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Low back pain remains a highly prevalent pathology engendering a tremendous socioeco-
nomic burden. Low back pain is generally associated with intervertebral disc (IVD) degen-
eration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD ma-
trix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable
IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell
therapy agents, due to their easy accessibility and differentiation potential. For enhance-
ment of MSCs, growth factor supplementation is commonly applied to induce differentia-
tion towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a cru-
cial role in chondrogenesis, nonetheless, literature appears to present controversies with re-
gard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This re-
view aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation,
and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for
potential application as cell therapy supplements for IVD regeneration. Our review suggests
that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can en-
hance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to
play a role in maintaining cell potency of differentiated NP or chondrogenic cells.

Keywords: Wnt, Chondrogenesis, Mesenchymal stem cells, Intervertebral disc, Nucleus
pulposus, Regeneration

biomechanical features. Particularly, the loss of proteoglycans

from the central nucleus pulposus (NP) and consequential de-

Low back pain (LBP) is a disorder presenting itself among all
adult-ages' affecting an estimated 632 million people globally.”
Contemporary treatments are primarily focused on pain relief
with a lack of therapeutic strategies able to target the pathogen-
esis of LBP. A particular shortcoming, considering up to 15%
LBP-patients do not respond to conservative treatment inter-
vention and progress to chronic LBP? The onset of LBP is gen-
erally associated with the progression of intervertebral disc (IVD)
degeneration, a complex process involving a reduction in active
cell numbers, tissue disorganization, and overall loss of the IVDs

terioration of water-retention, limits the ability of the IVD to
distribute complex loads on the spine.* In order to alleviate [IVD
degeneration-associated LBP, restoration of the IVD and its bio-
mechanical features will prove crucial. Nevertheless, similar to
other cartilage-based tissues, the IVD presents a challenging
tissue to regenerate.” Due to the avascular nature of the IVD,
the in situ environment presents a nutrition-poor, biochemical-
ly harsh environment that is restricted in endemic cell attrac-
tion, and overall dependent on relatively low cell numbers for
matrix production.®
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Considering the reduction in already low cell numbers is a
hallmark for IVD degeneration, emphasis has been placed on
methods to restore NP cell numbers as a strategy to enable IVD
regeneration. Cell-based therapies are increasing in number
and are currently being evaluated in multiple human clinical
trials.” Nevertheless, an optimal cell type or preconditioning
method to enable optimized regeneration of NP tissue has not
yet been established.**

Wht signaling holds a key role in joint development, homeo-
stasis, and pathogenesis. The prominence of wnt signaling in
cartilage tissues was initially discovered in chicken limb carti-
lage."""* Both the activation and inhibition of wnt signaling re-
sult in cartilage breakdown." To support cartilage maintenance,
careful regulation of wnt is therefore required. However, the ex-
act regulatory mechanisms involved in wnt-mediated cartilage
homeostasis are not yet established."* The diverse wnt family,
consisting of 19 members in homo sapiens," utilizes different
signaling pathways and cell functions. Wntl1 and especially
wnt5a are reported to be beneficial for chondrogenesis, howev-
er literature predominantly assesses their function within em-
bryonic development.' On the contrary, Wnt7a and wnt14 are
reported to inhibit or reverse chondrogenesis.””'® Wnt3a, how-
ever, is particularly of interest due to numerous contradictions
in the literature.”* Most studies tend to agree upon the posi-
tive regulatory effect of wnt3a on cell proliferation,'*"** howev-
er, both wnt3a activation and inhibition have been reported to
downregulate cartilage phenotypic markers, and reduce glycos-
aminoglycan (GAG) production.”**' Interestingly, in combina-
tion with other growth factors; e.g., fibroblast growth factor
(FGF),” transforming growth factor (TGF)-,”** and bone mor-
phogenetic protein (BMP)*?* family, wnt3a appears to be ben-
eficial for MSCs to adopt a chondrogenic phenotype in 2-di-
mensional, and 3-dimensional cultures.?**”” Whether wnt3a and
wnt5a are in fact beneficial for chondrogenesis remains argu-
able, however, their presence in cartilage-based tissues is undis-
putable, raising interest on the potential induction capacity of
wnt3a/wnt5a on the cartilage-based NP. Therefore, it is consid-
ered valuable to reach a consensus on wnt3a and wnt5a in chon-
drogenesis for regeneration of the IVD. This review aims to as-
sess the trend in effects of wnt3a and wnt5a on cells with chon-
drogenic potency, particularly the response in potency, prolif-
eration and induction of chondrogenic differentiation. Knowl-
edge regarding the potential of wnt3a and wnt5a to stimulate
NP cell induction could potentially provide new insights for
(cell-) therapies enhancing IVD regeneration.
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Wnt SIGNALING IN INTERVERTEBRAL
DISC DEVELOPMENT

