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Abstract

Organisms from all domains of life use gene regulation networks
to control cell growth, identity, function, and responses to envi-
ronmental challenges. Although accurate global regulatory models
would provide critical evolutionary and functional insights, they
remain incomplete, even for the best studied organisms. Efforts to
build comprehensive networks are confounded by challenges
including network scale, degree of connectivity, complexity of
organism–environment interactions, and difficulty of estimating
the activity of regulatory factors. Taking advantage of the large
number of known regulatory interactions in Bacillus subtilis and
two transcriptomics datasets (including one with 38 separate
experiments collected specifically for this study), we use a new
combination of network component analysis and model selection
to simultaneously estimate transcription factor activities and
learn a substantially expanded transcriptional regulatory network
for this bacterium. In total, we predict 2,258 novel regulatory
interactions and recall 74% of the previously known interactions.
We obtained experimental support for 391 (out of 635 evaluated)
novel regulatory edges (62% accuracy), thus significantly increas-
ing our understanding of various cell processes, such as spore
formation.
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Introduction

As cells navigate their environment, divide and differentiate, they

rely on gene regulation networks. Building accurate and comprehen-

sive models of the interactions between regulators and their target

genes is essential to our understanding of basic biology and evolu-

tion in all living systems (Marbach et al, 2012). Analysis of gene

regulatory networks can reveal how diverse cell processes are

balanced in a single organism and facilitate genome annotation by

uncovering hidden functions of co-regulated genes. Global gene

regulation networks also provide information on a system’s robust-

ness and evolvability, thus influencing bioengineering strategies. In

spite of the importance of having complete models, the fraction of

known regulatory interactions is quite small for most species, with

well-studied organisms having at best half of their genes paired with

a regulator (Salgado et al, 2013). The lack of any completely charac-

terized network stems from the fact that experimental assays are

limited to measuring the consequences of gene regulation (e.g.

changes in RNA or protein levels) or assessing the binding of regula-

tors to promoters or mRNAs (Hughes & de Boer, 2013). The rate at

which new regulatory interactions are identified was, however,

significantly accelerated with the advent of genomic technologies

(Salgado et al, 2013).

Here, we focus on Bacillus subtilis, a model organism for the

human pathogens Bacillus anthracis, Clostridium difficile, Listeria

monocytogenes, and Staphylococcus aureus. B. subtilis was the first

Gram-positive bacterium to have its genome sequenced (Kunst et al,

1997; Barbe et al, 2009) and is a major model system for compe-

tence, biofilm, and spore formation (Dubnau & Mirouze, 2013;

Vlamakis et al, 2013; Cairns et al, 2014; Tan & Ramamurthi, 2014).

Sporulation, in particular, is among the best-understood develop-

mental processes in biology. The main regulators of gene expression

during sporulation are r factors, subunits of the RNA polymerase
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conferring DNA binding specificity to the holoenzyme (Stragier &

Losick, 1990; Feklı́stov et al, 2014). Asymmetric division of the

sporulating cell results in two cell types, a forespore that will mature

into a spore and a larger mother cell. Forespore maturation depends

on the mother cell for metabolic activity and synthesis of more than

70 spore coat proteins (McKenney et al, 2013). Many of the original

transcriptomic studies in B. subtilis focused on gene expression

during sporulation and other stress responses (Fawcett et al, 2000;

Cao et al, 2002; Price et al, 2002; De Hoon et al, 2010). More

recently, an expanded transcriptomic dataset was collected (Nicolas

et al, 2012). An overarching goal in B. subtilis systems biology is to

integrate these datasets with quantitative proteomics (Soufi et al,

2010) and analyses of metabolic fluxes (Chubukov et al, 2013) to

obtain a comprehensive model of gene regulation, similar to what

has been accomplished in a multi-omics investigation of the glucose

to malate metabolic shift (Buescher et al, 2012).

Previous regulatory network inference efforts can be divided into

three main categories: (i) curation of literature and transcription

factor (TF) binding sites (Freyre-González et al, 2013; Leyn et al,

2013); (ii) genetic perturbations to learn directed edges (Madar et al,

2010; Ciofani et al, 2012); and (iii) modeling regulation as a

dynamic process using time series data (Bonneau et al, 2006). To

reduce the complexity of the problem, regulatory networks have

often been determined for TFs controlling gene clusters, instead of

individual genes (Fadda et al, 2009; Lemmens et al, 2009; Waltman

et al, 2010; Brooks et al, 2014; Peterson et al, 2015; Reiss et al,

2015), and metabolic pathways were integrated with regulatory

networks (Oh et al, 2007; Goelzer et al, 2008; Labhsetwar et al,

2013; O’Brien et al, 2013; Carrera et al, 2014). As a whole, prior

network inference studies improved prediction of the effects of

genetic perturbations or the accumulation rates of metabolites under

different growth conditions (Imam et al, 2015; Kim et al, 2015). In

spite of early successes (Faith et al, 2007), most studies remained

limited in a number of ways and often relied on heterogeneous data-

sets (e.g. using various microarray platforms and strain back-

grounds). For instance, predicted networks for E. coli and B. subtilis

were less complex than the prior known networks (i.e. these studies

did not expand the known networks substantially, but instead

highlighted a small focused set of new and known edges). Further-

more, in most cases, the accuracy of novel predictions was not

systematically assessed in follow-up experiments.

