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Abstract: B-Precursor acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. Although 80% of B-ALL patients 
are able to be cured, significant challenges persist. Significant disparities in clinical outcomes and mortality rates exist between racial/
ethnic populations. The objective of this study was to determine whether gene expression levels significantly differ between ethnic 
populations. We compared gene expression levels between four ethnic populations (Whites, Blacks, Hispanics, and Asians) in the 
United States. Additionally, we performed network and pathway analysis to identify gene networks and pathways. Gene expression data 
involved 198 samples distributed as follows: 126 Whites, 51 Hispanics, 13 Blacks, and 8 Asians. We identified 300 highly significantly 
(P , 0.001) differentially expressed genes between the four ethnic populations. Among the identified genes included the genes PHF6, 
BRD3, CRLF2, and RNF135 which have been implicated in pediatric B-ALL. We identified key pathways implicated in B-ALL includ-
ing the PDGF, PI3/AKT, ERBB2-ERBB3, and IL-15 signaling pathways.
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Introduction
B-precursor acute lymphoblastic leukemia (B-ALL) 
is the most common childhood cancer and the lead-
ing cause of cancer-related death in children and 
young adults.1,2 B-ALL is curable with chemother-
apy in approximately 80% of patients,3 however 
not all children and adolescents have, unfortunately, 
benefitted equally from this progress. Significant 
health disparities exist between populations in inci-
dence, treatment outcomes, and mortality rates.4–7 
Hispanics and Whites (Caucasians) tend to have the 
highest incidences of B-ALL,4–7 however Hispanics 
and Blacks (African Americans) tend to have worse 
outcomes.7–10 The molecular basis of health dispari-
ties in B-ALL between populations is unknown. In 
addition, the causes of treatment failure in the remain-
ing 20% of patients are largely unknown. Therefore, 
there is an urgent need to identify biomarkers and to 
eliminate health disparities. Although drug treatment 
and prevention are clearly the most pressing public 
health priorities, resolving the genetics of B-ALL and 
eliminating health disparities are important long-term 
goals. Across a broad front, technical and analytic 
advances have now created a reasonably clear strat-
egy that can be used to move towards that goal.

The majority of B-ALL cases harbor recurring 
structural chromosomal rearrangements which are 
important initiating events in leukemogenesis.11 
These genetic mechanisms, however, are insufficient 
to explain the molecular basis of health disparities 
and the mechanisms underlying resistance to drug 
treatment. Advances in microarray technologies in 
recent years have made possible both the classification 
of pediatric B-ALL and the identification of molecu-
lar signatures in B-ALL.12–16 The desire to dissect 
the genomic architecture of pediatric cancer such as 
B-ALL and to identify clinically actionable biomark-
ers has motivated the launch of the National Cancer 
Institute funded Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET)17 
initiative and the privately funded Pediatric Cancer 
Genome Project.18 With the launch of these two 
initiatives, opportunities for understanding pediat-
ric cancer are now unprecedented, as advances in 
genomics are harnessed to obtain robust foundational 
knowledge about the genomic landscape of the dis-
ease in different populations and about the molecular 
basis of health disparities.

Key to the success of genomic research in improv-
ing pediatric oncology care is translation of genomic 
discoveries into clinical practice. In a clinical setting, 
responses to medical therapies, such as drugs, are 
often compared among populations that are divided 
according to traditional medicine. With continued 
advances in genomic research, information technol-
ogy, molecular diagnostic, and other biotechnologies, 
it is anticipated that pediatric oncology treatment 
will shift towards a more personalized paradigm of 
medicine. Realizing this vision requires a clear under-
standing of the patterns of gene expression variation 
within and between ethnic populations diagnosed 
with B-ALL. Such information would be critical for 
stratifying patients, development of targeted thera-
pies, and realization of personalized medicine.

The primary objective of this study was to determine 
whether gene expression levels differ significantly 
between racial/ethnic populations, and to character-
ize patterns of gene expression variation within and 
between pediatric patient populations. A secondary 
but equally important objective was to identify gene 
regulatory networks and biological pathways that are 
dysregulated and shared among the pediatric patient 
populations diagnosed with B-ALL in the U.S.

Material and Methods
Gene expression data
Gene expression data generated under the auspices 
of the National Cancer Institute’s TARGET project 
(http://www.target.cancer.gov)17 was used in our 
analysis. The samples used for generating gene 
expression data have been described previously in 
detail.16 Here, we provide a brief but detailed descrip-
tion of the characteristics and distribution of the sam-
ples used in this study.