The 19 identified wnt ligands and their corresponding recep-
tors" are pivotal for cellular development, function, and tissue
homeostasis, in various tissues, including cartilage tissues'"'"?
such as the IVD.?®* Specifically during early development, IVD
cells are highly dependent on wnt signaling for appropriate de-
velopment.®®” During these early stages, high activity of wnt is
predominantly observed in the annulus fibrosis (AF) and the
endplate (EP), however, with maturation, the AF and EP pres-
ent weakening in signaling activity, while wnt activity persists
in the NP even at later stages of development.” The importance
is underlined by in vivo experiments presenting induction of
IVD degeneration by suppression of wnt signaling in mice.”
Similarly, in vitro work demonstrated that both induction and
interference of wnt induce articular chondrocyte differentia-
tion," and wnt activation in NP cells may result in cell senes-
cence.’"* In short, a balance of wnt signaling is crucial for main-
taining cartilage homeostasis. Nevertheless, the exact regulatory
mechanisms involved in wnt-mediated homeostasis remains
poorly understood. This is partly due to the large number of re-
ceptor-types involved in reacting to wnt.” This process is fur-
ther complicated by the involvement of two distinctively sepa-
rate downstream pathways effectuated to establish a cellular re-
sponse; i.e., canonical and noncanonical signaling.

CANONICAL Wnt SIGNALING

Whnt proteins can bind to the receptor complex consisting of
Frizzled and the low-density lipoprotein receptor-related pro-
tein (LRP) 5/6, provided that both are expressed on the surface,
forming a trimeric complex.* Activation leads to the recruit-
ment of Dishevelled (Dsh) and Axin. Subsequently, the formed
protein complex consisting of Axin, Adenomatous Polyposis
Coli, and glycogen synthase kinase-3p (GSK-3) is not capable
to partake in proteasome activation. As together with casein ki-
nase la, this complex is responsible for the ubiquitination of
[-catenin triggering its degeneration by proteasomes.’® Absence
of this complex disables degradation of B-catenin and instead
accumulates and translocates to the nucleus. Here, it interacts
with the transcription factors lymphoid enhancer binding fac-
tor/T-cell specific transcription factor, activating transcription
of a variety of WNT target genes (Fig. 1).%
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Fig. 1. Canonical and noncanonical signaling options initiated via wnt3a and the concluded outcome. Wnt3a can bind to Friz-
zled and low-density lipoprotein receptor-related protein (LRP) 5/6 which leads to the recruitment of Dishevelled (Dsh) and
Axin. The formation of the complex of Axin, adenomatous polyposis coli (APC), and glycogen synthase kinase-33 (GSK3) is
prevented and thus (-catenin is not degraded by this complex (with the help of casein kinase 1a [CK1]) which is canonical sig-
naling. With noncanonical signaling, wnt3a binds to Frizzled without LRP 5/6. Activated Frizzled can lead to the activation of
calcium/calmodulin-dependent kinase II (CamKII) and protein kinase C (PKC). Dsh is also able to activate Rac which in turn
induces c-Jun N-terminal kinase (JNK). Moreover, Dsh can interact with DAAMI1 to activate Rho which in turn activates ROCK.
The last noncanonical pathway is through activation of adenylate cyclase (AC), which triggers cyclic adenosine monophosphate
(cAMP)/protein kinase A (PKA) inhibiting the transcription factor NFATc1. This figure is a hypothetical estimation based on
the literature discussed in this paper. Chon, chondrocytes; NPC, nucleus progenitor cell; MSC, mesenchymal stromal cell; PG,
proteoglycan.

