Currently, Patisiran®, Givosiran®,
Lumasiran® and Inclisiran® have been approved for the treatment of hereditary transthyretin-
mediated amyloidosis (hATTR), acute hepatic porpyria (AHP), primary hyperoxaluria type
1 (PH1) and hyperlipidemia, respectively. Although the discovery of this new technology
has achieved clinical success in just 20 years, the development of siRNA drugs has not been
smooth sailing. This is largely due to the limited pharmacokinetics (PK) behavior of siRNA
in systemic application.

siRNA is a typically hydrophilic polyanion with a size of about 13 kDa, which does
not pass easily through the plasma membrane. Systemically injected siRNA drugs first
encounter extracellular barriers, including enzymatic degradation by endonuclease and
RNase, clearance by the kidney, recognition and phagocytosis by the reticuloendothelial
system (RES), repulsion by the negatively charged cell membrane, and activation of the
immune system (Figure 1A) [17,18]. siRNA faces the complicated tumor microenvironment
(TME) and must pass through the dense extracellular matrix (ECM) to enter cancer cells.
Even after entering the cells, siRNA encounters intracellular barriers, such as the endosomal
trap and lysosomal degradation (Figure 1B). This series of complex extracellular and
intracellular barriers has brought great challenges to siRNA therapeutics, leading to the
failure of most trials. Thus, the major difficulty and challenge of siRNA application in vivo
lies in the successful delivery of siRNA in targeted tissues and cells, as well as its release in
the cytoplasm. To overcome this, a great deal of vehicles has been developed for siRNA
delivery, including virus and non-virus-based platforms. Although viral vectors have
proven to be highly effective in delivering siRNA, the potential safety issues of viral vectors
make them less attractive than non-viral vectors.
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trial website. TKM-080301, also a lipid nanoparticle formulation delivering the polo-like 
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However, it will not be further explored as an anti-tumor monotherapy because of its lim-
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ated, and 41% patients (14/34) had stable disease at the end of treatment [27]. In the sub-

Figure 1. Extracellular and intracellular barriers of siRNA-based cancer therapeutics. (A) Extracellular
barriers include enzymatic degradation, renal clearance, RES recognition and phagocytosis, activation
of immune system and the complex tumor microenvironment. (B) Intracellular barriers include
endosomal trapping and lysosomal degradation in cancer cells.

siRNA drugs also face other challenges and limitations. For example, siRNA is less
effective for proteins with a longer half-life because siRNA degrades mRNA rather than
proteins that have been synthesized. Although siRNA has the ability to significantly silence
target genes, this silencing ability is temporary because siRNA is exogenous and does not
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occur on its own. With the growth and division of cells, the inhibitory effect of siRNA is
weakened. Therefore, repeated administration is required during siRNA treatment. In
addition, correct sequence design is an important factor to improve siRNA therapy. For
instance, the sequence of the antisense strand (the guide strand that activates RISC binding
to the target mRNA) determines the effectiveness of siRNA therapeutics.

To date, all the approved siRNA drugs have focused on hepatic diseases, and none
of them are used in cancer treatment. Free siRNA and its carriers can be trapped by the
liver due to its fenestrated endothelium and highly perfused property [19–21]. In addition,
overexpression of certain receptors in hepatocytes, such as asialoglycoprotein receptor
(ASGPR), can facilitate the uptake [22]. Hence, the development of effective extrahepatic
delivery technologies remains a major goal for siRNA-based cancer therapeutics.

3. Strategies to Improve siRNA Delivery in Cancer Therapy

Chemical modification and nanoparticle (NP)-based delivery systems (e.g., lipid-based
NPs, polymer-based NPs, siRNA-ligand conjugates, and exosomes) can optimize the PK
characteristics of siRNA, protect siRNA from degradation by nuclease, and prevent it
from renal clearance. The siRNA delivery systems most relevant to clinical application are
discussed below (Figure 2). These strategies have improved the bioavailability of siRNA
and brought siRNA-based drugs into clinical trials [23]. Currently, a variety of siRNA
cancer therapeutics based on different delivery strategies are in the early clinical trial stage
(Table 2), of which only three have completed Phase I/II clinical studies. ALN-VSP02,
a lipid nanoparticle-based formulation that double-targets vascular endothelial growth
factor (VEGF) and kinesin spindle protein (KSP), has completed a Phase I clinical trial
(NCT00882180). Patients tolerated the twice-weekly dose of ALN-VSP02 well. More impor-
tantly, an endometrial cancer patient with liver metastases showed a complete response
to ALN-VSP02, which is rare in a phase I clinical trial. However, given the different treat-
ment levels of enrolling patients (some of them have received anti-VEGF therapy) and
the heterogeneity of tumors, correlations between the VEGF/KSP inhibition and clinical
outcomes is hard to determine [24]. Subsequent clinical trials of ALN-VSP may enroll
patients with specific types of tumors who have previously been treated less, but there is
no information about the initiation of a phase II clinical study of ALN-VSP on the clinical
trial website. TKM-080301, also a lipid nanoparticle formulation delivering the polo-like
kinase 1 (PLK1) siRNA, has completed phase II clinical studies in advanced solid tumors.
However, it will not be further explored as an anti-tumor monotherapy because of its
limited tumor-suppressing effect [25]. Atu027, a liposomal formulation containing siRNA
against protein kinase N3 (PKN3) with anti-metastatic activity by inhibiting the expression
of PKN3 in the vascular endothelium [26], has completed phase I and II clinical trials
(NCT00938574, NCT01808638). In a 28-day phase I clinical trial, Atu027 was well tolerated,
and 41% patients (14/34) had stable disease at the end of treatment [27]. In the subsequent
phase II trial, Atu027 was combined with gemcitabine for the treatment of metastatic pan-
creatic cancer [28]. The combination of gemcitabine and Atu027 (twice a week) has shown
the efficacy treatment benefit in patients with metastatic tumors.
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used delivery systems include lipid-based nanoparticles (liposome, LNP and lipopolyplex), polymer-
based nanoparticles (polymeric nanoparticles, polymeric micelles and dendritic polymers), siRNA-
ligand conjugates and exosomes.

Table 2. siRNA-based cancer therapeutics in clinical trials.

Name Indications
(Tumor Types)

Delivery
System

Gene
Targets Sponsor Phase Status NCT ID

SiRNA-EphA2 Advanced Malignant
Solid Neoplasm

Neutral
liposome EphA2 M.D. Anderson

Cancer Center I Active, not
recruiting NCT01591356

iExosomes Pancreatic Cancer Exosomes KRAS G12D M.D. Anderson
Cancer Center I Recruiting NCT03608631

Atu027
Atu027

+Gemcitabine

Advanced Solid
Tumors

Advanced/metastatic
pancreatic cancer

Lipople
xLipoplex

PKN3
PKN3

Silence
Therapeutics

GmbH
Silence

Therapeutics
GmbH

I
II

Completed
Completed

NCT00938574
NCT01808638

CALAA-01 Solid Tumors

Transferrin
receptor-
targeted

cyclodextrin
nanoparticle

RRM2 Calando
Pharmaceuticals I Terminated NCT00689065

ALN-VSP02 Solid Tumors lipid
nanoparticle VEGF, KSP Alnylam

Pharmaceuticals I Completed NCT00882180
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Table 2. Cont.