Network inference is a difficult problem because of (i) biological

complexity (the activity of a transcription factor (TF) is not linearly

related to its abundance); (ii) non-identifiability (biological

networks are robust and thus many potential models will explain

any given dataset equally well); and (iii) systematic error. Although

complexity and measurement error constitute the two most often

cited challenges, non-identifiability is perhaps a greater problem

(Marbach et al, 2012). To address this issue, we described methods

for learning regulatory networks that use prior knowledge on

network structure to improve accurate identification of large

networks (BBSR: Bayesian Best Subset Regression; Greenfield et al,

2013). Here, we use known interactions gathered from SubtiWiki

(Michna et al, 2014) to both estimate TF activities (TFA) by employ-

ing network component analysis (NCA) (Liao et al, 2003) and

constrain the model selection step of our method (BBSR-TFA).

Estimated TFA and NCA have been used in previous network

inference efforts. For example, chromatin immuno-precipitation

(ChIP) binding data were used to estimate S. cerevisae TFA followed

by correlation for target identification (Gao et al, 2004). Similarly,

interactions from RegulonDB (Salgado et al, 2013) were used to

determine dynamics of activities of E. coli TFs during carbon source

transition (Kao et al, 2004). Following these initial applications,

numerous methods to estimate TFA and to learn the regulatory

network have been proposed (Boulesteix & Strimmer, 2005;

Galbraith et al, 2006; Sanguinetti et al, 2006; Gu et al, 2007; Fu

et al, 2011; Noor et al, 2014). These methods have in common that

they model gene expression to be the result of the connectivity

strength between TF–gene pairs and TF activity, where the activity

is a latent variable pooling the effects of post-transcriptional and

post-translational modifications. More recent applications include

the identification of key TFs and their targets in mice during

rapamycin treatment (Tran et al, 2010), and a regulatory network

important in floral development in A. thaliana (Misra & Sriram,

2013). To our knowledge, there is only one previous application of

NCA to B. subtilis data (Buescher et al, 2012). In that work, known

transcriptional regulation was taken from literature, the DBTBS

(Sierro et al, 2008) and SubtiWiki databases, and CcpA ChIP-chip

data, to learn the regulatory network perturbed during change of

carbon substrate from glucose to malate and vice versa. However,

as the main focus was on metabolism, none of the 1,488 predicted

interactions were assessed in follow-up experiments. In this work,

we apply a unified new combination of NCA and model selection to

an experimental design expressly conceived to dynamically probe

the principal cellular pathways of B. subtilis, and we identify 2,258

novel regulatory interactions of unprecedented accuracy.

Results and Discussion

A compendium of B. subtilis transcriptional profiling data

Our goal is to infer the transcriptional regulatory network (TRN)

from two large transcriptomic datasets, while also incorporating

previously validated TF–target gene interactions (Fig 1). These

known regulatory interactions, compiled in SubtiWiki (Michna

et al, 2014), represent a large body of prior work using several

experimental methods to characterize functional regulatory links

and are thus a powerful complement to the transcription compen-

dium described below. We collected a global gene transcription

compendium for strain PY79, a derivative of strain 168 frequently

used for transcriptional profiling (Fawcett et al, 2000; Eichenberger

et al, 2004; Wang et al, 2006), and obtained transcriptional profiles

for 4,002 protein-coding genes from a total of 403 samples in 38

separate experimental designs (Table EV1 for strains used,

Table EV2 for experimental conditions, GEO accession number

GSE67023). A large fraction of the data was collected as time

series, which improves our ability to infer directed edges (Bonneau

et al, 2006). We investigated an entire life cycle from spore germi-

nation to sporulation (with samples collected at 30-min intervals),

as well as stress responses, competence, and biofilm formation

(complete results in Dataset EV1). We added a previously

published dataset with 269 samples covering 104 conditions, using

strain BSB1, another derivative of strain 168 (Nicolas et al, 2012).

In order to incorporate informative priors on network structure,

we retrieved from SubtiWiki a list of 3,040 experimentally
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validated regulatory interactions (Dataset EV2). Subsequently, we

refer to this set of interactions as the “gold standard” (GS) or “prior

network”.

Estimating transcription factor activities (TFA) increases the
accuracy of network inference

To learn the B. subtilis TRN, we used a new combination of our

Inferelator-BBSR approach (Greenfield et al, 2013), with a method

for estimating transcription factor activities (TFA). Previously, gene-

specific regulators were discovered based on mRNA abundance

correlation, that is, gene transcription profiles were modeled as

linear combinations of one or a few TF transcription profiles. With

our new dataset, we observed that transcription profile is not an

optimal proxy for a TF’s regulatory strength (Fig 2). As a conse-

quence, we modified the procedure by introducing an initial step

where TFA are estimated based on known regulatory interactions

for each experimental condition. To do so, we used NCA (Liao et al,

2003) with a simplified model of transcriptional regulation

compared to previous work (Kao et al, 2004; Buescher et al, 2012)

(details given in method section). Conceptually, this is similar to

estimating TFA with a reporter gene, although here every known

target of a TF is used as reporter and we explicitly model activation,

repression, and genes under multi-TF control. These TFA were

then used as predictors to learn the strength and sign of TF–gene

interactions. Subsequently, predictions for each dataset were

integrated into a combined network, where potential interactions

were ranked by their confidence scores to provide networks that

meet specific accuracy requirements (calibrated using known

interactions).