The original gene expression data included 207 
uniformly treated pediatric B-ALL patients.16 The 
samples used to generate gene expression data were 
cryopreserved pretreatment B-ALL samples obtained 
from the Children’s Oncology Group (COG) P9906 
clinical trial for patients with newly diagnosed high 
risk (HR) B-ALL between March 2000 and April 
2003. Patients between the ages of 1–21 were eligi-
ble if they met specific combinations of higher white 
blood cell count and generally older age, though any 
child with a white blood cell count .100,000/µL was 
eligible and thus a more selected group of children 
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who would have been predicted to have higher 
risk B-ALL were included. Ineligible HR patients 
included those who expressed the BCR/ABL fusion 
gene or who were known to be hypodiploid (DNA 
index ,0.95) or who were induction failures. All the 
data was processed using the Affymetrix platform 
using the Human GeneChip U133Plus 2.0, apply-
ing standard Affymetrix protocols. Expression data 
(average scaled difference values) were processed 
and normalized using the Affymetrix Microarray 
Analysis Software (MAS 5.0). The data was filtered 
out to remove spiked control genes. In addition, sub-
jects without specified ethnicity were removed from 
the data. The final data matrix consisted of expression 
profiles of approximately 54,000 probes measured on 
198 patient samples. The population distribution of 
gene expression data was as follows: Whites N = 126, 
Hispanic N = 51, Blacks N = 13, and Asians N = 8. 
Information on race/ethnicity was obtained by self-
reporting, and therefore does not necessarily rep-
resent the genotype, a weakness which we readily 
acknowledge. However, in this study we used gene 
expression levels as intermediate phenotypes, mean-
ing that the genes themselves are the variables and 
the expression levels are the measurements. Although 
this is an unbalanced design, the samples sizes were 
adequate to detect differences in expression profiles 
at P , 0.05 with a power of greater than 95%.19 The 
data was transformed to log2 prior to analysis.

Data analysis
We used a combination of methods for data analysis. 
As a first step, we partitioned data into four subsets 
representing the four racial/ethnic populations under 
study (Whites, Blacks, Hispanics, and Asians). We 
performed supervised analysis using a t-test compar-
ing gene expression levels between ethnic populations 
(ie, Whites vs. Hispanics, Whites vs. Blacks, Whites 
vs. Asians, Hispanics vs. blacks, Hispanics vs. Asians, 
and Asians vs. Blacks) on the partitioned data. The goal 
of this analysis was to determine whether gene expres-
sion levels differ significantly (P  ,  0.05) between 
ethnic populations, and to identify significantly dif-
ferentially expressed genes distinguishing the ethnic 
populations under study. In addition, because of the 
significant admixing of the White and Hispanic sub-
populations, we combined gene expression data on the 
two subpopulations and treated them as one population 

(White-Hispanics) and then performed analysis using 
a t-test comparing gene expression levels between 
Blacks and White-Hispanics, and between Asians and 
White-Hispanics. Permutation test was used to calcu-
late the empirical P-values. Empirical P-values and 
those computed using t-test were found to be identi-
cal. The false discovery rate (FDR) was used to cor-
rect for multiple hypothesis testing.20 Genes were 
ranked by P-values and the significantly differentially 
expressed genes were selected. For each comparison 
of gene expression levels performed between two 
populations, we used a threshold of P , 0.001 and an 
FDR of ,1% to select the significantly differentially 
expressed genes. This was done to ensure uniformity 
and reliability as well as to ensure that the results are 
comparable. Because of small sample sizes for some 
ethnic populations, the data set was not divided into 
test and validation sets. Instead, out of sample valida-
tion, a leave-one-out procedure21 was used to assess 
the predictive power of the identified sets of genes in 
each comparison. To assess variability in gene expres-
sion levels in all the four populations, we used analy-
sis of variance (ANOVA)22 focusing on the differently 
expressed genes.

To investigate gene expression variability within 
and between the pediatric patient populations, we 
used the coefficient of variation (CV). We first sought 
to examine whether the genes have a similar level of 
within population variation in different populations. 
For each gene, we quantified the within-population 
expression variability by calculating its CV, which 
is the ratio of the standard deviation of its expres-
sion (across individuals within a population) to the 
mean value.23,24 Specifically, the CV for the ith gene 
measured across patients within the kth population 
was calculated as CVik = σik/µik, where σik and µik are 
the standard deviation and mean expression value, 
respectively.23,24 Although other metrics can be used 
to quantify the expression variability, the coefficient 
of variation is known to be one of the most robust 
and unbiased metrics23 and has been used for assess-
ing variation in natural human populations.25–27 Our 
group has successfully used this metric for estimation 
of sample sizes and statistical power in microarray 
experiments.19 A larger CVik indicates higher expres-
sion variability for a particular gene across individu-
als within a population, while a significant reduction 
in CVik indicates that the gene may be dosage sensitive 
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and thus under severe selection pressure to minimize 
expression variability.

Comparison of gene expression levels between 
ethnic populations may be criticized because the allo-
cation of individual patients in racially predefined 
groups imposes a pre-existing structure and may influ-
ence the outcome of the genetic study. Furthermore, 
populations are defined in many (often arbitrary) 
ways in this case by self-identification. Therefore, we 
performed unsupervised analysis using hierarchical 
clustering to characterize the patterns of gene expres-
sion profiles. The goal of this analysis was to identify 
genes and patients with similar expression profiles. 
We computed the genetic similarity between all pos-
sible pairs of genes and between all possible pairs 
of individual patients using the Pearson correlation 
coefficients as the distance measure. The genes and 
samples were then grouped by a hierarchical cluster-
ing algorithm using the complete linkage method, as 
implemented in the GenePattern System,28 to identify 
clusters of co-expressed genes and clusters of patients 
who are most similar to one another. Prior to cluster-
ing, the data was normalized, standardized, and cen-
tered using the standard procedure.29

We used the gene ontology (GO) information30 to 
identify functionally related genes among the genes 
differentially expressed between ethnic populations. 
The GO Consortium has developed three separate 
categories (molecular function, biological process, 
and cellular component) to describe the attributes 
of gene products. Molecular function defines what a 
gene product does at the biochemical level without 
specifying where or when the event actually occurs 
or its broader context, biological process describes 
the contribution of the gene product to the biologi-
cal objective, while the cellular component refers to 
where in the cell a gene product functions. Because 
our goal in this study was to gain biological insights 
about the broader context in which the genes distin-
guishing the ethnic populations and contributing to 
both between and within ethnic population variation 
operate, we considered all the three GO categories.