NONCANONICAL Wnt SIGNALING

The noncanonical signaling pathway is poorly understood
compared to the well-studied canonical pathway, partly due to
multiple agents and mechanisms being involved.”” Where the
canonical pathway has only a few key players, mainly involved
in degradation of B-catenin, thus preventing interaction in the
nucleus for transcription, the noncanonical pathway has multi-
ple agents capable of initiating various subsequent processes
which are relatively difficult to separate and study. In contrast
to canonical signaling, noncanonical signaling is B-catenin in-
dependent and while wnt still requires binding to Frizzled, the

https://doi.org/10.14245/ns.2040040.020

coreceptor LRP 5/6 is not involved.* Interaction with Frizzled
can lead to the activation of calcium/calmodulin-dependent ki-
nase II (CamKII) and protein kinase C (PKC),* referred to as
the wnt/calcium pathway. Noteworthy is that this pathway is
found to inhibit canonical signaling.”” Additionally, in the pla-
nar cell polarity (PCP) pathway, Dsh is activated which regu-
lates a variety of signaling cascades, for example activation of
Rac, which in turn activates c-Jun N-terminal kinase (JNK).
Additionally, Dsh activates Rho through Daam1 activating e.g.,
Rho-kinase and Profilin.*® These processes are suggested to play
a crucial role in cytoskeletal organization and cell adhesion as
these are linked to actin polymerization.” Lastly, in the wnt/
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Fig. 2. Signaling options initiated via wnt5a and the concluded outcome. Wnt5a can bind to receptor tyrosine kinase-like orphan
receptor 2 (ROR2) which leads to the activation of c-Jun N-terminal kinase (JNK). ROR2 is also able to act as a coreceptor with
Frizzled. Wnt5a can bind to Frizzled and ROR?2 leading to the activation of calcium/calmodulin-dependent kinase IT (CamKII)
and protein kinase C (PKC). Dishevelled (Dsh) is also able to activate Rac which in turn induces JNK. Moreover, Dsh can inter-
act with DAAMLI to activate Rho which in turn activates ROCK. The last pathway is through activation of adenylate cyclase
(AC), which triggers cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) inhibiting the transcription factor
NFATcl. This figure is a hypothetical estimation based on the literature discussed in this paper. Chon, chondrocytes; NPC, nu-
cleus progenitor cell; MSC, mesenchymal stromal cell; PG, proteoglycan.

protein kinase A (PKA) pathway, Frizzled activates adenylate
cyclase, which triggers cyclic adenosine monophosphate/PKA
inhibiting the transcription factor NFATc1 (Figs. 1, 2).***' Aside
from Frizzled, wnts are shown to activate receptor tyrosine ki-
nase-like orphan receptor 2 (ROR2), with wnt5a as their pri-
mary ligand.”” Upon binding, ROR2 mediates activation of JNK
which is able to inhibit -catenin, thus interfering in canonical
signaling. ROR2 can also function as a coreceptor together with
Frizzled, in the absence of LRP 5/6, and as such activate Dsh,*
leading to crosstalk with the PCP and wnt/calcium pathway
(Fig. 2). Possible crosstalk within noncanonical signaling and
canonical signaling, together with the many agents involved,
causes the exact mechanisms surrounding these pathways to
remain ambiguous.
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Wnt LIGANDS IN CHONDROGENESIS