Name Indications
(Tumor Types)

Delivery
System

Gene
Targets Sponsor Phase Status NCT ID

siG12D-
LODER

Pancreatic Ductal
Adenocarcinoma

Miniature
biodegrad-

able
polymeric

matrix

KRAS G12D Silenseed Ltd. II Unknown NCT01676259

TKM-080301 Advanced Solid
Tumors SNALP PLK1

Arbutus
Biopharma

Corporation
II Completed NCT01262235

NCT02191878

STP705 Squamous Cell
Carcinoma in Situ

Peptide-
Nano

particle

TGF-β1,
COX-2 Sirnaomics II Recruiting NCT04844983

NBF-006

Non-Small Cell Lung
Cancer

Pancreatic Cancer
Colorectal Cancer

LNP GSTP Nitto BioPharma I Recruiting NCT03819387

DCR-MYC Hepatocellular
Carcinoma EnCore LNP MYC Dicerna

pharmaceuticals 1b/2 Terminated NCT02314052

EphA2: ephrin A2 receptor; KRAS: kristen rat sarcoma viral oncogene homolog; PKN3: protein kinase N3;
RRM2: M2 subunit of ribonucleotide reductase; VEGF: vascular endothelial growth factor; KSP: kinesin spindle
protein; PLK1: polo-like kinase 1; TGF-β1: transforming growth factor beta 1; COX-2: cyclooxygenases 2; GSTP:
glutathione S-transferase P; Cited from http://www.clinicaltrials.gov (accessed on 12 July 2022).

3.1. Chemical Modification

Chemical modification is one of the most effective methods to improve the efficiency
of siRNA drug delivery. The naked or unmodified siRNA is readily degraded by nucleases
in the systemic circulation. In addition, naked siRNA can be considered an exogenous
substance by Toll-like receptor (TLR) and Retinoic Acid Inducible Gene-I-like Receptors
(RLRs) to induce immunogenicity [29,30]. Chemical modification is expected to solve the
problems of siRNA stability and immunogenicity. The common strategies for chemical
modification include: (1) modification of the nucleobase; (2) modification of the nucleic acid
backbone (phosphonate), and (3) modification of the ribose sugar moiety. As a result, the
modification can significantly improve the pharmacokinetics (PK), pharmacodynamics (PD)
and biological distribution of siRNA. For example, methyl modification of the 5-position of
pyrimidines is commonly used to enhance the stability of siRNA and increase the affinity
for target nucleotide [31]. Phosphodiester bonds are the chemical bonds that nuclease acts
on, so phosphorothioate (PS) modification can resist nuclease-mediated degradation [32].
The readily hydrolytic 2′OH on pentose phosphate can be replaced by 2′-fluoro (2′F), 2′-O-
methyl (2′O-Me) or 2′-O-methoxyethly (2′-O-MOE), which may significantly enhance the
stability of siRNA against serum nucleases and abrogate immune stimulation caused by
TLR [33–35].

3.2. NP-Based Delivery Systems

Through the chemical modification strategy, some difficulty, such as stability against
serum nuclease or avoidance of immune recognition, have been greatly optimized. How-
ever, there are still some other difficulties to be solved, such as crossing the physiological
barrier, improving tumor targeting, escaping the endosome, and entering the cytoplasm.
Owing to the intrinsic advantages of NP-based delivery systems, such as low toxicity, low
immunogenicity, biocompatibility, high encapsulation, controlled release, easy modification
and targeting property based on the enhanced permeability and retention (EPR) effect,
nanotechnology has made enormous contributions to the delivery of siRNA over the past
several decades [36].

One of the greatest advantages of an NP-based delivery system is that it can help
siRNA cross physiological barriers. To deliver siRNA to target cells effectively in vivo, NPs
should not interact with blood and extracellular tissue. Apart from that, an efficient NP

http://www.clinicaltrials.gov
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delivery system should also avoid excretion and improve systemic circulation time. The
aggregation of NPs in the blood stream, adhesion to proteins, or interaction with other
oppositely charged cell membranes are all related to their physico-chemical properties.
The rational optimization of these NP carriers by changing size, structure and surface
chemistry could improve the encapsulation efficiency and in vivo stability of siRNA, and
prevent the clearance from the mononuclear phagocytic system (MPS) and kidney [37,38].
Common optimization strategies include the following. (1) Modulating the size of NPs.
NPs larger than 200 nm are easily filtered out by the MPS and NPs smaller than 10 nm
are prone to renal clearance. By controlling the particle size, NPs can be prevented from
being filtered by MPS and kidneys, thus enhancing the systemic circulation of siRNA.
(2) Surface modification. Positively charged NPs usually bind to negatively charged serum
proteins in the blood circulation, making the NPs ineffective. More importantly, the
body recognizes hydrophobic NPs as foreign substances, so they are rapidly taken up
by the MPS. Coating of hydrophilic polymers such as polyethylene glycol (PEG) or N-(2-
hydroxypropyl)methacrylamide (HPMA) can create a cloud of chains at the particle surface,
thus repelling plasma protein, avoiding MPS uptake and prolonging blood circulation
time [39]. In addition, NPs can improve the PK and PD of siRNA drugs, including more
favorable biodistribution. It is well known that the liver is the main metabolic organ, and
most drug delivery systems are mainly taken up by the liver, so most siRNA drug are
currently used in the treatment of liver diseases. Efficient delivery of NPs to extrahepatic
organs remains a challenge. In the field of cancer nanotherapeutics, it is generally believed
that NPs can accumulate in the tumor site through the EPR effect owing to the leaky
tumor vasculature and poor lymphatic drainage [40]. However, studies have showed that
only about 0.7% of the administered NPs reach the tumor site through the EPR effect [41].
Active targeting of NPs by surface modification can not only reduce the accumulation
of siRNA in non-target tissues, thereby avoiding unwanted toxic side effects, but also
enables effective gene silencing at low doses. For instance, the decoration of tumor specific
targeting ligands such as arginine-glycine-aspartic acid (RGD) peptide [42], folic acid
(FA) [43], hyaluronic acid (HA) [44] and transferrin (Tf) [45], can help NPs deliver siRNA
to desired organs by specifically recognizing corresponding receptors, and promote the
endocytosis of NPs through receptor-mediated endocytosis. Remarkably, for most NPs,
penetration deep into cancer cell is difficult after accumulation in tumors, resulting in a
less satisfactory therapeutic effect. Smaller size (~20 nm) and cationic-charged NPs may
facilitate tumor penetration [46,47]. However, smaller size NPs usually show poor tumor
retention. Recently, a series of size-switchable strategies have provided a solution to balance
the NP size problem between tumor retention and penetration [48,49].

It is worth noting that most NPs enter cells through the endocytosis process [50], most
of them are trapped in the endosomes, and only under 2% of them enter the cytoplasm [51,52],
which limits the therapeutic effect. Thus, a nanocarrier that is capable of disrupting the
endosomal membrane is vital to the efficient endosomal escape and gene silencing effect
of siRNA. The common method is to use “proton sponge effect” to promote the escape
of siRNA from the endosome [53]. A typical example is polyethyleneimine (PEI), which
increases the osmotic pressure of endosomes by absorbing chloride ions and H2O, resulting
in the destruction of endosomes and the release of siRNA. However, it must be noted
that PEI has strong cytotoxicity, which increases with the increase of its positive charge
density [54]. Similarly, the introduction of pH-sensitive bond in NPs can promote its rapid
disassembly in the acidic cavity of endosome, resulting in efficient endosomal escape [55,56].
Another endosomal escape approach is to modify NPs with a cytosol-penetrating antibody
or polypeptides, which are used to form membrane pores to facilitate cargo release [57,58].
Alternatively, ionizable phospholipids, which disrupt endosomal membrane structure
(hexagonal transformation) by forming a cone shape at low pH environments, can also
be used to enhance endosomal escape [59]. In addition, it has been reported that light
stimulation can also promote the efficient endosomal escape of siRNA by generating
reactive oxygen species (ROS) to destroy the endosomal membrane [60,61].
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3.2.1. Lipid-Based NPs

Lipid-based NPs have been extensively used in drug delivery, including cationic lipo-
somes, lipid nanoparticles (LNPs) and lipopolyplex (LPR). Among them, cationic liposomes
are the most widely used carrier for siRNA delivery. Cationic liposomes are complexed
with the negatively charged siRNA to form lipoplexes with high siRNA transfection abil-
ity [62]. However, cationic liposomes are not suited for the systemic delivery of siRNA
because their positive charge causes adverse effects during intravenous administration.
PEG modification is usually used to improve systemic delivery of liposomes. Although
PEG modification can reduce the toxicity of liposomes and prolong their blood circulation,
it also limits the cellular uptake of liposomes and the endosomal escape of siRNA [63]. In
addition, PEGylation can cause rapid NPs clearance and a potential adverse reaction by
activating the immune system [64]. According to the characteristics of the tumor microen-
vironment (TME) such as low pH and high glutathione (GSH), pH-responsive [65] and
redox-responsive and cleavable PEGylated liposomes [66] have been designed to overcome
the limitations of PEG modification. The PEG coating shed from the liposome surface
improved the transfection ability of liposomes. Apart from that, as discussed above, surface
modification of NPs can improve their active targeting in tumor sites. Liposome can be
easily modified with various ligands. As an example, EphA10 is more highly expressed
in breast cancer cells than normal cells and is a unique breast cancer marker [67]. Surface
modification of liposomes with EphA10 antibody enhanced their cellular uptake in breast
cancer, enabling active targetability [68]. In addition, to enhance the endosomal escape of
siRNA, some helper lipids (e.g., DOPE) were added to the cationic liposome.