Motivation for estimating TFA

In Fig 2A (top panel), we plot the partial correlation between tran-

scription of each TF and known target gene along all conditions in

the PY79 compendium. We observe that many TF–target pairs are

only moderately correlated. This is expected, as a gene may be

controlled by multiple regulators, while interactions of a TF with its

targets are typically restricted to a subset of experimental conditions

where the TF is expressed and active. We also note a high propor-

tion of known negative interactions (repression) with positive

Figure 1. General workflow for inferring the B. subtilis transcription network.
Two transcriptomic data compendia were used, one collected specifically for this study (strain PY79) and one previously published for strain BSB1 (Nicolas et al, 2012).
Transcription factor activities (TFA) were estimated independently for each dataset using interactions in the gold standard (GS) extracted primarily from SubtiWiki (step 1).
Datasets, estimated TFA, and priors on network structure (from the GS) were used as inputs for prediction of regulatory interactions (step 2). Next, output networks (one for
each strain/dataset) were merged into a combined network (inferred TRN) (step 3) and prediction accuracy was evaluated in follow-up experiments.
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correlation scores. This can happen when repressors work as

components of negative feedback mechanisms. For instance, when

a repressor takes part in an incoherent feed forward loop (FFL),

expression of the repressor will start at the same time as its targets

and the negative effect on target expression will only be sensed after

a delay necessary for the accumulation of the repressor (Mangan &

Alon, 2003; Alon, 2007). By contrast, correlations between

estimated TFA and target gene transcription show fewer interactions

with low correlation and better separation between activating and

repressing interactions (Fig 2A bottom panel).

We examined the relationships between TF activity and target

gene transcription in a group of 50 TFs with at least ten experimen-

tally validated targets (Dataset EV3). Nonlinear relationships were

detected for almost all regulators, including the master regulator of

A B

Figure 2. Incorporating Transcription Factor Activities (TFA) in the network inference procedure.

A Partial Pearson correlation between mRNA transcription levels (PY79 dataset) was computed for each TF–target gene pair in the GS (top histogram). Partial Pearson
correlation was also computed between the estimated activity of a TF and the transcription of its targets (bottom histogram).

B The advantage of estimating TFA is illustrated for three regulators. Each point corresponds to the results of one microarray experiment, and TFA are estimated for
each experimental condition. Top panel: A nonlinear correlation is observed between comK transcription and transcription of ComK targets, whereas a strong linear
correlation is obtained between ComK activity and transcription of ComK targets. Middle panel: No correlation is observed between codY transcription and
transcription of CodY targets. CodY activity is modulated by GTP and branched chain amino acids (BCAA). A negative correlation is observed between estimated CodY
activity and transcription of CodY targets. Bottom panel: Spo0A activity is modulated by phosphorylation. A better correlation is observed between Spo0A activity and
transcription of Spo0A targets than between spo0A transcription and transcription of Spo0A targets.
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competence ComK (Fig 2B top panel), which is subjected to a posi-

tive auto-regulatory loop and binds to its target promoters as dimer

(Hamoen et al, 1998; Hamoen, 2003). The absence of a linear rela-

tionship between transcription of TFs and their targets was

frequently noted for regulators that require co-factors, such as CodY

(Sonenshein, 2007), a repressor whose activity is modulated by

GTP and branched chain amino acids (Fig 2B middle panel). By

contrast, for both ComK and CodY, a linear relationship is observed

between TF activity and transcription of their targets. This linear

relationship is a consequence of the way TFA are estimated (see

Materials and Methods). Considering that the Inferelator is based on

a linear model (see Materials and Methods), this linearization step

is likely to improve the detection of additional regulatory interac-

tions. This improvement would affect primarily TFs whose activity

can be accurately estimated [i.e. those with > 10 known target

genes, see below and Appendix Fig S1 (for the BSB1 data compen-

dium) and Appendix Fig S2 (for the PY79 data compendium)].

Another major reason for discrepancies between TF transcription

and target gene transcription is caused by post-translational

modifications, such as the phosphorylation of response regulators

in two-component systems (Salazar & Laub, 2015). A classic exam-

ple is Spo0A, the master regulator of sporulation (Molle et al,

2003), which is activated by a phosphorelay (Fig 2B bottom panel).

As Spo0A is both an activator and a repressor of transcription, we

note that an efficient way to discriminate activated from repressed

targets is to encode the sign of the interactions in the prior. Overall,

estimation of TFA greatly increases the predictive power of the

Inferelator.