We performed network and pathway analysis and 
visualization using the Ingenuity Pathway Analysis 
(IPA) System (http://www.ingenuity.com).31 The goal 
was to identify gene regulatory networks and biologi-
cal pathways that are shared among ethnic populations. 
The Human Genome Organization (HUGO) Gene 

Nomenclature Committee (HGNC) gene identifiers 
were mapped to networks available in the IPA database 
and ranked by score. The score indicates the likelihood 
of the genes in a network being found together by ran-
dom chance. Using a 99% confidence interval, scores 
of $3 are considered significant. Validation of predicted 
pathways and identification of other downstream target 
genes was achieved through the literature and database 
mining module implemented in the IPA System. The 
feature allows identification of other genes that are 
functionally related or interact with input genes.

Results
Differences in gene expression levels 
between ethnic populations
One of the objectives of this study was to determine 
whether gene expression levels significantly dif-
fer between ethnic populations in pediatric B-ALL 
patients. Our working hypothesis was that gene expres-
sion levels differ significantly between populations. 
We tested this hypothesis by comparing gene expres-
sion levels in each population against another. After 
correcting for multiple hypothesis testing, we iden-
tified 300 highly significantly (P  ,  10−3) differen-
tially expressed genes, and therefore confirming our 
hypothesis. The estimates of P-values including the 
FDR for all the 300 genes are presented in Table A, 
provided as supplementary data. Also presented in 
Table A are the estimates of P-values and FDR based 
on ANOVA. The results showing mean expression 
levels for the 300  genes are presented in Figure  1. 
Overall, the differences in gene expression levels were 
generally moderate, ranging from P ∼ 10−2 to P ∼ 10−5 
depending on the pair of population compared (Fig. 1). 
Predictive modeling using out of sample validation 
revealed that individual patients could not fall neatly 
into one of the ethnic populations. Further examination 
of estimates of P-values and mean expression values 
for differentially expressed genes revealed that most 
patient individuals could not be classified with 100% 
certainty into one of the ethnic populations (Fig. 1). 
There were significant overlaps in differential gene 
expression levels between racial/ethnic populations. 
The overlap in gene expression levels suggests that 
gene expression in different ethnic populations may 
be subjected to similar regulatory mechanisms. 
This pattern of shared variation has important implica-
tions for our understanding of population differences 
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Figure 1. Pair-wise population scatter plot diagram showing the mean expression values on a log2 scale across the 300 genes significantly (P , 0.001) 
differentially expressed genes between populations.

and similarities, and it also impacts the critical bio-
medical issue of patient treatment and classification 
by race or ethnicity. The results suggest that using race 
or ethnicity alone as a surrogate for patient classifica-
tion may not be entirely accurate.

Out of the 300  most significantly differentially 
expressed genes, the largest differences in gene expres-
sion levels were observed between Blacks and Asians 
(184 genes), and between the Asians and Hispanics 
(140  genes) (Table A). Differences in gene expres-
sion levels between Whites and Asians (130 genes) 
and Blacks and Hispanics (120 genes) were also large 
(Table A). Smaller differences in gene expression lev-
els were found between Whites and Blacks (106 genes) 
while the smallest differences were between Whites 
and Hispanics (60  genes) (Table A). Among the 
highly significantly differentially expressed genes 
identified included the genes BRD3, PHF6, CRLF2, 
and RNF135 which have been directly implicated in 
pediatric B-ALL.1,32–34 Analysis of variance performed 
on the 300 genes produced 196 significantly differen-
tially expressed genes (Table A). The observed small 
numbers in differentially expressed genes between 
Blacks and Whites, between Hispanics and Whites, 
and the overlap in differential gene expression levels 
could be explained in part by the admixing of the 
populations under study.35,36

Because of the high admixing of the Hispanic 
population with populations of European ancestry, 
and the small number of differentially expressed 
genes between the two racial/ethnic subpopulations, 
we combined gene expression data on the two sub-
populations. When we compared the combined gene 
expression data on Whites-Hispanics to gene expres-
sion levels in Asians, we identified 133 significantly 
differentially expressed genes. Repeating the same 
analysis comparing gene expression on Whites-
Hispanics to Blacks produced 111 genes (Table A).

These results demonstrate substantial variation 
in gene expression levels both within and between 
ethnic populations in B-ALL patients and show that 
population structure exists in levels of gene expres-
sion. Although there have been no systematic studies 
of gene expression variation within and between eth-
nic populations in pediatric B-ALL, the differences 
in gene expression levels between populations found 
in this study are consistent with literature reports on 
gene expression variation in human populations.22–27

Gene expression variation within  
and between ethnic populations
The second objective of this study was to investigate 
and characterize the patterns of gene expression vari-
ation within and between populations. The rationale 
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is that knowledge of variation in gene expression 
levels within and between patient populations may be 
required for stratifying patients and setting ethnicity-
specific reference intervals in a clinical setting. We 
investigated within population variation by comput-
ing the CV for individual genes, as explained in the 
methods section. The results showing the correlation 
between CV between pairs of populations for the 
300 genes are presented in Figure 2. Gene expression 
variation between populations was assessed by recip-
rocal regression on the values of CV from each popu-
lation using a regression model, which is analogous 
to computing a correlation between CVs from two 
populations. CVs for individual genes derived from 
gene expression data within each ethnic population 
are presented in Table B, provided as supplementary 
data.