To date, LNPs have become the most advanced and promising nanomaterials in the
field of gene delivery due to their high gene delivery efficiency [23]. Classic LNP formu-
lation consists of cationic or ionizable lipids, cholesterol, saturated phosphatidylcholine
(e.g., 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC)), and PEG lipids [69]. These
components are optimized to efficiently deliver siRNA to targeted cells and achieve gene
silencing. Studies have shown that ionizable lipids are less toxic than cationic lipids because
the charge of ionizable lipids is dependent on the pH of environment. In order to reduce
toxicity and improve delivery efficiency, the acid-dissociation constants (pKa) of ionizable
lipids should be lower than 7 to encapsulate siRNA and maintain a neutral surface during
the circulation, but should be high enough to become protonated in endosomes [70]. One
study has shown that gene silencing efficiency was highest when the pKa value of the
lipid was 6.2–6.5. For example, DLin-MC3-DMA (pKa 6.44) exhibited a 10-fold higher
efficiency than DLin-KC2-DMA (pKa 6.7) [71]. Onpattro® (patisirna) is the first siRNA drug,
approved by the FDA in 2018, for the treatment of hereditary amyloidogenic transthyretin
(ATTRv) amyloidosis, which is caused by mutation of the transthyretin (TTR) gene and
misfolded aggregates of TTR protein in liver [72,73]. Onpattro® mediated delivery of TTR
siRNA by LNPs (formulated from DLin-MC3-DMA) can reduce the average maximum
serum TTR by 87.8% for over 18 months. LNP-siRNA mainly accumulates in the liver
through the apolipoprotein E (ApoE)-low density lipoprotein receptor (LDLR) pathway
after systemic administration, so the majority of LNP technology is used for hepatic gene
silencing [74]. This is the LNP’s strength, but it is also a limitation. The development of an
extrahepatic delivery system has always been a challenge for the widespread application
of LNP technology in cancer therapy because it is not enough to achieve tumor targeting
merely relying on the EPR effect. It is also unclear whether the EPR effect occurs in human
solid tumors. In recent years, some researchers have attempted to target extrahepatic organs
by regulating the composition of LNPs or modifying LNPs [75]. For example, the addition
of persistent PEG-lipids (PEG-DSG) could prolong the circulation time of LNPs, but limit
the efficiency of gene transfection [76]. To obtain the equal therapeutic effect, the dose
of siRNA needed to be increased, which also enhanced the adverse effects of LNPs [77].
Using another strategy, Ramishetti’s group developed and synthesized a series of ionizable
amino lipids based on a linker backbone (hydrazine, hydroxylamine and ethanolamine)
to improve the delivery of siRNA beyond the liver (Figure 3) [78]. They encapsulated
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PLK1 siRNA in LNPs to assess their gene silencing efficiency in myeloma suspension cells.
Compared with DLin-MC3-DMA (a gold standard ionizable lipid clinically approved for
siRNA delivery), lipid8 and lipid10 further inhibited cell viability, reduced PLK1 mRNA
expression and induced cell apoptosis. Importantly, these novel lipids did not induce an
increase in liver enzymes (SGPT, SGOT) or activate the immune system. Recently, Liu
shuai’s group synthesized a series of novel multi-tailed ionizable phospholipids (iPhos) to
form multi-component lipid nanoparticles (iPLNPs) for organ-selective nuclei acid deliv-
ery [59]. Compared with DOPE and DSPC, iPhos exhibited the characteristics of strong
endosomal escape properties, due to the chemical structures of phospholipids. DOPE and
DSPC consist of one irreversible zwitterion head and two hydrophobic tails, while iPhos
possesses a PH-switchable small zwitterion head and three hydrophobic alkyl tails. A
small zwitterion head combined with three hydrophobic tails would more easily form a
cone than one with two tails, causing easier membrane phase transition and endosomal
escape. Importantly, the length of the iPhos chain determines organ selectivity in vivo. For
example, the formulas 9A1P9-5A2-SC8 and 9A1P9-DDAB can preferentially deliver the
target nucleic acid to the liver and lung, respectively. Alternatively, extrahepatic targeting
can also be achieved by modifying the surface of LNPs with ligands or antibodies [79].
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Recently, the COVID-19 pandemic has seriously affected the lives and health of people
around the world. Given that LNP is a clinically proven delivery technology, ionizable
LNP (iLNP) has been expanded in COVID-19 vaccines against SARS-CoV-2. For example,
Moderna and Pfizer/BioNTech use LNPs to encapsulate mRNA encoding the SARS-CoV-2
antigen, resulting in ~95% protection efficacy [80,81]. LNP-based mRNA vaccines can
take substantial advantages of rapid development, easy industrialization, and flexibility
against new variants. Unlike siRNA, which down-regulates the target protein, mRNA
vaccines up-regulate the target protein. Notably, like LNP-siRNA, LNP-mRNA vaccines
do not have the potential risk of genome integration. Although LNPs for mRNA delivery
are similar in composition to LNPs for siRNA delivery, both of which are composed of
phospholipids, cholesterol, PEG-lipid and ionizable lipids, the mRNA vaccines on the mar-
ket (BNT162B2, mRNA-1273) optimize ionizable lipids. SM-102 (Moderna, mRNA-1273)
and ALC-0315 (Pfizer/BioNTech, BNT162B2) have similar structures. For example, the
ester linkages in the lipid tail were introduced to promote their elimination via hydrolysis,
tertiary amino alcohols in the headgroup (aminoethanol headgroup/SM102, aminobu-
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tanol headgroup/ALC-0315) were added to increase hydrogen-bonding interactions with
mRNA, and the more branched alkyl tail was added to form cone-structure [82,83]. ALC-
0315 (Pfizer/BioNTech), the ionizable lipid part of BNT162B2, was designed for mRNA
delivery to prevent COVID-19. Researchers used an LNP/ALC-0315 delivery system to
deliver siRNA and found that its siRNA silencing efficiency was 2-fold (FVII) and 10-fold
(ADAMTS13) higher than that of LNP/DLin-MC3-DMA (an LNP formulation specifically
designed for siRNA delivery). This may be because, unlike DLin-MC3-DMA (two tails),
ALC-0315 has two branched tails (four tails), forming a more pronounced cone-shaped
structure that facilitates endosomal escape, as described previously. However, it should
be noted that a high dose (5 mg/kg siRNA) of LNP/ALC-0315 has hepatotoxicity with
elevated levels of ALT and bile acid, but LNP/DLin-MC3-DMA has not [84]. Although the
composition change, modification or functionalization of LNPs can facilitate the uptake,
release of siRNA and the delivery of siRNA to other organ sites, it increases its complexity
and toxicity. Indeed, there have been clinical trials of LNP formulation delivering siRNA
for cancer treatment (e.g., TKM-080301, DCR-MYC, NBF-006), but some serious adverse
events have been observed in subjects [25]. Therefore, researchers must consider optimizing
the composition and proportion of LNP components to reduce toxicity without affecting
siRNA efficiency, which will be a main research direction in the future.