Performance of our network prediction framework

Given TFA estimates, we must still select the most probable regula-

tory network model from the transcription data. This very large-

scale model selection step also leverages the dynamical information

built into our experimental design. We use TFA as predictors (and

rely on transcription profiles for TFs without known targets) to infer

the global TRN with our framework for regulatory network model

selection (Inferelator-BBSR). We analyzed the performance of our

approach by (i) assessing the recovery of known regulatory edges;

(ii) assessing the robustness to noise; (iii) evaluating the experimen-

tal support for the predictions; and (iv) comparing to other network

inference methods. To assess the recovery of known interactions,

we compute the Area Under the Precision Recall (AUPR) curve

(Fig 3A) for this recovery task under both settings (recovery of

known and learning of new interactions); AUPR has a value of 1

when all GS interactions rank top of the list and close to 0 for

random predictions. In addition to the Inferelator, we also evaluated

CLR (Faith et al, 2007) and Genie3 (Huynh-Thu et al, 2010), two

state-of-the-art network inference methods. In this analysis, GS

interactions were only used for TFA estimation and we did not

incorporate prior information during the model selection step of the

Inferelator. A random set of 50% of the GS interactions were used

for TFA estimation, while the remaining GS interactions were used

to calculate precision and recall. We note that (i) a higher score is

obtained for the combined network than for networks derived from

each dataset independently; (ii) scores for the predicted networks

are significantly higher when TFA is used; and (iii) although priors

were not used to influence model selection, the Inferelator has the

highest AUPR among the compared methods.

To determine the stability of the estimated TFA, we examined

the effect that changes in the set of GS interactions had on estimated

TFA by randomly removing 20% of the GS interactions 128 times.

The vast majority of TFA are stable [as indicated by the distribu-

tions of the pair-wise correlations of the activities; Appendix Fig S1

(for the BSB1 data compendium) and Appendix Fig S2 (for the PY79

data compendium)], and TFs with ten or more priors have more

stable estimated activities than TFs with < 10 priors. This implies

that excluding part of the GS network during TFA estimation does

not have a significant effect on the activities of those TFs with

dozens of targets. Next, to evaluate if the number of bootstraps

affected the output of the inference approach, we compared the top

5,000 interactions for inferred networks using 2 up to 100 boot-

straps in the BSB1 dataset, PY79 dataset, or both (combined) to the

top 5,000 interactions using one less bootstrap (Appendix Fig S3).

We observed that, for all networks, after 20 bootstraps, more than

4,890 (97.8%) are shared when another bootstrap is added. This

finding suggests a rapid convergence of the error estimates

computed by BBSR-TFA.

To assess robustness to noise (i.e. presence of incorrect or

irrelevant edges in the GS), we used as priors 50% of the GS

interactions (randomly selected) and added various amounts of

random false interactions (Fig 3B). Performance on the remaining

50% of GS interactions demonstrates a very high error-tolerance

and relative insensitivity to input parameters. Specifically, AUPR

in the presence of a noisy prior is higher than the no-prior base-

line even at a true:false prior ratio of 1:10, if weight in the

model selection step (g-prior in the Materials and Methods

section) is not too large (i.e. < 2). We conclude that using esti-

mated TFA combined with constrained network model selection

(BBSR-TFA) results in networks that are more consistent with

prior knowledge and have increased accuracy. The fact that the

combined network has the highest AUPR in Fig 3B indicates that

many true interactions that would have been excluded otherwise

are recovered from the combination of the PY79 and BSB1 inde-

pendently predicted networks. This highlights the complementary

nature of the two data compendia. In principle, our method can

be applied to a variety of systems, as long as a set of priors is

available.

To evaluate the experimental support for BBSR-TFA’s predic-

tions, we used transcriptional profiles we collected for the principal

r factors (rB, rD, rE, rF, rG, rH, rK, rL, rM, rW) and global regu-

lators (AbrB, CodY, and Spo0A). In addition, we collected data for

ComK (competence), SinR (biofilm formation), ScoC (transition to

stationary phase), and PhoP (phosphate metabolism). For each

selected TF, we measured the transcription rate of all genes in the

wild-type (WT) and TF knockout (KO) strains. To have a clear sepa-

ration between training and evaluation datasets, we predicted a

network for each analyzed regulon using training data that excluded

data relevant for the WT and KO strains’ comparison for that TF. In

total, we obtained 17 networks (Fig 4), one for each TF with KO

data (we refer to these networks as evaluation networks). The

reason for not excluding all KO data at once is that it would

represent a 25% decrease in the PY79 dataset size.

For each TF and the corresponding set of KO conditions, we

tested all genes for differential transcription (DT) using Bayesian

t-tests. We considered all genes with P-values < 0.01 as DT (see

Materials and Methods for details). Genes that were predicted as
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A

B

C

Figure 3. Performance of network inference methods when incorporating TFA.

A Precision–Recall plot of the confidence-ranked interaction networks using CLR, Genie3, and the Inferelator (no priors). Solid lines show performance using TFA. Dashed
lines show performance when no TFA are used (when raw expression values for TFs are used as predictors). The numbers superimposed on each curve indicate the
area under the curve.

B Performance of BBSR-TFA (AUPR: area under precision recall curve) on the combined, BSB1 and PY79, networks in the presence of false prior information. 50% of the
edges in the GS are used as true priors, and various amounts of random edges are added. Performance is evaluated on the leave-out set of interactions. Each point
represents the median of five random samples of 50% of the GS set.