Between White and Hispanic populations, most 
of the genes exhibit similar levels of within popu-
lation variability. Pairwise comparison of the coef-
ficients of gene expression variation between all 
the four populations studied confirmed this trend 
(Fig. 2). Gene expression variability between Whites 

and Blacks, and between Hispanics and Blacks, also 
tended to be similar (Fig. 2). The strong correlations 
in within population expression variation between 
these populations suggests that either expression 
variability of most genes is subject to similar levels 
of constraints in these populations or could partially 
be explained by the admixing of the populations. 
The largest differences in within population variation 
were between Asians and Blacks, Asians and Whites, 
and between Hispanics and Asians (Fig. 2). In gen-
eral, the within population variation was larger than 
the between population variation. The results found 
in this study are consistent with literature reports on 
human populations.23–27 The similarity in patterns of 
gene expression profiles between Whites and Blacks 
is consistent with an earlier report which found that 
between Whites and Yuruba populations, most of the 
human genes exhibited a similar level of within popu-
lation variability.25–27 These data suggest that studies 
seeking to stratify B-ALL patients must consider the 
within population variation in gene expression and the 
effects of population structure. In general, the results 
are in agreement with the neutral theory of evolution, 
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Figure 2. Pair-wise population scatter plot diagrams showing the coefficient of variation for expression values on a log2 scale across the 300 genes 
significantly (P , 0.001) differentially expressed genes between populations.

http://www.la-press.com


Gene expression variation

Cancer Informatics 2013:12	 161

which states that the variation between populations is 
a positive function of within population variation,37 
suggesting that much of the significant variation 
between ethnic populations may represent random 
genetic drift.22

The clinical significance of these results is that in 
searching for clinically actionable biomarkers among 
a group of differentially expressed genes, it is impor-
tant to consider the biological variation due to inter-
individual variation that are due to a clinically relevant 
phenotype or response to a particular treatment, rather 
than race and or ethnicity, which are social constructs. 
Because gene expression and allelic variation tend 
to be shared widely among ethnic populations, race 
is likely to be an inaccurate predictor of response to 
treatment. It would be far preferable to test directly 
the responsible alleles in affected individuals.

Functional relationships of identified 
genes
Identifying differentially expressed genes and assess-
ing variation within and between ethnic populations 
may provide a limited view of the quantitative details 
of gene expression variation. The third objective of 
this study was, therefore, to characterize the global 
patterns of gene expression profiles in the popula-
tions under study to identify genes and patients with 
similar patterns of expression profiles. To begin to 
address this problem, we performed pattern recogni-
tion analysis using hierarchical clustering in order to 
group the genes and patients according to similarity 
in patterns of gene expression profiles. Clustering of 
all the significantly differentially expressed genes 
using samples from all the ethnic populations failed 
to accurately classify genes and patients. This was 
caused by considerable overlap in patterns of gene 
expression profiles in populations under study (results 
not presented).

We therefore performed sequential clustering, 
clustering two populations at a time using the most 
highly significantly differentially expressed sets of 
genes. Interestingly, this analysis identified signifi-
cantly differentially expressed up and down regulated 
genes with similar patterns of expression profiles. The 
results showing patterns of gene expression profiles 
between the ethnic populations under study are pre-
sented in Figure 3 through Figure 6. Figure 3 shows 
the patterns of gene expression profiles for Asian and 

Black populations. The results showing patterns of 
gene expression for Asians and Whites-Hispanics are 
presented in Figure 4. Figure 5 presents the results for 
Blacks and Whites-Hispanics. The results showing 
patterns of gene expression profiles between Blacks 
and Whites are presented in Figure  6. In all four 
figures, genes are represented in rows and B-ALL 
patients in columns. We also identified clusters of 
genes with similar patterns of gene expression pro-
files which distinguished one racial/ethnic popula-
tion from another. However, there was considerable 
variation and overlap in patterns of gene expression 
profiles. Most of the variability and differences in 
patterns of gene expression profiles were among indi-
vidual patients (Figs.  3–6). This demonstrates that 
genetic variation tends to be shared widely among 
populations, and that molecular perturbation in dif-
ferent ethnic populations is likely subjected to the 
same regulatory mechanisms.

The most clearly distinguishable patterns of gene 
expression profiles were found between Asians and 
Blacks (Fig. 3), between Asians and White-Hispanics 
(Fig.  4), and between Blacks and Whites-Hispanic 
(Fig. 5). However, as expected, there were significant 
overlaps between the Hispanics and Blacks, Whites 
and Blacks, and between Whites and Hispanics 
(results not presented). This was not surprising given 
the high level of admixture in these populations. For 
these reasons we did not present the results of cluster-
ing based on Whites and Asians and Hispanics and 
Asians separately, but rather classified Whites and 
Hispanics as one race/ethnicity against the Asians 
(Fig. 4). The significant overlap in patterns of gene 
expression between and among these racial/ethnic 
populations demonstrates that race or ethnic popula-
tions are not discrete types. The substantial overlap 
in patterns of gene expression suggests that B-ALL 
patients may not be accurately stratified or classified 
strictly on the basis of race or ethnicity alone, and that 
other criteria such as outcomes may be more useful.