In terms of chondrogenesis, wnts can be described on the
ability to regulate chondrogenic (de-)differentiation or hyper-
trophy. Most wnts have been studied thoroughly and are sug-
gested to have clear effects on chondrogenesis. For example,
wntl, wnt4, wnt7a, wnt8, and wnt9a have been determined to
inhibit chondrogenic differentiation.'*** Wnt5a and wnt5b how-
ever, have been reported to induce chondrogenesis in develop-
mental stages, whereas it inhibits chondrogenesis in later stag-
es.””? The different effects during the various stages of develop-
ment, causes the use of wnt5a and wnt5b in chondrogenic dif-
ferentiation to remain ambiguous. Additionally, discrepancies
in the literature on the chondrogenic effects of wnt3a, lead to
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reviews reporting contradictory conclusions, stating that wnt3a
stimulates,” but also inhibits chondrogenic differentiation."
Another unusual characteristic of wnt3a is the capacity to acti-
vate both the canonical and noncanonical pathway*"* which
might partly help explain the contradictory reporting on wnt3a
effects. This theory is supported by studies reporting that down-
regulation of canonical signaling by e.g., dickkopf-related pro-
tein 1 (DKK1) as LRP antagonist, is able to partly rescue wnt3a-
induced loss of chondrogenesis.*”” Similarly by applying a GSK-
3 inhibitor could alleviate wnt3a repression of chondrogenesis,
and was found to effectuate its regulation via B-catenin path-
way.* Furthermore, decreased proteoglycan production caused
by wnt3a could be recovered after addition of DKK3.* Recent-
ly, a knockdown of exotosin-1 (Extl), encoding a glycosyltran-
serase required for heparin sulfate (HS) chain elongation in
HS-proteoglycan biosynthesis, was determined to downregu-
late canonical wnt signaling activation but upregulate markers
for chondrogenesis.*® The collective data appears to suggest that
canonical signaling is responsible for wnt3a mediated inhibi-
tion of chondrogenesis. However, separate wnt3a studies that
blocked noncanonical signaling by specific inhibition of the
Ca2+/CaMKII pathway, were likewise able to rescue wnt3a in-
duced loss of the chondrocyte phenotype."**' Expression of
COL2A1, aggrecan, and SOX9 all improved after Ca2+/CaMKII
inhibition at higher rates than DKK1-mediated inhibition of
canonical signaling.”**' Besides the CaMKII pathway, the PCP
pathway has also been demonstrated to mediate dedifferentia-
tion in chondrocytes. JNK inhibition resulted in the rescue of
wnt3a downregulated chondrogenic markers SOX9 and CO-
L2A1.* Therefore, the distinct effects on chondrogenesis by
wnt3a cannot directly be related to the pathway that is activat-
ed. However, the balance of canonical and noncanonical signal-
ing appears essential as both stimulation and inhibition of one
specific pathway appear disadvantageous for chondrogenesis.

Wnt3a HAS A CELL TYPE DEPENDENT
INFLUENCE ON CHONDROGENESIS
WHEREAS THE INFLUENCE OF Wnt5a
APPEARS HOMOGENOUS

Although wnt3a is capable of signaling through both canoni-
cal and noncanonical signaling,”** the contradictory effects on
chondrogenesis of wnt3a appears not to be dependent on which
specific pathway is activated (Fig. 1). Therefore, the next ques-
tion was whether the role of wnt3a in chondrogenesis is cell
type dependent. Our findings (Table 1) confirm the ability of
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wnt3a to both induce and inhibit chondrogenesis, and indicates
a cell type-specific response. In contrast, the response to wnt5a
on chondrogenesis appears more homogeneous regarding cell
types and supplementation methods (Table 1). Next, we review
the differences in outcomes between cell types in response to

being subjected to either wnt3a or wnt5a.

NUCLEUS PULPOSUS CELLS

NP cells subjected to an abundance of WNT3A via (lentivi-

ral-mediated) overexpression'é*"*

or wnt3a supplementation
via medium® are not affected in chondrogenic marker expres-
sion nor proteoglycan production. However, proliferation was
shown to be enhanced with overexpression of WNT3A in hu-
man NP cells relative to WNT5a/WNT11 overexpression and
non-induced NP cells."® Solely upregulation of wnt/p-catenin
signaling caused no proliferation in rat-derived NP cells how-
ever, cell viability was determined to decrease with 50%.*> More-
over, wnt/p-catenin signaling was demonstrated to regulate tu-
mor necrosis factor (TNF)-a,* linking it to IVD degeneration,™"'
suggesting once more that the balance of canonical and nonca-
nonical signaling is crucial for the outcome of wnt3a treatment.
Interestingly, upregulation of the PKC pathway, of the nonca-
nonical signaling pathway, induced cell proliferation in rat NP
cells.”> However, this phenomenon has not been studied in hu-
man NP cells. Studies conducted on human cells primarily fo-
cus on the canonical pathway,” in which contradictive results
are obtained as specific downregulation of wnt/B-catenin sig-
naling leads to NP cell apoptosis,” while activation of wnt/{-ca-
tenin signaling is also reported to result in NP cell apoptosis.”
Canonical and noncanonical signaling appears to have cross-
talk leading to a chain of reactions which are likely challenging
to control. One hypothesis is that the balance of canonical and
noncanonical signaling is essential for inducing NP cell differ-
entiation, thus making it challenging to regulate wnt3a with a
specific inhibitor or stimulator of either canonical or noncanon-
ical signaling. Adding to the complexity of wnt3a, other agents
such as BMP2 and TGF-f are found to activate wnt/p-catenin®
signaling whereas overexpression of R-Smad, an intracellular
signaling protein downstream of the BMP/TGF signaling path-
way, inhibits wnt/B-catenin signaling.” Crosstalk of the BMP/
TGEF-{ family with wnt signaling is hypothesized to potentially
control the balance of canonical and noncanonical signaling
utilizing downstream signaling proteins like Smad.*!
Overexpression of WNT5A in human NP cells results, in con-
trast to WNT3A, in the reduction of proliferation compared to
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the control.'® However, WNT5A overexpression is beneficial for
the redifferentiation of NP cells as shown by the upregulation
of specific NP cell markers such as PAX1 and FOXFI and ma-
trix genes COL2A1 and ACAN." Moreover, the GAG/collagen
II ratio, as a specific marker for healthy NP matrix (i.e., ~25:1
compared to a ratio of ~2:1 in juvenile cartilage”), is significant-
ly increased after WNT5A overexpression' and lost upon lenti-
viral knockdown of WNT5A, as is the upregulation of the NP
cell markers and matrix genes.'®