C Support from KO data for the models predicted by BBSR-TFA, Genie3 (G3), CLR, and a consensus method (META) that rank combines the prediction of the three
methods. Methods were used without and with TFA (TFA tag). The number on top of each bar indicates the proportion of evaluated interactions with KO support for
the corresponding method. Left and right panels show the support for each method when all interactions (recovered priors and novel interactions) and only novel
interactions are considered, respectively.
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targets in the TF-specific evaluation network were considered true

positives (i.e. supported by the KO data) if they were DT, while

targets that were not DT were considered false positives (i.e. not

supported by the KO data). Overall, we see that the KO support rate

for the full set of tested predictions and novel predictions of BBSR-

TFA is 0.61 and 0.44, respectively (Fig 3C). The median support rate

per regulon was 0.64 for the full set and 0.49 for novel predictions

(Fig 4 and Appendix Fig S4). We performed the same evaluation of

the GENIE3 and CLR networks, as well as a consensus method

(META) that rank combines the prediction of the three methods (as

suggested by Marbach et al, 2012). The performance of all methods

is shown in Fig 3C (analysis by regulon is shown in Fig 4 and

Appendix Fig S4). We observed that BBSR-TFA outperforms the

other methods with respect to the fraction of supported predictions,

when all predictions (left panel) or only novel interactions (right

panel) are considered, and all methods greatly benefited from using

TF activities. The Inferelator (both BBSR and BBSR-TFA version) is

the most conservative method in predicting novel interactions,

which is a result of including prior information in the model selec-

tion step. This also resulted in the lowest absolute and proportional

number of unsupported novel predictions. The lower number of

false positives is especially significant because it reduces the

number of follow-up experiments required to confirm the

predictions of the model.

General features of the inferred TRN

The inferred transcriptional network (Dataset EV4) contains 3,086

genes and predicts 4,516 interactions (2,258 novel interactions).

Previously known interactions are recalled at high proportion

(74% of the GS network is recovered and further supported by

the new data, auto-regulation was not considered), while the

global set of interactions is doubled (a direct result of selecting a

0.5 precision cutoff). Since transcriptional profiles instead of TFA

Figure 4. Experimental support from KO data to the models predicted by BBSR, Genie3, and CLR.
For each regulon with KO data, we assessed the proportion of predicted targets supported by the KO data. Results are presented for BBSR, Genie3 (G3), CLR, and a consensus
method (META) that rank combines the prediction of the three methods. Methods were used without and with TFA (TFA tag). The number in parentheses next to the regulon’s
name indicates the total number of differentially transcribed genes in the corresponding KO data. The number on top of each bar indicates the proportion of evaluated
interactions (recovered priors and novel interactions) supported by the KO data. This number is omitted if there was no significant (P-value ≥ 0.01) enrichment for
differentially transcribed genes in the predicted targets
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were relied upon for TFs with no previously known targets, the

average number of novel predictions was low for this group (4.7

per TF for TFs with no priors, compared to 22.5 per TF for TFs

with more than ten priors). Similarly, ranking positions of novel

interactions for TFs with less than six known targets were much

lower than those for TFs with more than ten targets

(Appendix Table S1).

From the model, we identify 11 global regulators with a mini-

mum of 100 predicted target genes. This group includes rA (major

r factor) and six alternative r factors (octagon symbols in Fig 5, see

Dataset EV5 for the corresponding Cytoscape file, which includes

both the full predicted network and the TF only network) distrib-

uted in three categories: (i) sporulation [rE (early mother cell),

rG (late forespore), and rK (late mother cell)]; (ii) other stress

responses [rB (general) and rM (cell envelope)]; and (iii) motility

(rD). The other global regulators are AbrB (transition to stationary

phase); CcpA (carbon catabolite control); CodY (nitrogen and

carbon metabolism); and Spo0A (sporulation).

Figure 5. Modular organization of the inferred TF network.
Cytoscape view of the modular architecture of the inferred network, restricted to r factors (octagons) and other transcription factors (circles). The size of each node
reflects the total number of predicted targets. Modules are labeled based on the functional annotation of their members. Green edges are known interactions; blue edges are
novel interactions. Pie chart within each node indicates the proportion of known members (i.e. present in the GS network, green) and novel members (blue) for
each regulon. The corresponding Cytoscape file is provided in Dataset EV5.
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To evaluate the degree of recall, we focused on 82 TFs with ≥ 5

target genes in the prior network. Although the recovery rate was

above 0.5 for most TFs, there were nine TFs with lower recovery

(ExuR, GerE, GerR, SpoIIID, SpoVT, TnrA, YvrHb, rA, rX). Seven of

these TFs have regulons that are either entirely comprised within or

significantly overlapping with larger regulons (ExuR, GerE, GerR,

SpoIIID, and SpoVT are targets of the sporulation r factors rE, rG,

or rK and participate in FFL network motifs, while the rX regulon

overlaps with that of rM, and the YvrHb regulon overlaps with the

rD and rX regulons). The difficulty of predicting FFL motifs had

been noted in previous network inference approaches (Marbach

et al, 2012). Although this logic does not apply to TnrA, a regulator

of nitrogen metabolism (Sonenshein, 2007), our dataset did not

include experiments performed under conditions of nitrogen limita-

tion. Recall of targets of the major sigma factor, rA, was also < 0.5,

but this is a special case, considering that the number of genes

regulated by rA alone is likely to be quite small. In addition, genes

with a coefficient of variation lower than 0.05 in either dataset were

removed from the network inference procedure (see Materials and

Methods).