In order to put the observed overlap in patterns of 
gene expression profiles in context, we examined the 
literature on human populations. The significant over-
lap in patterns of gene expression profiles within and 
between the ethnic populations can be explained in part 
by the admixing of the populations.35,36 Asians have 
been less influenced by admixture and hence they tend 
to cluster separately from other ethnic populations.38 
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There has been significant gene flow between Whites 
and Blacks,38 and several studies have estimated 
the proportion of White admixture in BLakcs to be 
approximately 17%, ranging regionally from 12% to 
23%.39 This is consistent with the results in this study 
(Fig. 6).

Indeed, with such proportions, admixed patients 
will tend to exhibit patterns of gene expression 
profiles that are similar to both ethnic populations 
(Fig. 6). The most complex patterns of gene expres-
sion profiles were observed between Hispanics 
and Blacks and between Hispanics and Whites. 

Figure 3. Variation in patterns of gene expression profiles between Asians and Blacks in pediatric patient populations. The results were obtained by unsu-
pervised analysis using hierarchical clustering. Genes are represented in rows and patients in columns. Red indicates up regulation and blue indicates 
down regulation.
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Although we initially considered Hispanics a sepa-
rate population, the U.S. Census does not. Hispanics 
are typically a mix of Native American, White, and 
African/African American with the relative propor-
tion varying regionally.38 Southwest Hispanics, who 
are primarily Mexican-American, appear to be largely 
White and Native-American; recent admixture esti-
mates are 39% Native American, 58% White and 3% 
Black.40 By contrast, East Coast Hispanics are largely 
Caribbean in origin, and have a greater proportion of 
African admixture.41 Therefore, depending on geogra-
phy, self-identified Hispanics could aggregate geneti-
cally with Blacks or with Whites (Fig. 5), with Native 
Americans, or form their own cluster. This is consis-
tent with the results in this study. In this study we 
did not follow regional classification of the Hispanic 
population. However, the results in Figures 4 and 5 
clearly show this admixing pattern of the Hispanic 
population with the Whites. Interestingly, although 
our investigations used gene expression profiles 

which are intermediate phenotypes, the results are 
consistent with findings in an earlier report involving 
nearly 4000 single-nucleotide polymorphisms (SNPs) 
mapped to 313 genes.38,42 These authors found distinct 
clusters for Whites, Blacks, and Asian; the Hispanic 
Americans did not form a separate cluster but were 
either grouped with Whites or not easily classified. 
This again is consistent with the results found in this 
study as well as the rationale of our decision to com-
bine gene expression data on Whites and Hispanics in 
subsequent analysis.

To ascertain that the identified genes are involved 
in similar biological processes, molecular functions, 
and cellular components, we performed GO analysis 
as described in the methods section. All the 300 genes 
exhibiting significant differences in expression levels 
between ethnic populations were subjected to GO 
analysis. GO analysis revealed that the genes are func-
tionally related and involved in multiple overlapping, but 
similar, biological processes and cellular components 

Figure 4. Variation in patterns of gene expression profiles between Asian and White-Hispanic in pediatric patient populations. The results were obtained 
by unsupervised analysis using clustering. Genes are represented in rows and patients in columns. Significant overlap in patterns of expression within the 
Hispanic population was observed. Red indicates up regulation and blue indicates down regulation.
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therefore confirming our hypothesis. A summary of 
functional information based on GO analysis is pro-
vided in Table C as supplementary material.

Gene network and pathway analysis
To gain insights into the broader context in which 
the significantly differentially expressed genes oper-
ate, we performed network modeling in order to test 
whether the genes are overrepresented in the net-
works and biological pathways. Our working hypoth-
esis was that genes that are significantly differentially 
expressed between ethnic populations, and exhibiting 
significant variation in patterns of expression within 
and between populations, interact with one another, 
thereby affecting entire network states and biological 
pathways, and in turn affect the severity of the disease 
in different ethnic populations. To test this hypoth-
esis we mapped the 89  most highly significantly 
differentially genes (P ,  10−4) identified after each 

comparison between populations onto the networks 
and pathways as implemented in the IPA. The clinical 
significance of the identified networks and pathways 
was evaluated using information on published reports 
on pediatric B-ALL as explained in subsequent para-
graphs in this section.