CHONDROCYTES

In chondrocytes, the effects of wnt3a are described repeatedly
to stimulate chondrogenic dedifferentiation.'****>**% The ori-
gin of the chondrocytes studied ranged from humans, large an-
imals (i.e., bovine), to smaller animals (i.e., rat or chicken). De-
spite the differences in the supplementation method and the
origin of the cells, all articles reported either a loss of chondro-
genic gene marker expression, decreased proteoglycan produc-
tion or a combination of these. However, addition of wnt3a ap-
pears to upregulate proliferation rate.”*® This could suggest
that wnt3a inhibits the maturation state of chondrogenesis and
instead gives rise to a more potent cell phenotype.

Wntb5a initially appears to be described with conflicting re-
sults in available literature, as wnt5a is shown to both promote
and inhibit chondrocyte differentiation.**' The discrepancy
appears to originate from cellular differentiation stage at which
wnt5a is introduced. Particularly, wnt5a appears to induce chon-
drogenic differentiation in early stages of differentiation where-
as it inhibits maturation and inhibits hypertrophy in the end
stages of chondrogenesis.**' Contrariwise, blocking wnt5a de-
creased early chondrocyte differentiation but enhanced hyper-
trophy.®' Noteworthy, the beneficial effects of wnt5a treatment
are quite temporarily as enhanced chondrogenic markers ex-
pression was observed following wnt5a stimulation, which there-
after rapidly decreases.”’ Wnt5a is described to eventually stim-
ulate enzymatic cartilage matrix degradation, inhibiting chon-
drogenesis.**** These results demonstrate the stage-dependent
influence of wnt5a in chondrocytes. In vivo, similar observa-
tions have been made."**>* Wnt5a is found to have a significant
role in chondrogenesis where it follows a proximodistal gradi-
ent in the mesoderm of the developing limb.** Ectopically ex-
pression of WNT5A in chicken limb buds, results in malforma-
tion of the tissue i.e., reduced bone size and presenting a less
matured phenotype.'>®

28 www.e-neur ospine.org

EMBRYONIC STEM CELLS

In ESCs, wnt3a is mainly reported to benefit expansion to
generate a large number of chondrogenic potent cells. More-
over, wnt3a is stated to inhibit chondrogenesis, and instead in-
duces cells to adopt a more immature phenotype.”*® Work by
Tanaka et al.*® demonstrated that wnt3a, especially in combina-
tion with the BMP4 inhibitor noggin (NOG), can generate lat-
eral plate mesoderm phenotypes capable of differentiating to-
wards a chondrogenic phenotype. Interestingly, Waese and Stan-
ford* found that when first supplying the cells with BMP4 for 5
days and thereafter replacing BMP4 for wnt3a, chondrogenic
potential could be optimized. Thus, suggesting that BMP4 is
beneficial at the onset of differentiation while wnt3a acts as a
late inducer of chondrogenesis, indicating that the crosstalk of
BMP4 and wnt3a might be crucial for the chondrogenic differ-
entiation of ESCs.