3.2.2. Polymer-Based NPs

Polymers are another ideal gene delivery platform [85]. Cationic polymers compress
nucleic acids into multi-stranded bodies through electrostatic interaction, which enhances
cellular uptake and lysosomal escape due to positively charged groups [86]. In this re-
spect, polyethyleneimine (PEI) is the most commonly used cationic polymers for siRNA
delivery, with linear and branch types [87]. However, PEI is highly cytotoxic due to its
strong positive charge. Therefore, the surface charge should be considered carefully when
designing a PEI-based carrier; for instance, by shielding PEI with compounds such as
PEG. On one hand, the PEGylation of PEI can significantly reduce the toxicity caused by
PEI and improve the solubility of polymer NPs. However, on the other hand, the PEG
layer hinders electrostatic interaction between the cationic polymer and negative siRNA,
which causes more polymer usage and low transfection efficiency. To improve transfection
efficiency and reduce toxicity, low molecular weight PEI is usually conjugated with other
ligands such as cyclodextrins (CD) [88], chitosan [53] and hyaluronic acid (HA) [89]. In
addition, other synthetic polymers, such as cationic dendrimers with multiple branches,
are also used for siRNA delivery because of their clearly-defined molecular structures
and functional groups [90]. Recently, a variety of dendrimers have been well-studied for
siRNA delivery, such as poly(propylenimine) (PPI), polylysine (PLL) and poly(amidoamine)
(PAMAM). PLL, a peptide-based dendrimer, has better biocompatibility and biodegrad-
ability than PEI. A study has shown that conjugation of PEI with PLL could enhance
the transfection efficiency and reduce the cytotoxicity of PEI [91]. Patil et al. designed a
poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) triblock poly-
mer, which was proved to be an efficient gene carrier for silencing Bcl-2 expression [92].
The complexity and diversity of cancer promote the development of versatile nanomate-
rials. One example is that smart responsive polymer-based NPs can be designed based
on the unique microenvironmental characteristics of tumors different from normal tis-
sues, such as enzyme/pH/GSH/ROS-sensitive polymers. Apart from the intrinsic stimuli
response, smart polymers sensitive to extrinsic stimuli such as ultrasound, temperature,
and light/laser irradiation, have been extensively studied in recent years. In addition,
to achieve targeted delivery, polymers can be conjugated with diverse ligands. Further-
more, a hydrophobic segment could be added in cationic water-soluble polymers to form
amphiphilic polymers multi-functionality. Some of the most common hydrophobic moi-
eties are poly (lactide-co-glycolide) (PLGA) [93], PLA [94], PCL [95], and photosensitizers
(e.g., porphyrin) [96]. These amphiphilic polymers can self-assemble into core-shell struc-
tures in aqueous solution. The hydrophobic inner core could be used to deliver hydropho-
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bic drugs (e.g., DOX, PTX etc.) or realize photothermal therapy (PTT)/photodynamic
therapy (PDT), while the hydrophilic shell could be used to maintain water solubility,
and the cationic segment could be used to absorb siRNA. In a study reported by Zhang
Mengjie et al., a ROS-activatable, siRNA-engineered polyplex (PPTC/siRNA) composed of
a PEGylated cationic polymer (PEI), ROS-cleavable linker (thioketal), Ce6 (photosensitizer),
and RRM2-siRNA, was constructed to promote siRNA endosomal escape, enhance cell
apoptosis, and inhibit cell proliferation (Figure 4) [97]. PDT is known to generate ROS,
which not only promotes cell apoptosis but also triggers the cleavage of the ROS-sensitive
linker in this formulation to enhance endosomal escape. This multifunctional system
successfully reduced the expression of RRM2 and enhanced the antitumor effect of RNAi
and PDT. Hence, the development of multifunctional polymers may not only solve several
obstacles of siRNA therapeutics, but also realize multimodal integration, which will have
a significant impact on cancer therapy. However, combining all components into one
platform for multi-functionalization also adds to the complexity of delivery systems, and
how each component performs its function, and whether it interacts with others, should be
clearly studied. In particular, in-depth information on the distribution, circulation, toxicity
of each part is necessary for successful clinical translation.
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Figure 4. (A) Illustration of the ROS-activatable PPTC/siRNA polyplex co-delivering ce6 and siRNA.
(B) CLSM images of HepG2-Luc cells after coincubation with different concentration of PPTC/siRNA
for 4 h with or without laser irradiation (0.1 W/cm2, 2 min). (C) TEM image analysis after HepG2-Luc
cells were treated with PPTC/siRNA polyplex and irradiated with 660 nm laser (0.1 W/cm2, 2 min).
Reprinted with permission from [97]. Copyright 2020 American Chemical Society.

3.2.3. siRNA-Ligand Conjugates

The conjugation of siRNA with ligands can enhance their cellular uptake and reduce
toxicity, which is a promising delivery strategy. Gene silencing requires the 5′ end of the
antisense strand, so conjugation is usually performed on the sense strand’s 5′ end or the
antisense strand’s 3′ end. Ligands include cholesterol, small molecules, aptamers, peptides
and antibodies [98,99]. Various ligands have different functions to achieve specific receptor
targeting, and a ligand that can specifically bind a certain receptor expressed by cancer cells
can be chosen for conjugation. For example, prostate-specific membrane antigen (PSMA) is
overexpressed on the surface of prostate cancer cells, and can be used to specifically target
prostate cancer [100]. In addition, N-acetylgalactosamine (GalNAc) siRNA conjugates have
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achieved great success in liver-targeted delivery and clinical translation. GalNAC-siRNA
has high tissue-targeting specificity, small size (compared with NPs), high therapeutic index
and minimal adverse effects [101]. The asialoglycoprotein receptor (ASGPR) is highly ex-
pressed on hepatocytes that specifically bind to its ligand (GalNAc) and cause endocytosis,
thus achieving liver-targeted drug delivery [102]. Givosiran® (Givlaari), a GalNAC-siRNA
based on enhanced stabilization modification chemistry (ESC), were developed by Alnylam
Pharmaceuticals for the acute hepatic porphyria (AHP) treatment [103]. Clinical studies
have shown that GalNAC-siRNA is more suitable for subcutaneous administration than
intravenous administration and can be administered once a month. In addition, a second
GalNAc-conjugated siRNA (Lumasiran®, Oxlumo) [104] and a third GalNAc-conjugated
siRNA (Inclisirna®, Leqvio) [105] have also been approved for the treatment of primary
hyperoxaluria type 1 (PH1) and hyperlipidemia, respectively. However, the drawback of
siRNA-ligand conjugates is the lack of components that promote the endosomal escape of
siRNA. Nevertheless, enough siRNA accumulation in endosome can compensate for the
lack of endosomal release. For example, efficient cellular uptake, fast receptor recycling and
chemical structure stabilized siRNA make GalNAc-conjugated siRNA sufficiently accumu-
lated in cytoplasm, although <1% of GalNAc-siRNA is released from endosome [101,106].
Thus, the finding of high numbers of rapidly converting and recyclable receptors to in-
crease endosomal accumulation is the key challenge for endosomal escape of siRNA-ligand
conjugates. More importantly, a ligand-mediated delivery system is safer than other de-
livery platforms (such as LNPs) due to its easy sample formulation and reduced complex
materials. For example, the incidence of adverse events related to GalNAc-siRNA drugs
was lower than that of LNPs in clinical trials [107,108].