Network analysis revealed 5 multi-gene networks 
with IPA scores ranging from 17 to 61. In order to 
streamline the results and make them amenable to 
proper interpretation, we consolidated the results of 
the five networks into one large network by using 
the merge and design modules as implemented in 
IPA. The consolidated network enriched for the most 
highly significantly differentially expressed genes (in 
red font) between racial/ethnic populations is pre-
sented in Figure  7. We identified many genes with 
overlapping functions that were interacting in the 
network (Fig.  7). It is worth noting that not all the 
genes differentially expressed between populations 

Figure 5. Variation in patterns of gene expression profiles between Blacks and White-Hispanics in pediatric patient populations. The results were obtained 
by unsupervised analysis using clustering. Genes are represented in rows and patients in columns. By a large measure, Whites clustered separately. Red 
indicates up regulation and blue indicates down regulation.
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are represented in the network because we pruned the 
network to remove those with spurious interactions as 
well as those not found to be interacting or function-
ally related with other genes. This action was taken 
to ensure the reliability of the identified network. 
In addition to differentially expressed genes enrich-
ing the network, we identified a set of novel genes 
(Fig. 7, in black font), which could not be identified 
through differential expression analysis. The results 

confirmed our hypothesis that differentially expressed 
genes between populations are functionally related 
and interact with each and their downstream targets 
in gene regulatory networks. The network contained 
genes involved in many biological processes includ-
ing cancer, hematological and immunological dis-
eases, molecular transport, neurological, carbohydrate 
metabolism, lipid metabolism, cell morphology, cell 
cycle, cellular movement, and tissue development.

Figure 6. Variation in patterns of gene expression profiles between Blacks and Whites in pediatric patient populations. The results were obtained by unsu-
pervised analysis using clustering. Genes are represented in rows, and patients in columns. Significant admixing in patterns of gene expression observed. 
Red indicates up regulation and blue indicates down regulation.
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Among the genes identified in the consolidated 
network (Fig.  7), many genes were implicated in 
pediatric ALL including UBC, NOTCH1, FBXW7, 
PIK3CA, PTEN, KRAS, and WT1. Although the UBC 
did not reach the threshold of differential expression 
between racial/ethnic populations in this study, the 
human CDC 34 UBC protein has been found to be 
expressed at 3–4 fold higher level in pediatric T-cells 
than in pre-B-cell acute lymphoblastic leukemia in 
two independent patient groups,43 suggesting that the 
human UBC could serve as a potential therapeutic 
target. NOTCH1 signaling has been shown to be 
responsible for the anti-leukemic effect of histone 
deacetylases inhibitors (HDACis) in B-ALL cells 
demonstrating its potential as a therapeutic target.44 
The FBXW7 gene is a tumor suppressor which 
encodes a subunit of an ubiquitin protein ligase that 
targets numerous oncoproteins for proteasomal degra-
dation.45 Regulation of FBXW7 in B-ALL is mediated 
by the miR-27a, which is involved in regulating cell 
cycle progression.45 PTEN is a tumor suppressor gene 
which has been shown to reverse MDM2-mediated 
chemotherapy resistance by interacting with p53 in 

ALL cells.46 PTEN has also been shown to suppress 
B-ALL development through downstream regulation 
of AKT1.47 WT1 is expressed in majority of ALL.48 
For example, in a study involving 14 B-ALL patients, 
WT1 was detected in 12 (86%) patients.48 In the same 
study involving 31 T-ALL patients, WT1 was detected 
in 21 (74%) of the patients.48 Interestingly, in patients 
diagnosed with ALL, WT1 has been used as a target 
for the detection of minimal residue diseases (MRD).49 
Other genes implicated in leukemia found to be inter-
acting in the network included BRD3, TGFB1, MYC, 
and RAS.2 In addition, the network contained the NF1 
and AKT genes which have also been implicated in 
pediatric ALL.50 For example, activation of AKT is 
associated with poor prognosis and chemotherapeutic 
resistance in pediatric B-ALL.50

In silico confirmation using differentially expressed 
genes and genes implicated in ALL, revealed that 
the two sets of genes interact with each other in 
gene regulatory networks (Fig. 8). Interestingly, the 
differentially expressed genes were found to inter-
act with the ARID5B gene (Fig.  8) which contains 
genetic polymorphism associated with B-ALL.51 

Figure 7. Graphical representation of a consolidated gene regulatory network enriched for genes significantly differentially expressed between ethnic 
populations (red) and novel functionally related genes (black). Genes in red font represent the significantly differentially expressed genes identified in this 
study. Genes in black font represent novel genes which are functionally related with differentially expressed genes. Solid lines indicate direct interactions 
and functional relationships.

http://www.la-press.com


Gene expression variation

Cancer Informatics 2013:12	 167

Figure 8. Graphical representation of a consensus gene regulatory network enriched for genes significantly differentially expressed between ethnic popu-
lations (red) and genes from the literature that have been implicated B-ALL (blue). Genes in green font represent the significantly differentially expressed 
genes identified in this study that have been directly implicated in B-ALL. Solid lines indicate direct interactions and functional relationships.

The genetic polymorphisms in the ARID5B gene have 
been known to contribute to racial and ethnic dispari-
ties in incidence and treatment outcome in B-ALL.52 
The ARID5B genetic variants have also been linked 
to inter-patient variability in the anti-leukemic drug 
(methotrexate) metabolism.52 This confirms our 
hypothesis that genes which are significantly differ-
entially expressed between ethnic populations inter-
act with one another and affect entire network states 
and biological pathways, and in turn affect the sever-
ity of the disease or response to treatment in different 
ethnic populations. Of particular interest is that these 
networks and pathways are shared between popula-
tions, suggesting that gene regulation is subject to the 
same constraints in different populations.