No work was identified that applied wnt5a directly onto ESC
for chondrogenic differentiation. However, Gibson and collea-
gues® have applied wnt5a supplementation with pellet cultures
of ESCs that were predifferentiated to take on a MSC pheno-
type. Similar effects were reported by wnt5a as observed with
wnt3a® viz. promoting chondrogenesis and limiting hypertro-
phy. Chondrogenic markers SOX9 and COL2A1 increased wher-
eas the expression of hypertrophy markers; COLI0A1 and ALP,
decreased. In the same study,* the effect of BMP2 was found to
upregulate early chondrogenic markers and proteoglycan pro-
duction, attaining higher ratios than wnt5a. However, BMP2
also significantly increased expression of hypertrophic markers.
The sequential treatment of BMP2 and wnt5a showed benefi-
cial for inducing articular chondrocyte-like phenotypes, consti-
tuting initial chondrogenic induction via BMP2, followed by
wnt5a supplementation on the fifth day to maintain the chon-
drogenic phenotype and preventing hypertrophy.*

MESENCHYMAL STEM CELLS

In MSCs, the chondrogenic effect of wnt3a is found to be the
most variable across different studies (Table 1). The reporting
agrees on the effects regarding the induction of proliferation. In
all identified cases reporting on cell growth, wnt3a treatment
lead to significantly higher proliferation rates.”*** Neverthe-
less, wnt3a does appear to have a negative effect on chondro-
>4 applying ei-
ther overexpression in rat MSCs*' or supplementation in chicken
embryo limb-bud MSCs.*

genesis according to two independent reports
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Two studies**

measuring WNT3A expression in MSCs after
TGF-B3-mediated chondrogenesis on different substrates, showed
opposing results as the samples with the highest chondrogenic
potential were determined to have the lowest relative expres-
sion of WNT3A according to Hsu and Huang® or highest WN-
T3A expression in the paper of Pei et al** in pellets with the most
prominent chondrogenic characteristics. However, due to the
differences in culture substrates and cell sourcing, these studies
are not directly comparable.

222325 on wnt3a mediated induction of MSCs con-

Three papers
cluded an increase in chondrogenic potential caused by wnt3a
when expanded in combination or subsequently replaced by a
chondrogenic stimulating growth factor. Narcisi et al.** found
that dual supplementation of wnt3a and FGF2 during expan-
sion significantly enhanced the chondrogenic potential of MSCs.
Contrarily, supplementation of wnt3a without FGF2, did not
significantly stimulate GAG production nor COL2 expression
relative to non-induced MSCs. Similarly, MSC expansion with
wnt3a followed by subsequent TGF-P1 stimulation similarly re-
sulted in significant increased GAG deposition,” however, ad-
dition of FGF2 during wnt3a stimulated monolayer culture
abolished these beneficial effects. In the research of Fischer et
al.,” overexpression of WNT3A in combination with BMP2 in
murine embryo derived MSCs, resulted in significantly higher
proteoglycan production.”® From these observations we hy-
pothesize that wnt3a is not directly able to induce a chondro-
genic phenotype, but rather has the capacity to enhance chon-
drogenic potential, stimulating chondrogenesis induced by
other growth factors in human MSCs. As wnt3a appears to in-
crease proliferation (Table 1) and reduce hypertrophic mark-
ers™ it is possible that wnt3a maintains cell potency and thus en-
ables MSCs to preserve a higher chondrogenic potential. When
used during expansion and subsequently replaced with chon-
drogenic growth factor, wnt3a could reinforce chondrogenic
potential which could be a strategy to optimize chondrogenic
differentiation of MSCs.

Indications of the significance of wnt5a in chondrogenic MSC
differentiation can be derived from Dickinson et al® Here, ROR2
was identified as a cell surface marker on MSCs with an enhanced
chondrogenic potential. After separation ROR2 positive MSCs
were embedded in a collagen sponge and implanted in a pre-
pared defect within the medial femoral condyle of sheep. After
remaining in vivo for 3 months, the implants with increased
ROR2 expression contained higher expression of chondrogenic
markers.”” Also, during TGF-B3 induced chondrogenic differ-
entiation, wnt5a levels significantly increased, reaching higher

https://doi.org/10.14245/ns.2040040.020

levels than the control group of articular chondrocytes. A sig-
nificant downregulation followed over time, while the expres-
sion in articular chondrocytes remained low, further empha-
sizing the role of wnt5a in early chondrogenic differentiation.
Finally, Hsu and Huang® examined MSCs seeded on different
substrates and their ability to induce chondrogenic differentia-
tion, and showed that samples presenting highest chondrogenic
potency (chitosan grafted with higher densities of hyaluronan)
presented a significantly higher expression of WNT5A.