3.2.4. Exosomes

Recently, exosome or extracellular vesicle (EV)-mediated siRNA delivery systems
have attracted tremendous attention, some of which have reached clinical trials [109]. Com-
pared with other synthetic vehicles, exosomes have lower immunogenicity and higher
biocompatibility due to their natural origin [110]. Methods of loading siRNA into exosomes
include electroporation [111,112], sonication [113], incubation [114], and liposome/cationic
complex-EV formation [52,115]. Exosomes are natural nano-sized vesicles (40∼100 nm) re-
leased from cells, which have distinct biological characteristic depending on cell types [116].
Exosomes derived from different cells carry specific markers and have homing charac-
teristics, which may increase the enrichment of a drug within the target tissue [117,118].
On this basis, Zhao liuwan’s group isolated exosomes with lung-targeting ability from
autologous breast cancer cells for the treatment of lung metastases in triple-negative breast
cancer (TNBC) (Figure 5) [115]. They first synthesized cationic bovine serum albumin
(CBSA) that can be used to encapsulate metastasis-related therapeutic siRNA (S100A4
siRNA) via electrostatic interaction. Meanwhile, exosome membranes were extracted
from exosomes isolated and purified from autologous breast cancer cells. Finally, the
CBSA/siRNA complex and exosome membranes were incubated and extruded to fabricate
the CBSA/siRNA@Exosome (Figure 5A). This nanoplatform was able to target the lung
(Figure 5B), and also significantly inhibited lung metastasis through its lung targeting func-
tion and the RNAi effect of S100A4 siRNA (Figure 5C–E). The presence of MHC I/II on the
surface of antigen-presenting cell (APC)-derived exosomes enhanced the immune response
by the antigen-presenting function [119,120]. This suggests that this type of exosome can
not only be used as a vector, but also can be used for enhancing cancer immunotherapy.
Cancer-derived exosomes can influence the TME, and integrins on cancer-derived exo-
somes can determine organotropic metastasis [121]. Therefore, exosomes are superior
carriers in the treatment of cancer. Studies have shown that folic acid (FA)-displaying
exosomes mediate the cytosolic delivery of siRNA, which avoids endosomal trapping and
improves delivery efficiency [122]. A phase I clinical trial has been undertaken to study the
therapeutic effect of KRAS G12D siRNA delivered by mesenchymal stromal cell-derived
exosomes in pancreatic cancer patients (NCT03608631). However, it is difficult to obtain
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homogeneous and high-yield exosomes, which are essential for enhanced therapeutic effect
and clinical application. Thus, the extraction and purification techniques of exosomes
should be improved to promote industrial production.
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Figure 5. (A) Illustration of the CBSA/siS100A4@exosome to suppress postoperative breast
cancer lung metastasis. (B) EX vivo images of major organs from mice treatment with
CBSA/siRNA@Liposome and CBSA/siRNA@Exosome at different time points post-injection.
(C) Weight differences in lung tissues after treatment with saline, free siS100A4, CBSA/siS100A4,
CBSA/siS100A4@Liposome, CBSA/siS100A4@Exosome and CBSA/siNC@Exosome. (n = 4, * p < 0.05;
ns, not significant). (D) Lung tissue images of postoperative lung metastases mice after treatment
with saline, free siS100A4, CBSA/siS100A4, CBSA/siS100A4@Liposome, CBSA/siS100A4@Exosome
and CBSA/siNC@Exosome (metastatic nodules were marked by yellow circles). (E) Mean number of
lung metastatic nodules of different treatment groups (n = 4, ** p < 0.01; *** p < 0.001). Reprinted with
permission from [115]. Copyright 2019 ELSEVIER B.V.

4. Potential Targets for siRNA-Based Cancer Therapeutics

In the past few decades, siRNA-based cancer therapy has made considerable progress.
However, among a large number of successful preclinical studies, only a few (about 10)
have entered clinical trials. In addition to the elaborate design of nano-delivery systems, the
selection of target genes must also be considered, as a better understanding of the behavior
of oncogenes can facilitate precise treatment. Since siRNA has the ability to reduce the
expression of target genes, studies have focused on using siRNA to down-regulate cancer-
associated genes, including undruggable genes (e.g., KRAS, MYC) [123]. The potential
gene targets for siRNA-based cancer therapy mainly include: (1) genes that promote
tumor growth, such as tumor driver genes; (2) genes that supply tumor nutrients, such as
angiogenesis genes and metabolism-related genes; (3) genes that help cancer cells develop
drug resistance and metastasis, and (4) genes that modulate TME, such as cancer-associated
fibroblasts (CAF), immunosuppressive cells, and immune checkpoints.
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4.1. Genes Promoting Tumor Growth

Cancer driver genes (also called oncogenes) refer to those genes that cause tumor
growth by mutation or amplification. The activation of oncogenes and the loss of func-
tion of tumor suppressor genes leads to uncontrolled cell growth. As mentioned above,
about 700 oncogenes have been identified, which are important targets for cancer treat-
ment [7]. However, only a few of these genes have been extensively studied for cancer treat-
ment, including KARS [124], MYC [125], EGFR [126], FGFR [127], BRAF [128], PLK1 [129],
EphA2 [130]. KRAS is the most mutated oncogene in cancer [124], with mutations in
non-small cell lung cancers (NSCLC) (20-25%) [131], colorectal cancers (30–50%) [132] and
pancreatic ductal adenocarcinoma (95%) [133]. However, due to the lack of an accessible
hydrophobic pocket to which the drug can bind, KRAS was once considered an “undrug-
gable” target. The main advantage of siRNA therapy is that it does not need to consider the
druggability of the protein, so it can target any cancer driver gene. In addition, targeting
genes that promote tumor growth will lead to longer gene silencing by preventing cell
proliferation. In a study reported by Sushrut Kamerkar et al., tumor growth in multiple
mouse models of pancreatic cancer was suppressed by iExosomes/KRASG12DsiRNA [123].
Polo-like kinase 1 (PLK1), a well-known serine/threonine-protein kinase, is considered
an oncogene regulating the cell cycle and negatively modulating the function of the p53
gene [129]. Arbutus Biopharma Corporation has developed a PLK1 siRNA drug (TKM-
080301) against adrenocortical carcinoma that is consist of SNALP encapsuled with siRNA.
In a phase II clinical study (NCT01262235), TKM-080301 demonstrated preliminary anti-
tumor efficacy [134]. In addition, the increased expression of genes involved in apoptosis,
autophagy and the cell cycle can also promote the occurrence and development of cancer.
Di et al. used phenylboronic acid (PBA)-functionalized amine-terminated polyamidoamine
(PAMAM) to deliver Bcl-2 siRNA, and inhibited the proliferation of hepatocellular carci-
noma cells by down-regulating the apoptosis protein Bcl-2 [135].

4.2. Genes Supplying the Tumor Nutrients

In order to meet the needs of oxygen and nutrients for tumor proliferation, the tu-
mor forms new blood vessels with the help of angiogenic factors. For example, VEGF
is thought to influence tumor angiogenesis and blood vessels growth, thus supplying
nutrients for tumor growth [136]. Wang gangmin et al. synthesized polyethylene glycol-
poly(ε-benzyloxycarbonyl-l-lysine) (PEG-SS-PLL) block copolymer as a non-toxic and
efficient siRNA nanocarrier for anti-angiogenesis therapy. They demonstrated that this
VEGF-siRNA delivery system significantly inhibited the expression of VEGF protein in
tumor tissue and inhibited the growth of hepatocellular carcinoma [137]. Another example
is targeting glycolysis proteins. Despite the genetic diversity in tumorigenesis, tumor cells
exhibit a common set of functional characteristics, including tumor cells preferring glycol-
ysis to oxidative phosphorylation, which is known as the Warburg effect [138]. Recently,
scientists have sought to achieve targeted tumor therapy by inhibiting the activities of key
enzymes in the tumor glycolysis pathway [139]. Key enzymes in glycolysis, such as hexoki-
nase 2 (HK2), pyruvate kinase M2 (PKM2) and phosphofructokinase (PFK) have become
new tumor biomarkers, so targeting these genes can turn off the nutrient and energy sources
of tumors. Among these genes, PKM2 is of great significance in effective cancer therapy
due to its crucial role in promoting the proliferation and invasion of cancer cells [140].
Dang juanjun et al. synthesized a type of guanidine-rich, spherical helical polypeptide
(DPP)-based nanocarrier to deliver PKM2 siRNA, which sensitized photothermal therapy
by inhibiting tumor glycolysis [141].