To discern the biological meanings of the differ-
entially expressed genes mapped to the networks, we 
evaluated them using GO information on molecular 
and cellular function as implemented in the IPA. We 
identified many genes involved in multiple overlapping 
functions and multiple biological processes. Out of the 

89  most significantly differentially expressed genes 
evaluated, 24  genes were significantly associated 
with cellular development (P  =  1.22E-07–2.52E-03), 
23  genes were significantly associated with cellular 
growth proliferation (P = 2.22E-07–2.52E-03), 28 genes 
were significantly associated with cell death and survival 
(P = 1.39E-06–2.46E-03), 18 genes were significantly 
associated with cell cycle (P  =  1.41E-06–2.41E-03), 
and 13 genes were significantly associated with gene 
expression (P = 1.52E-06–1.76E-03).

To further gain insights on the broader context in 
which differentially expressed genes and genes con-
tributing to within and between population varia-
tion operate, pathway analysis were performed. The 
pathways were identified by mapping the genes 
onto Ingenuity pathways as implemented in the IPA 
System. The results of pathway analysis are pre-
sented in Figure  9. Interestingly, pathway predic-
tions revealed significant overrepresentation of the 
genes in many canonical pathways. The top five path-
ways included the PDGF (P = 1.58E-07), PI3/AKT 
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Figure 9. Graphical representation of the top most highly significant canonical pathways enriched for differentially expressed genes between ethnic 
populations. The ratio represents the number of genes that map to the canonical pathway relative to (blue) the number of genes in the canonical pathway. 
The threshold (thin straight vertical orange line) is the P-value on a log scale indicating the probability with which a set of genes were correctly assigned 
to a particular canonical pathway after correcting for multiple hypothesis testing.

(P = 2.7E-07), ERBB2–ERBB3 (P = 5.28E-07), and 
IL-15 (P  =  7.95E-07) signaling pathways and the 
mouse embryonic stem cell pluripotent (P = 6.72E-07) 
(Fig.  9). Other significant pathways included the 
role of JAK1 and JAK3 in γc cytokines signaling, 
Oncostatin M signaling, IL-17A signaling, and JAK/
STAT signaling (Fig. 9). To assess the clinical signifi-
cance of the pathways as potential therapeutic targets 
in B-ALL, we mined the literature associating these 
pathways to pediatric B-ALL. Literature findings 
revealed that all the top five pathways play impor-
tant roles in leukemogenesis.53–58 The platelet-derived 
growth factor (PDGF) regulates clonal proliferation 
of malignant pre-B cell lines.53 The phosphatidylino-
sitiol 3-kinase (PI3K) AKT, the mammalian target of 
rapamycin (mTOR) signaling pathway (PI3K/AKT/
mTOR) is abnormally activated in childhood acute 
lymphoblastic leukemia.54 Most commonly, this abnor-
mal activation occurs as a consequence of constitutive 
activation of AKT.54 Activation of AKT is associated 
with poor prognosis and chemotherapeutic resistance 

in pediatric B-ALL,55 which provides a compelling 
rationale for therapeutically targeting this pathway, 
particularly in the 20% of the patient population who 
are resistant to treatment. The ERBB2, also known as 
Her2/neu, has been implicated in ALL and is consid-
ered a potential therapeutic target.56 Genetic variants 
mapped to IL-15 have been associated with minimal 
residual disease (MRD).57 MRD has been integrated 
into risk stratification58,59 and MRD assays provide a 
direct assessment of early treatment response and are 
associated with final treatment outcome.60–63 Thus the 
IL-15 pathway could serve as a potential therapeutic 
target for early interventions. In summary, the results 
confirmed our hypothesis that gene expression differ-
ences between ethnic populations are regulated by a 
wide variety of pathways, and that these pathway are 
shared among ethnic populations.

Discussion
This study was conducted to determine whether gene 
expression levels differ between ethnic populations 
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in order to characterize variation in patterns of gene 
expression profiles, and to identify gene regulatory 
networks and biological pathways that are dysregu-
lated in different populations (Whites, Hispanics, 
Blacks, and Asians) diagnosed with B-ALL. To our 
knowledge this is the first study to compare the gene 
expression levels and delineate the patterns of gene 
expression variation within and between ethnic popu-
lations in pediatric B-ALL. The analysis revealed 
moderate but appreciable differences in gene expres-
sion levels between populations.

There was, however, considerable overlap in both 
differential expression levels and patterns of gene 
expression profiles among the four populations under 
study. Analysis of patterns of gene expression pro-
files revealed clusters of co-expressed genes. These 
clusters were correlated with race and ethnicity, but 
the correlations were imperfect as variation in pat-
terns of gene expression tended to be distributed in a 
continuous, overlapping fashion among populations. 
These results indicate that in some cases, race or eth-
nicity may provide some insights about the disease 
state. Nevertheless, the study demonstrates that use 
of race or ethnicity alone as a surrogate for assessing 
the molecular basis of health disparities or classify-
ing patients may be inaccurate because of overlap and 
admixing in the patterns of gene expression.