Overall, the response of MSCs to wnt5a treatment appears
relatively homogeneous. As discussed, wnt5a appears stimula-
tory towards chondrogenesis (specifically in early stages) while
appearing to inhibit maturation and hypertrophy.®® This is fur-
ther emphasized by an in vivo study overexpressing WNT5A in
chicken wing bud MSCs, resulting in a 1.5-fold enhanced alcian
blue staining and increase in the number of nodules, whereas
the activity levels of the maturation marker ALP, did not de-
tectably change.”" From this collection of data, wnt5a appears to
play a crucial role in inducing chondrogenesis and is able to in-
hibit hypertrophic chondrogenesis.

Wnt3a AND Wnt5a AS TOOLS FOR
REGENERATION OF THE
INTERVERTEBRAL DISC

As mentioned previously, interest has been paid to the poten-
tial of growth factors” and cells”® for regeneration of the IVD.
Wnt3a and wnt5a are crucial factors for the maintenance and
induction of cells to a chondrogenic phenotype and thus hold
promise as tools in treatment of IVD degeneration. For the es-
tablishment of IVD regeneration via cell therapy, ideally NP
cells are employed due to their intrinsic capacity to survive and
thrive within the IVD.”* Nevertheless, IVD cells are commonly
derived from compromised tissue sources presenting low cellu-
lar yield and reduced cell potency.'®”*”> Moreover, standard ex-
pansion of NP cells in vitro further reduces their overall poten-
cy.”>”® From our current review, however, neither wnt3a nor
wnt5a seem to have a clear beneficial effect on NP cell prolifera-
tion induction to enhance cell numbers, maintain overall po-
tency, or induce a chondrogenic phenotype in vitro (Figs. 3A,
4A). Their effect in vivo remains largely undetermined. Li et
al.” studied the effect of wnt5a on rat induced disc degenera-
tion and found that administration of wnt5a could enhance the
rate of aggrecan and type II collagen producing cells, as well as
presenting enhanced magnetic resonance imaging index main-
tenance. Moreover, the authors nicely presented the ability of

Www.e-neurospine.org 29
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Fig. 3. A simplified summary of wnt3a effects on different cell types under specific conditions towards potential regeneration of
the intervertebral disc, concluded from available literature. (A) Nucleus pulposus cells are reported to not change in their chon-
drogenic potential, but can start proliferation upon wnt3a stimulation. However, when only one pathway is stimulated in partic-
ular, cell senescence can occur. (B) Chondrocytes are determined to start dedifferentiating after wnt3a supplementation. The
cells become more potent but also less chondrogenic. (C) Mesenchymal stromal cells are observed to have different reactions
upon wnt3a treatment. There appears to be a pattern as proliferation is upregulated after wnt3a supplementation, while chon-
drogenic differentiation occurs when wnt3a is supplemented and subsequently replaced with other growth factors (GFs).

wnt5a to limit IVD inflammation by inhibiting the action of
TNFa. Nevertheless, in vivo application does require caution, as
multiple reports have presented the ability of wnt5a to induce
or support osteogenesis,”*® tissue-fibrosus,*"** and M2 polar-
ization of macrophages.** Similarly, wnt3a has been associated
with the progression of a variety of tumors.**

On the contrary, wnt3a and wnt5a influence on chondrocytes
presents a more apparent effect. Chondrocytes resemble NP
cells, as both reside in avascular tissues of which the function is
to distribute and transfer biomechanical pressure,”” appointing
chondrocytes as a potential alternative to NP cells. Opposingly,
chondrocytes do present a lower ratio of PG vs collagen pro-
duction” and are endemically developed to adapt to distinctly

30 www.e-neurospine.org

different biomechanical forces as suggested by the matrix orga-
nization in articular cartilage. Moreover, altering these behavior
facets of mature cells might be particularly challenging. From
our review the applications of wnts as a method to enhance
chondrocytes regenerative capacity is not suggested to be a via-
ble option. Wnt3a, although able to enhance cell proliferation,
evidently has a negative impact on the chondrogenic features of
the cells (Fig. 3B). Although, wnt5a does not seem to impact
cell proliferation, it does reduce its chondrogenic phenotype
(Fig. 4B). As such, preconditioning with either of these ligands
appears delicate and stimulating chondrocytes with either wn-
t3a or wntba is likely not to be efficient to enhance the capacity
of chondrocytes for cellular products towards IVD repair.