4.3. Genes Promoting Tumor Drug Resistance or Metastasis

Chemotherapy is one of the most conventionally used methods for cancer treatment,
while multi-drug resistance (MDR) is one of main reasons clinical cancer chemotherapy
fails. MDR of tumors can be divided into two types, with ATP-dependent effluent pumps
and non-ATP-dependent effluent pumps [142]. ATP-dependent extravasation pumps are
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mainly characterized by abnormal expression of ATP-binding cassette (ABC) transporters,
which included P-glycoprotein (P-gp), multidrug resistance-related proteins (MRP), as
well as breast cancer resistant proteins (BCRP) [143]. These ABC proteins mainly rely on
membrane-bound efflux pumps of active drugs, and transport substances out of cells by
the energy released by hydrolysis of ATP against a concentration gradient, which is closely
related to the drug resistance of related doxorubicin (DOX) and platinum chemotherapeutic
drugs [144]. Non-ATP-dependent efferent pump MDR does not depend on the energy gen-
erated by ATP hydrolysis but directly reduces the ability of anticancer drugs to induce cell
death, including DNA damage repair and anti-apoptosis. Zhang meng et al. constructed
an siRNA-based vesicle (siRNAsomes) for co-delivery of DOX and P-gp siRNA to treat
drug-resistant breast cancer. An siRNA-SS-PNIPAM deblock copolymer was formed via
exchange reaction between PNIPAM orthopyridyl disulfide (PNIPAM-SS-Py) and mer-
capto siRNA (siRNA-SH), which self-assembles into siRNAsome upon heating because
PNIPAM is temperature-responsive. SiRNAsomes consist of a hydrophilic siRNA shell,
a hydrophobic median layer, and an empty aqueous interior. In this study, siRNAsomes
reduced the mRNA level of P-gp by approximately 42% in MCF-7 MDR cells, and showed
synergistic anti-tumor therapeutic efficacy in MCF-7/ADR mouse xenograft models [145].
It is worth noting that more than 40% of NSCLC patients have EGFR mutations. Although
the 1–3 generations of EGFR-tyrosine kinase inhibitors (TKI) can significantly prolong the
survival of patients, drug resistance limits their clinical application. Notably, the activation
of bypass signaling pathways such as HER2, IGF1R, AXL and BRAF can render tumor cells
resistant to EGFR-TKI therapy [146]. It is possible to obtain benefit by constructing specific
siRNAs against EGFR-TKI resistance associated with bypass genes. For example, IGF1R
specific siRNA significantly restored the sensitivity to Osimertinib (the third generation
EGFR-TKI) in Osimertinib-resistant cells [147].

Tumor metastasis is another important factor in the failure of cancer treatment, and is
also responsible for most cancer-related deaths. Cancer metastasis is a multistep cascade
process with plasticity at the epigenetic and genetic levels. A typical example is that tumor
cells undergo epithelial-mesenchymal transition (EMT) to induce cell migration, invasion,
intravasation and extravasation [148]. Recent studies have confirmed that tumor metastasis
is associated with excessive activation or dysfunction of certain genes, such as PTPN,
LCN2, TGF-b, Twist, NF-κB, Snail and S100A4. For example, Shan Tang et al. reported two
amphiphilic polymers (PEI-PDHA and PEG-PDHA) to co-deliver Twist/Snail siRNA and
paclitaxel for metastatic breast cancer treatment, resulting in decreased metastatic nodules
in the lungs [149].

4.4. Genes Modulating the TME

TME is composed of normal stromal cells (fibroblasts, immune cells, endothelial cells
and pericytes), extracellular matrix, and a variety of soluble factors (cytokines and growth
factors) with biological functions, which closely interacts with tumor development and
highly modulates tumor response to cancer treatment [150]. Targeting the TME is a new
and promising way to treat cancer.

4.4.1. Targeting Cancer-Associated Fibroblasts

Cancer-associated fibroblasts (CAFs) belong to a class of stromal cells in the TME that
can promote the growth, metastasis, and drug resistance of tumor cells through secret-
ing various cytokines, chemokines, as well as extracellular matrix (ECM). Some studies
have found that CXCL12 secreted by CAF directly promotes cell migration, survival, and
proliferation via the CXCL12/CXCR4 pathway. Down-regulation of CXCL12 may be an
effective way to inactivate CAF-induced tumor proliferation. Therefore, a new type of
cell-penetrating peptide (nine-arginine, R9)-based self-assembled NPs with surface modifi-
cation with fibroblast activation protein-αmonoclonal antibodies (anti-FAP-αmAb) has
been developed for the targeted delivery of CXCL12 siRNA (PNP/siCXCL12/mAb) [151].
The results show that PNP/siCXCL12/mAb specifically delivered siRNA into CAFs by
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targeting the FAP-α on the cell membrane of CAFs, and inhibited the CXCL12 genes expres-
sion in CAFs, thus effectively reshaping the TME associated with CAFs. Thus, migration,
invasion, and angiogenesis of tumor cells were potently inhibited, thereby suppressing the
metastasis of an orthotopic prostate tumor.

4.4.2. Targeting Immunosuppressive Cells or Immune Checkpoints

Most cancer therapy usually failed with tumor recurrence because patients do not fully
respond to commonly used therapies, including chemotherapy, surgery and radiotherapy.
Unlike commonly used therapies that directly kill cancer cells, cancer immunotherapy
may produce a lasting immune surveillance effect by activating immune cells to avoid
cancer recurrence. Most solid tumors have an immunosuppressive TME, which is rich in
myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAMs) and
regulatory T cells (Treg) [152]. The immunosuppressive TME limits the efficacy of im-
munotherapy. Regulation of immunosuppressive TME and activation of immune effector
cells are emerging therapies for cancer. TAMs, the most abundant innate tumor-infiltrating
immune cells in tumors, including the M1 classic activation phenotype and M2 alternative
phenotype [153]. TAM tends to polarize to the activated M2 phenotype that inhibits the
tumor immune microenvironment and promotes tumor growth by producing mediators
that remodel the tumor supportive TME. For example, M2-like TAM may inhibit the ef-
ficiency of dendritic cells (DCs) and promote the expression of pro-angiogenic growth
factors (VEGF, FGF) [154,155]. Thus, targeting M2-like TAMs is an attractive strategy for
cancer immunotherapy. Depleting and reprogramming TAMs are main strategies for re-
versing the immunosuppressive TME triggered by M2-like TAMs. Studies have shown
that blocking the CSF1/CSF1R axis can re-educate TAMs. Yuan Qian et al. prepared
M2-like TAM dual-targeting nanoparticles (M2NPs) composed of biocompatible fusion
peptide-functionalized lipid [156]. M2NPs selectively delivered anti-colony stimulating
factor-1 receptor (anti-CSF-1R) siRNA to M2-like TAMs and eliminated 52% of M2-like
TAMs, resulting in 87% reduction in melanoma tumor volume and prolonged survival,
indicating that an immune memory that inhibits tumor recurrence was established. The
programmed cell death protein 1 (PD-1)/programmed cell death ligand 1(PD-L1) axis regu-
lates cancer immunity by modulating T cells activity, and plays an important role in cancer
immunotherapy [157]. The overexpression of PD-L1 in the TME of various tumor types
makes it a potential target for TME remodeling. Chunhui Li et al. elaborately designed
and synthesized a novel pH-responsive hydrophobic core based on a three-block polymer
mPEG45-P (DPA50-co-DMAEMA56)-PT53 (PDDT), which can efficiently load PD-L1 siRNA
and achieve rapid endosomal escape [55]. They conducted immune surveillance in PD-L1
overexpressed colon carcinoma cell line (CT-26) models by enhancing the function of CD8+
and CD4+ T cells by silencing PD-L1, which ultimately led to effective tumor inhibition
and longer survival.