Experimental support for prediction of novel regulatory
interactions in the inferred TRN

The KO data (described above), the presence of putative binding

sites for TFs in target promoters, and external validation data

(primarily ChIP-seq and transcriptional profiling data published

after compilation of the GS) were used to assess the experimental

support for the regulons of alternative r factors and other global

regulators (summarized in Table 1, full results in Dataset EV6).

External validation data include experimental results for AbrB,

CcpA, CodY, PhoP, Spx, TnrA, WalR, and Zur (Chumsakul et al,

2011; Marciniak et al, 2012; Rochat et al, 2012; Belitsky &

Sonenshein, 2013; Salzberg et al, 2013, 2015; Brinsmade et al,

2014; Mirouze et al, 2015; Prestel et al, 2015). The proportion of

recovered target operons with KO support is on average 0.83 for all

r factors and 0.69 for the other TFs. We chose to count operons

(i.e., transcription units), because of biological relevance, but

results with gene counts do not differ significantly (compare Fig 4

to Table 1), except for long operons such as the 30 gene fla-che

flagellum/chemotaxis operon. Overall, we found experimental

support for 1,289 TF–gene interactions (out of 1,841 tested) in tran-

scriptional profiling data with KO strains, including 391 (out of 635)

novel interactions. By sequence analysis, we also identified putative

binding sites in 71% of the operons predicted as novel targets (rB,

rD, rE, rG, rH, rK, rW, CcpA, and CodY regulons; Appendix Fig

S5). We also included the predictions from Eichenberger et al

(2004) and Nicolas et al (2012) in the analysis of r factor binding

sites, Marciniak et al (2012) for cre sites (CcpA binding), and

Mirouze et al (2015) and Leyn et al (2013) for TnrA binding sites

(Dataset EV6). In total, there were 754 interactions (out of 1,258

tested) supported by both KO data and sequence analysis. Lastly,

due to the presence of putative TF binding sites matching known

consensus binding sequences, we obtained supporting evidence for

58 interactions in the CymR, Fur, LexA IolR, and Zur regulons.

Because not every interaction in the GS was recalled in our

model, we checked whether the target genes in these interactions

were DT in the corresponding KO experiment. The global rate of

differential transcription for these missing interactions (i.e. those

present in the GS network but absent in our model) was 0.38,

suggesting that at least some of the interactions in the GS may be

either inaccurate or strictly dependent on strain background and/or

specific experimental conditions. In any event, this number is signif-

icantly lower than the support rate for the full predicted network

(0.7), the set of interactions recovered from the GS (0.74), or the set

of novel interactions (0.62).

We also analyzed the top 500 novel predicted interactions in the

final combined network (ranked by the associated confidence score,

Dataset EV7). The top 500 novel predictions include 483 target

genes and 91 TFs. Forty-one of these interactions have been vali-

dated by external sources since compilation of the GS, and four have

been validated in the current study using GFP fusions. Seventy-six

of the remaining interactions can also be validated on the grounds

that the genes involved belong to operons that include previously

known targets. This applies to many short genes that were added to

the genome after re-annotation of the B. subtilis 168 sequence

(Barbe et al, 2009). These genes were absent from microarrays

generated from the original genome annotation (Kunst et al, 1997)

and would have been missed in transcriptional profiling experi-

ments conducted prior to the year 2010. Considering the remaining

378 interactions, transcriptional profiling data were available (from

this and previous studies) for 210 interactions. We found that 153

out of these 210 interactions (i.e. 73%) were experimentally

supported by transcriptional profiling data (P-value < 0.01 and/or

external validation). In parallel, we performed a search and/or

collected information from previous studies for the presence of puta-

tive binding sites for TFs involved in 193 putative interactions. A

sequence motif compatible with a previously reported consensus

binding site was identified in the corresponding promoter sequences

for 136 out of these 193 interactions (70%), thus providing

additional evidence for these predictions. In total, there were 144

interactions for which both KO and motif data were available. Out

of these 144 putative interactions, 120 (83%) were supported by

both (in addition to the 122 predictions that we considered already

validated by external sources). These findings suggest high predic-

tion accuracy for the top 500 predictions (when ranked by

confidence score).

Architecture of the inferred TRN

We clustered the 215 TFs in our model to explore the topology

of the inferred TRN. Seven of thirteen modules (defined as clus-

ters with ≥ 4 TFs) were enriched in specific processes (Fig 5,

Dataset EV5 for the Cytoscape file). From top to bottom, and left

to right, in Fig 5: (i) Cell envelope stress response: with four r
factors (rM, rW, rX, and YvrI), three TFs involved in the

maintenance of the integrity of the cell wall and plasma

membrane (FatR, WalR, and YvrHb) and two TFs (CymR and

YtlI) involved in sulfur metabolism (however, the predicted

interaction between rM and CymR is not supported by the sigM

KO data). (ii) Carbon metabolism: with CcpA, the global regula-

tor of carbon catabolite control and rL. (iii) Cellular respiration:

with ResD as main TF, and ArfM and Fnr as regulators of

anaerobic genes. (iv) General stress response: with rB, regulators

of the oxidative stress response (Spx and PerR) and metal home-

ostasis (PerR, Fur, and MntR). (v) Prophage: with Xre and Xpf
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regulating expression of genes in the PBSX prophage and SknR

in the skin element. (vi) Transition from exponential growth to

stationary phase: This cluster represents the core of the TF

network, because it is connected to most of the other modules.