https://doi.org/10.14245/1ns.2040040.020
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Fig. 4. A simplified summary of wnt5a effects on different cell types under specific conditions towards potential regeneration of
the intervertebral disc, concluded from available literature. (A) Wnt5a induces redifferentiation of nucleus pulposus (NP) cells,
but proliferation is reported to decrease compared to the control. (B) Chondrocytes are determined to start dedifferentiating af-
ter wnt5a supplementation. The cells become more potent but also less chondrogenic. (C) In mesenchymal stromal cells, wnt5a
is solely capable of inducing chondrogenic differentiation in early stages and inhibits maturation and hypertrophy, maintaining a

more potent chondrogenic state.

However, wnt3a and wnt5a under appropriate conditions ap-
pear to hold promise for the induction of MSC differentiation
to adopt a more chondrogenic phenotype. MSCs have distinct
advantages to differentiated NP cells or chondrocytes, such as
easy accessibility, a high cell potency,* and immunomodulatory
properties.” Moreover, MSCs possess multipotent differentia-
tion capabilities, including towards NP cell-like phenotypes,***
although, the precise nature of these chondrogenic MSCs re-
mains ill-defined. Moreover, it remains undetermined whether
the primary effect of transplanted cells is their immunomodu-
latory effects, endemic cell reactivation, active contribution to
matrix production, or a combination thereof.”"*> Nonetheless,
MSCs are being explored in clinical setting, and their primary
data suggest MSC transplantation to be safe and able to pro-
voke clinical improvements.” In order to enhance the potency
of MSC:s to succeed in the IVD, multiple studies have explored
the potential of preconditioning cells prior to IVD transplanta-
tion.”* Our review suggests that sole supplementation of wnt3a
to MSCs consistently enhanced their proliferative capacity.
However, wnt3a presented a relative negative effect on chon-
drogenic characteristics. Interestingly, however, is the capacity
of wnt3a to maintain (chondrogenic) potency of MSCs in cul-
ture, which potentially enables enhanced chondrogenic differ-
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entiation upon the subsequent or combined supplementation
of an additional (chondrogenic) growth factor (Fig. 3C). On the
other hand, the positive relation of wnt5a on chondrogenesis is
homogeneously supported by our identified papers.'”* More-
over, data suggest wnt5a interferes with hypertrophic matura-
tion (Fig. 4C).”" Although, verification is required on the ability
of wnt5a and wnt3a to optimize MSC-based cell therapy prod-
ucts for the IVD regeneration, current in vitro results do sug-
gest beneficial effects with regard to maintaining MSC potency
by wnt3a or stimulating chondrogenic features by wnt5a.

CONCLUDING REMARKS

In this review, we present the role of wnt3a and wnt5a as po-
tential chondrogenic stimulators and for the potential use as
NP cell and MSC inducers. Wnt3a and wnt5a are each found
able to support NP cell induction in their respective ways, how-
ever, their effect appears highly context dependent and varies
dependent cell type. Data suggest that the application of wnt3a
primarily has the ability to enhance proliferation and maintain
potency. Although, undesirable loss in chondrogenesis is ob-
served in chondrogenic cells, including NP cells, wnt3a appears
to be able to prolong MSC chondrogenic potency with extend-
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ed culture. On the contrary, wnt5a appears to restrict NP cell and
chondrocytes chondrogenic features, while for MSCs it induces
early chondrogenic stimulation. Although preconditioning of

,96

MSCs is actively being explored®®*>* and preculturing of MSCs
under hypoxic conditions proved to be safe and promising in
human clinical trials against IVD degeneration,” more research
is required to confirm the beneficial effects of wnt3a and wnt5a
as NP cell inducers, and the competence of these stimulated
cells to thrive in a degenerative IVD. Elucidation of the regula-
tory pathways involved in wnt-responses could provide new in-
sights and targets for tackling IVD degeneration and producing
regenerative strategies for IVD repair. Once a thorough under-
standing of the effect of wnt3a and wnt5a treated cells in vivo is
achieved, the use of these growth factors may serve as a valu-
able tool as chondrogenic stimulators for NP cell induction.
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