5. Combined Strategies with Other Therapeutic Modalities

Although siRNA-based therapeutics can significantly reduce the expression of over-
expressed cancer-associated genes, treatment using single specific gene inhibition has
difficulty in completely eliminating the tumor and may even cause other bypass path-
way activation because of multi-gene alterations and heterogeneity of tumor [158]. The
integration of multiple treatment modalities will potentially maximize the anti-tumor ther-
apeutic effect and overcome the shortage of individual treatments. Current clinical trials
support this view. The clinical response of mono-siRNA therapeutics (Atu027, CALAA-
01, TKM-PLK1, DCR-MYC) are either disease stabilization, partial response or disease
progression [159]. ALN-VSP02 contains two siRNAs targeting VEGF and KSP, which are
associated with cancer angiogenesis and proliferation, respectively. A phase I clinical trial
of ALN-VSP02 demonstrated that one patient with liver metastases in endometrial cancer
achieved a complete response [24]. In addition, promising clinical responses were also
observed in the combination of an siRNA drug (Atu027, siG12D-LODER) and chemother-
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apy [28,160]. Therefore, the incorporation of siRNA therapeutics in other therapeutic
modalities will obtain great advantages over monotherapy in cancer treatment, but only
when the combined targets and therapeutic modalities are chosen correctly. In general, the
purpose of combination strategy can be divided into the following categories: (1) enhance
the therapeutic effect of these individual therapeutic modality without overlapping toxicity;
(2) relieve the side effects of one therapeutic modality, and (3) reverse drug resistance.

5.1. Combined Gene Therapy

As discussed above, dual-target gene therapy has shown more efficacious therapeutic
outcomes and advantages than mono gene therapy. Kuan-Wei Huang’s group encapsuled
siRNAs and plasmid DNA targeting two genes in one formulation. They designed a type of
tumor-targeting lipid-dendrimer-calcium-phosphate (TT-LDCP) NP to co-deliver immune
checkpoint ligand PD-L1 siRNA and immunostimulatory IL-2 encoding plasmid DNA. In
this nano-delivery system, the 50% thymine-capped PAMAM dendrimer could stimulate
innate immunity and improve gene transfection efficiency, which led to the infiltration
and activation of CD8+ T cells, and ultimately improved the immunotherapeutic effect of
hepatocellular carcinoma (HCC) [161]. This strategy of integrating two different gene drugs
for cancer therapy should consider the following issues: (1) one single or two different
delivery systems; (2) simultaneous or sequential therapy, and (3) rational arrangement of
dosage to achieve an optimal ratio.

5.2. SiRNA Therapeutics Combined with Chemotherapy

Chemotherapy is still the most common, mainstream treatment for cancer. Recently,
a variety of combinations of siRNA and chemotherapeutic drugs have attracted more
attention, mainly enhancing anti-cancer effects by inducing programmed cell death [162]
or overcoming drug resistance [163]. Pancreatic cancer is known to be a refractory tumor
with a 5-year relative survival rate of 10% [164]. Mutated KRAS is considered to be an
oncogene for pancreatic cancer. KRAS used to be a “undruggable” gene due to the lack
of a drug-binding surface receptor. This drawback has been overcome by RNAi technol-
ogy. For instance, KRASG12D siRNA in combination with chemotherapy (Gemcitabine +
nab-paclitaxel) was used to treat advanced pancreatic cancer in a phase 2 clinical study
(NCT01676259). In another study, O6-methylguanine-DNA methyltransferase (MGMT),
a DNA repair protein, mediated temozolomide (TMZ) resistance by eliminating TMZ-
induced DNA lesion. Wang kui et al. developed an iron oxide-based nanoparticle system
(NP-siRNA-CTX) to deliver MGMT siRNA. Consequently, NP-siRNA-CTX significantly
suppressed MGMT gene expression and prolonged survival in an orthotopic glioblas-
toma model [165]. Some chemotherapeutic drugs work by promoting apoptosis of tumor
cells [166]. In some cases, cancer could induce anti-apoptosis protein expression in re-
sponse to chemotherapy [167]. Therefore, the combination of anti-apoptotic siRNA and
chemotherapeutic drugs can improve the therapeutic effect. For this purpose, Suo aili’s
group synthesized a folate-decorated PEGylated triblock copolymer (PAH-b-PDMAPMA-
b-PAH). This copolymer selectively co-delivered DOX and Bcl-2 siRNA to MCF-7 cancer
cells and responsively released cargo in cells due to pH-responsive hydrazone bonds and
a reduction-sensitive disulfide linkage, thus promoting cell apoptosis and enhancing the
antitumor effect [168]. As mentioned above, P-gp, encoded by MDR1(ABCB1), functions as
an ATP-dependent efflux pump that is involved in taxane drugs resistance. Zhang jiulong
et al. overcame multidrug resistance by using pH-sensitive lipoplexes to co-deliver MDR1
siRNA and doxorubicin [68].

5.3. SiRNA Therapeutics Combined with Radiotherapy

Radiotherapy is another common cancer treatment modality, causing tumor cell death
by inducing DNA double-strand damage [169]. However, patients can have resistance to
radiotherapy due to the activation of hypoxia-induced factor 1-α (HIF-1α) under hypoxic
conditions [170]. Inhibition of HIF-1α expression to sensitize radiotherapy has attracted
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much attention. To overcome hypoxia-induced radiation resistance, Yong yuan et al. have
developed a type of Gd-containing polyoxometalates-conjugated chitosan (GdW10@CS)
nanosphere to deliver HIF-1α siRNA for simultaneous extrinsic and intrinsic radiosensitiza-
tion. On one hand, as external radiosensitizer, the GdW10@CS nanosphere generated and
accumulated more efficient ROS via X-ray irradiation and elimination of the intracellular
GSH. On the other hand, as internal radiosensitizer, the GdW10@CS nanosphere inhibited
the repair of damaged DNA by silencing HIF-1α expression [171]. The therapeutic efficacy
of siRNA combined with radiotherapy was significantly enhanced in vivo, resulting in the
inhibition of tumor growth and relapse.

5.4. SiRNA Therapeutics Combined with Photodynamic/Photothermal Therapy

Photodynamic therapy (PDT) is an emerging cancer treatment modality that needs
a combination of photosensitizer, molecular oxygen and light of specific wavelength to
generate reactive oxygen species (ROS) that induce tumor cells death via apoptosis or
necrosis [172]. Depending on the therapeutic purpose, the combination of siRNA ther-
apeutics and PDT can be additive or synergistic. FOXA1 is a key transcription factor
in breast cancer that can activate estrogen receptor (ER)-dependent genes and promote
the proliferation of breast cancer. Zhao ranran et al. recently developed a combination
therapy using multi-functional cationic porphyrin microbubbles (CpMBs) for dual delivery
FOXA1 siRNA and photosensitizer (porphyrin) in ER-positive breast cancer, resulting in
significantly ER+ breast tumor growth inhibition and recurrence [173]. In addition, more
recently studies have shown that PDT can stimulate the immune response in the host.
However, PDT-mediated cancer immunotherapy is severely limited by the PD1/PD-L1
immune checkpoint pathway [174]. Combined PDT and immune checkpoint inhibitors
may enhance the efficacy of immunotherapy. Wang dangge et al. synthesized a class
of acid-activatable versatile micelleplexes (POP-PD-L1) to enhance PDT-mediated cancer
immunotherapy by inhibiting the expression of PD-L1 in cancer cells. The results demon-
strated that the combination strategy of PDT and PD-L1 siRNA significantly inhibited
the tumor growth and metastasis of B16-F10 melanoma xenografts [175]. As described
previously, the photosensitizer is highly hydrophobic and can be used as hydrophobic core
to deliver water-insoluble compounds. Incorporating photosensitizer as a hydrophobic
core in an siRNA polymer delivery system can achieve the photodynamic therapeutic
effect while delivering anti-cancer drugs. To this end, our group constructed a new class
of photosensitizer (pyropheophorbide a)-based amphiphilic and block dendritic polymer
(Polymer) that co-delivers gefitinib and YAP-siRNA to achieve drug/gene/photodynamic
cocktail therapy [176]. In both Gef-resistant NSCLC cell line-derived xenograft (CDX) and
patient-derived xenograft (PDX) models, Polymer@Gef-YAP-siRNA showed excellent anti-
tumor effects. Apart from PDT, PTT is another extensively studied treatment modality that
inhibits tumor growth by laser irradiating the tumor site to produce hyperthermia [177].
However, PTT requires maintaining the temperature of tumor site at over 50 ◦C, which
may potentially damage normal tissues and induce tumor metastasis. Recently, PTT under
mild temperature has received more attention. Traditional PTT promotes tumor cells death
mainly through high temperature-induced cell necrosis, whereas low temperature PTT trig-
gers tumor cells death via a programmed cell death mechanism such as apoptosis. Recent
studies have shown that heat shock protein (HSP70) is associated with the PTT-induced cell
death pathway and promotes cell thermoresistance [178]. Fei Ding et al. demonstrated that
HSP70 siRNA combined with low-temperature (42~45 ◦C) PTT could achieve an effective
antitumor effect by sensitizing PTT [179]. They fabricated a polydopamine (PDA)-coated
nucleic acid nanogel (PEG-PDA-Nanogel) which could realize low-temperature PTT medi-
ated by HSP70 siRNA. This nanogel utilized PDA and HSP70 siRNA for the generation
of insufficient hyperthermia and downregulation of HSP70, respectively, resulting in cell
apoptosis rather than necrosis.
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Overall, siRNA will bring benefits to other therapeutic modalities and achieve win-win
results if the delivery problem is solved. However, more importantly, research into the
mechanisms of combination therapy is insufficient to offer guidance for clinical research.