It contains TFs directly involved in the regulation of the transi-

tion phase (AbrB and ScoC) and many TFs required for various

cell differentiation processes, such as biofilm formation (SinR

and SlrR), cannibalism (SdpR), and competence (ComK); it also

includes TFs involved in nitrogen metabolism (TnrA and GlnR).

(vii) Sporulation: This module is composed of three sub-

networks: (i) pre-divisional cell (control of gene expression prior

to asymmetric division of the sporulating cell), this sub-network

is organized around Spo0A and rH (both of which connected to

the transition module via AbrB), and it also contains the motility

r factor rD (i.e. cell motility is turned off in sporulating cells);

(ii) forespore, with rF and rG, includes an intriguing novel

connection between rF and codY (considering that CodY is a

repressor of several biosynthetic processes, its compartmentalized

expression during sporulation could contribute to shutting down

metabolic activity in the forespore); and (iii) mother cell, with

rE and rK. The mother cell sub-network includes a previously

uncharacterized putative regulator, YsmB. It should be noted that

ysmB is located immediately downstream of gerE, which encodes

a well-known regulator of mother cell gene expression, and

the two genes (along with racE) constitute an operon (some of

the predicted targets of YsmB are differentially transcribed in the

Table 1. Support provided by transcriptional profiling experiments with KO strains.

TF Priorsa

Priors
predicted
as targetsa Recovery

Recovered
priors
supported

Accuracy
(priors)

Novel
predicted
targetsa

Novel
targets
supporteda

Accuracy
(novel
targets)

Predictions
(recovered +
novel targetsa)

Supported
(recovered +
novel targetsa)

Accuracy
(total)

rB 103 96 0.93 70 0.73 14 8 0.57 110 78 0.71

rD 29 27 0.93 24 0.89 20 6 0.3 47 30 0.64

rE 90 85 0.94 80 (82b) 0.94 (0.98b) 61 52 (53b) 0.85 (0.87b) 146 132 (133b) 0.90 (0.91b)

rF 39 33 0.85 32 0.97 25 21 0.84 58 53 0.91

rG 64 58 0.91 53 (58c) 0.91 (1.0c) 69 55 (67c) 0.8 (0.97c) 127 108 (125c) 0.85 (0.98c)

rH 22 18 0.82 13 0.72 31 19 0.61 49 32 0.65

rK 58 54 0.93 47 (53d) 0.87 (0.98d) 50 31 (47d) 0.62 (0.94d) 104 78 (100d) 0.75 (0.96d)

rL 6 6 1.0 4 0.67 0 0 NA 6 4 0.67

rM 31 26 0.84 19 0.73 48 2 0.04 74 21 0.28

rW 33 28 0.85 23 0.82 1 1 1.0 29 24 0.83

AbrB-repre 101 77 0.76 54 0.7 26 17 0.65 103 71 0.69

CcpA-reprf 72 51 0.7 38 0.75 20 9 0.45 71 47 0.66

CodY-repr 37 30 0.81 14 (26g) 0.47 (0.87g) 17 8 (12g) 0.47 (0.71g) 47 22 (38g) 0.47 (0.81g)

ComK-activ 16 12 0.75 12 1.0 7 6 0.86 19 18 0.95

PhoP-activ 18 11 0.61 3 (7h) 0.3 (0.64h) 0 NA NA 11 3 (7h) 0.3 (0.64h)

ScoC-repr 10 6 0.60 3 0.5 9 2 0.2 15 5 0.33

SinR-repr 13 4 0.31 3 0.75 0 NA NA 4 3 0.75

Spo0A-activ 24 14 0.58 8 0.57 28 10 0.36 42 18 0.43

Spo0A-repr 21 14 0.67 6 0.43 24 4 0.17 38 10 0.26

Spxi 11 10 0.91 5 0.5 17 7 0.41 27 12 0.44

TnrA-activj 12 7 0.58 7 1.0 0 NA NA 7 7 1.0

TnrA-reprj 11 4 0.36 4 1.0 8 0 0 12 4 0.33

WalRk 8 7 0.88 5 0.71 7 0 0 14 5 0.36

Zurl 4 4 1.0 4 1.0 3 1 0.33 7 4 0.57

This is a summary of the data presented in Dataset EV6 (Analysis by Regulon). Operons are considered to be differentially transcribed when at least half of the
genes in the operon have a P-value ≤ 0.01 in transcriptional profiling experiments (WT versus KO).
aNumbers refer to operons (i.e. transcription units, not individual genes).
bIncludes operons supported for SpoIIID dependency (rE and SpoIIID form a FFL).
cIncludes operons supported for SpoVT dependency (rG and SpoVT form a FFL).
dIncludes operons supported for GerE dependency (rK and GerE form a FFL).
eFor AbrB dependency, we consider differential transcription in a spo0A gene deletion strain versus a wild-type strain.
fBased on data from Marciniak et al (2012).
gBased on data from Belitsky and Sonenshein (2013) and Brinsmade et al (2014).
hBased on data from Salzberg et al (2015).
iBased on data from Rochat et al (2012).
jBased on data from Mirouze et al (2015).
kBased on data from Salzberg et al (2013).
lBased on data from Prestel et al (2015).
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gerE KO experiment, but it is unclear whether these genes are

regulated by GerE, YsmB, or both (see Dataset EV6, rK regulon).