This study focused on using gene expression data 
to determine the difference in molecular perturbation 
between populations. However, it is worth noting that 
gene expression reflects the disease state and may 
be influenced by both genetic and non-genetic fac-
tors such as environment and socio-economic status. 
These factors should be taken into account when 
making decisions at the point of care or attempting to 
use race and/or ethnicity as a surrogate for stratifica-
tion of patients or assessing outcomes. There is bio-
logical plausibility that the observed inconsistencies 
in patterns of gene expression profiles are partially 
attributable to the genetic heterogeneity inherent in 
B-ALL.11 Due to the small sample sizes for some 
ethnic populations, notably Asians and Blacks, we 
did not stratify B-ALL according to the subtypes to 
mitigate heterogeneity. It is also conceivable that 
sampling errors may partially have contributed to the 
observed outcome.

Studies of gene expression on pediatric B-ALL 
have been reported.12–16 The main difference between 

this study and reported studies, is that this study 
focused on characterizing variation in patterns of 
gene expression within and between populations. The 
clinical and translation significance of this study lies 
in the fact that responses to medical therapies, such 
as drug treatment, are often compared among popula-
tions that are divided according to traditional racial 
and ethnic groups. Therefore, delineating the pat-
terns of gene expression profiles within and between 
these traditional racial and ethnic groups would pro-
vide insights about the use of race and/or ethnicity 
as surrogates for patient classification, assessment of 
treatment outcomes, and as a yardstick for assessing 
the molecular basis of health disparities. The over-
lap and shared patterns in gene expression profiles 
observed in this study have important implications 
for our understanding of population differences and 
similarities, and bears on critical biomedical issues 
including use of race as a surrogate for assessing 
response to treatment, outcome reporting, and assess-
ing health disparities. For example, as demonstrated 
in this study, if the patterns of gene expression are 
similar and shared between populations, use of an 
individual’s race or ethnicity affiliation alone would 
be potentially a faulty indicator or classifier of the 
presence or absence of a biomarker related to diagno-
sis or response to treatment.

Recently, genetic polymorphisms conferring race 
and ethnic population-specific risk in B-ALL inci-
dence and outcomes were found in the ARID5B gene 
using genome-wide association studies (GWAS).51,52 
In this study we did not investigate the distribution 
of genetic variants or alleles among populations. 
However, pathway analysis including the ARID5B 
gene in network analysis revealed the broader con-
text in which the SNPs in this gene may operate. 
To the extent that gene expression is regulated by 
genetic variants and allelic variation tends to be 
shared widely among populations, these results pro-
vide functional bridges between GWAS findings and 
the disease state. Importantly, the results in this study 
are consistent with previous studies in human popu-
lations that have analyzed both genetic variants and 
gene expression.64,65 Ideally, it would be far prefer-
able to test directly the responsible alleles in affected 
individuals.42 Assessment of allelic variation was 
beyond the scope of this study, but is the hope for 
future studies as most of the genes and rare variants 
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which contribute to B-ALL remain to be identified. 
In addition, non-genetic factors such as environmen-
tal factors and socio-economic status nearly always 
have an important and sometimes predominant role 
in susceptibility and outcomes.6,7 With the launch 
of the TARGET and the Pediatric Cancer Genome 
Projects,17,18 progress is being made in identifying 
and cataloguing genetic variants and mutations that 
underlie B-ALL. Rapid development in new technol-
ogies, such as clinical sequencing technologies, will 
provide efficient and far-ranging genetic assays for 
use at the point of care.

The results of this study show small but appre-
ciable differences in gene expression between the 
populations under study. However, there are sig-
nificant limitations to the study which are readily 
acknowledged, including lack of data on cancer-free 
controls and clinical information along with small 
sample sizes for the Asian and Black populations. 
The use of cancer free-controls would have enabled 
us to identify population-specific genes. However, 
addressing that issue would have required having 
cancer-free controls for each of the four populations 
under study, which was not feasible. The use of clini-
cal information would have allowed us to assess gene 
expression using other variables in addition to race/
ethnicity, an important strategy given the limitations 
of race/ethnicity as discussed in this report in the pre-
ceding sections. However, clinical information was 
not available on the data set used in this study. The 
use of small sample sizes for some populations, par-
ticularly the Asians and Blacks, could lead to sam-
pling errors and some of the observed spuriousness in 
the results. This is an issue beyond the scope of this 
report, however. Lastly, the use of self-identified race/
ethnicity could be prone to errors that could influence 
the results. Given these acknowledged limitations, we 
view the results reported in this study as exploratory 
and should be interpreted conservatively.

In conclusion, the analysis shows that gene expres-
sion profiling for the discovery of genetic markers 
holds great promise for understanding the molecu-
lar basis of health disparities in pediatric B-ALL. 
The analysis reveals that molecular perturbation 
in B-ALL patients tends to be shared widely, vary 
significantly, and substantially overlap within and 
between populations. The data further demonstrates 
that populations tend to have shared gene regulatory 

networks and biological pathways. We recommend 
that because genetic assessment alone will never be a 
panacea, there is a need to consider both genetic and 
non-genetic factors in clinical care.
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Supplementary Tables
Table A. (Supplementary) Estimates of P-values 
and FDR obtained from comparing gene expression 
between and among populations for the 300  most 
highly significantly differentially expressed genes.

Table B. (Supplementary) Estimates of coefficients 
of variation (CV) for individual populations for the 

300 most highly significantly differentially expressed 
genes between the four populations. Note: CV are 
expressed as ratios.

Table C. (Supplementary) Results of GO analysis 
for all the 300 most highly significantly differentially 
expressed genes between ethnic populations.
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