6. Safety and Toxicity

The world’s first clinical trial of siRNA-based therapy was conduct in 2004. To date,
the long-term safety and toxicity data of siRNA therapeutics are still being studied, and
both siRNA and nano-delivery systems need to be considered. Infusion-related reactions
(IRRs) are common adverse reactions (ADR) of NPs [180]. For example, mild to moderate
ADR was observed during the clinical translation of Patisiran®, and the main symptoms
included back pain, body aches or pain, chills, headache, nausea and sore throat [181].
These symptoms can be alleviated by slowing down the infusion rate or prevented by
using dexamethasone, acetaminophen and H2 blockers. In addition to silencing target
genes, siRNA may also knock down unwanted genes [182]. Off-target effects of siRNA
cause unanticipated side effects, which makes the treatment more complicated. Alnylam
showed that that the hepatotoxicity of GalNAc-siRNA conjugates is caused by off-target
effects [183]. Although glycol nucleic acid (GNA) modification of siRNA may potentially
reduce the off-target effects of GalNAc-siRNA conjugates, there is currently a lack of
preclinical animal models to accurately predict the side effects due to sequence-specific
RNAi-based mechanism in different animals.

Published clinical trials report that the COVID-19 mRNA vaccine based on LNP de-
livery system has high efficacy rates of 94–95%, limited side effects and low incidence
of adverse reactions. However, some populations around the world may still reject the
mRNA vaccine due to its rapid pace of development, emergency approval, and uncertainty
about potential long-term adverse effects. However, siRNA-based cancer therapeutics are
fundamentally different from the COVID-19 mRNA vaccine in terms of the acceptabil-
ity of patients because: (1) the vaccine is a preventive measure, while the siRNA drug
is a therapeutic modality, and (2) vaccines target healthy populations who may be in-
fected with SARS-CoV-2, while siRNA drugs target patients. People think more about
risks than benefits when it comes to preventing rather than treating disease. When faced
with survival, cancer patients may not first consider the potential side effects of LNP in
immune stimulation.

7. Outlook

Although siRNA-based cancer therapeutics have proved to be promising in preclinical
studies and clinical trials, several key challenges need to be addressed before moving into
final clinical applications in cancer patients.

Firstly, the inherent instability of siRNA that makes it susceptible to nucleases and
cause it to degrade quickly in vivo has limited its in vivo application. To address this
problem, chemical modification of siRNA has been extensively studied. As mentioned
above, the stability of siRNA can be improved by a series of chemical modifications on its
backbone. Secondly, effective extra-hepatic tissues/cells targeting to limit the widespread
use of siRNA therapeutics in cancer treatment has always been difficult. Advances in
drug delivery technology are expected to improve this limitation. In addition to the EPR
effect, an active targeting strategy is also utilized to enhance specific cell uptake. For exam-
ple, modification with specific targeting ligands, such as the prostate-specific membrane
antigen (PSMA) ligand, has proven to promote the cellular uptake of NPs at the site of
prostate cancer, and is already in phase II clinical trials [184]. Thirdly, the development of
multifunctional delivery systems that can meet the needs of diverse treatment modalities
is the main direction of cancer nanomedicine in the future. However, the selection of
gene targets and treatment methods, as well as the methods of synergistic combination
therapy, need to be tailored to local conditions. Although the above combined strategies
have brought high effectiveness, challenges such as complex material composition may
promote instability and hinder large-scale production. The preparation of delivery system
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for clinical application should be simple and reproducible. Additionally, beyond the in-
stability and specific targeting issues, the main difficulty in limiting the action of RNAi is
effective endosomal escape. To further enhance the activity of RNAi, more efforts need to
be made in endosomal escape, such as the development of safe and effective endosomal
escape agents. Finally, although many siRNA drugs have been found to be safe, effective
and well-tolerated in phase I or II trials, few have been successful translated into clinical
use. Currently, there is a lack of suitable preclinical models to evaluate the therapeutic
outcomes of siRNA drugs, so it is necessary to establish animal models that can better
simulate the human environment. In addition, the selection of target patient populations
is also crucial for successful clinical translation, as the right population may have greater
therapeutic benefits. Therefore, in order to improve the success rate in the clinical transla-
tion of siRNA-based cancer therapeutics, the following issues should be considered: (1) the
biosafety and biodegradability of siRNA delivery vehicles; (2) simple, efficient, controlled
and reproducible protocols of scale-up production for clinical trials and post-marketing
assessment; (3) the enhancement of targeting specificity and endosomal escape capability of
nanocarriers to tumor tissues/cells; (4) the selection of appropriate preclinical animal mod-
els that can accurately predict the clinical PK and PD of siRNA drugs; (5) the in vivo safety
profiles of NP-based siRNA therapeutics, including undesirable cytotoxicity and immune
stimulation; (6) accurate stratification of different tumor patient populations, and (7) in
combination with other therapeutics, the dose and sequence of administration should be
considered. These non-trivial challenges can be potentially addressed by interdisciplinary
approaches in the fields of chemistry, materials, biology and medicine.

8. Conclusions

With the FDA approval of Patisiran®, more siRNA therapeutic drugs are undergoing
a translation from research to the clinic. However, to date, none of the siRNA therapeutics
have been approved for cancer treatment, indicating that there are still significant challenges
and opportunities in this field. As demonstrated in preclinical studies and clinical trials,
there is no doubt about the huge gene silencing efficiency of siRNA and its potential
curative effect on cancer. One of the key challenges for the clinical translation of siRNA-
based cancer therapeutics is to overcome all the extracellular and intracellular barriers,
and successfully delivery siRNA into the cytoplasm of cancer cells. With the collaborative
efforts of academia and industry, nanotechnology-based delivery strategies are expected to
achieve selective delivery of siRNA into extrahepatic cancer cells and promote the clinical
application of siRNA cancer therapeutics. With the rapid progress of tumor biology, siRNA
therapeutics will ultimately become an effective means of cancer treatment through the
rational design of target genes and combination with other therapeutic strategies. Although
new CRISPR/Cas9-based gene editing technologies are emerging, RNAi-based technology
seems safer because of its transient and reversible gene silencing, without permanent
genetic alterations. In conclusion, as a new class of anti-cancer therapeutics, siRNA drugs
delivered by nanoparticles show great promise in cancer therapy and are expected to enter
clinical practice in the coming years.
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