There were six clusters that we did not annotate due to lack of

functional enrichment. These clusters are composed primarily of

novel regulatory interactions that have not been assessed experi-

mentally. Functionally, many of the genes found in these clus-

ters are annotated as unknown, providing resistance to toxic

compounds/ antibiotics or involved in carbon metabolism.

The inferred TRN provides novel functional insights even for
well-characterized pathways

We calculated how many genes involved in defined cellular

processes were paired with TFs in the prior and inferred networks

(Appendix Table S2). Many genes involved in extensively studied

processes that were missing in the prior network (e.g. about a

quarter of the genes annotated as “sporulation”, “stress response,”

and “exponential and early post-exponential lifestyles”) have now

been linked to specific regulators in the inferred TRN. The “expo-

nential and early post-exponential lifestyles” category is composed

of three very well-studied processes: “motility and chemotaxis”,

“biofilm formation,” and “competence”. Specifically, our model

increases the proportion of genes with at least one candidate TF in

all categories (from a median proportion by category of 0.51 in the

prior network to 0.72 in the inferred network; Appendix Table S2).

In the inferred TRN, sporulation (528 genes) is the category with

the highest proportion of regulatory hypotheses. Our TRN model

can serve as a guide for the analysis of many uncharacterized

genes, because 521 genes of unknown function (out of 872) are

now paired with TFs. As an illustration, we discuss below the iden-

tification of new targets of rK, while in the appendix, we provide

information on new targets of ComK (Appendix Fig S6) and CodY

(Appendix Fig S7).

Sporulation (rK regulon)
Most predicted targets of sporulation r factors were experimentally

supported in transcriptional profiling experiments with correspond-

ing KO strains (Table 1, Dataset EV6). The prediction accuracy for

sporulation r factors ranges from 0.75 (rK) to 0.91 (rF). In the

Appendix, we present fluorescence microscopy data to validate

several novel sporulation genes (yetF, ykzQ, and ykoST;

Appendix Fig S8). Because of our interest in spore coat assembly, we

analyzed novel targets of rK and GerE (McKenney et al, 2013).

These TFs form two FFL motifs, where rK is the first regulator, and

GerE is either an activator in a coherent FFL or a repressor in

an incoherent FFL (Eichenberger et al, 2004). In the sporulation

regulatory cascade, rK is the last r factor to be activated. Our model

predicts that 161 genes (104 operons) are controlled by rK, including

64 novel target genes (50 operons). One of these novel genes is ytdA

(Fig 6A). We confirmed that ytdA transcription is rK-dependent

(Fig 6B, left), a result consistent with the presence of a putative rK

binding site in the ytdA promoter (Fig 6B, right). We also showed

that YtdA-GFP displays the typical localization pattern of a spore

coat protein (Fig 6C). Lastly, YtdA-GFP is still produced in the

absence of GerE; albeit with a disrupted localization pattern, suggest-

ing that YtdA-GFP recruitment to the spore surface is dependent on

GerE-controlled sporulation genes.

Characterization of genes involved in spore
polysaccharide synthesis

The novel rK-dependent gene, ytdA, encodes a putative UTP-

glucose-1-phosphate uridylyltransferase with two paralogs, spsI and

yfnH, also under rK control (Eichenberger et al, 2004) (Fig 6A).The

last four genes in the sps (spore polysaccharide synthesis) operon

are necessary for synthesis of rhamnose (Plata et al, 2012), a

carbohydrate present on the B. subtilis spore surface (Wunschel

et al, 1995). To confirm that YtdA is a coat protein, we showed that

YtdA-GFP localization was disrupted in the absence of CotE, a

protein required for assembly of the outer coat (Fig 6C, top);

however, YtdA-GFP localization was not affected in a cotXYZ

mutant lacking the outermost coat layer, the crust (McKenney et al,

2010). SpsI-GFP had similar requirements (Fig 6C, bottom), as did

SpsK-CFP, albeit transiently (Fig 6D, single cap of fluorescence on

the mother cell-proximal side of the forespore). By contrast, SpsJ-

YFP and its paralog, YtcB-YFP, did not localize to the forespore

surface (Fig 6D). The third paralog, YfnH-YFP, exhibited a two-step

localization pattern (Fig 6E): first as a diffuse signal (hour 7) and,

by hour 8, as bright foci in the mother cell cytoplasm. Localization

of YfnH-YFP foci was reminiscent of SpsM, another previously

characterized spore polysaccharide synthesis protein (Abe et al,

2014). In dual labeling experiments, we showed that YfnH-YFP

and SpsM-CFP co-localized (Fig 6E, white arrows). In total, our

fluorescence microscopy data suggest that one pathway of spore

polysaccharide synthesis (involving SpsI, SpsK, and YtdA) occurs

directly on the spore coat, while another one may be going on in the

mother cell cytoplasm (with SpsM and YfnH).

Next, we generated a triple gene deletion mutant of spsI, ytdA,

and yfnH. Spore adhesion assays (Fig 6F and G) showed that triply

mutant spores more strongly adhere to glass tubes than wild-type

Figure 6. Functional analysis of spore polysaccharide synthesis genes.

A Genomic organization of the ytdA, yfnH, and spsI gene regions (ytdA is a paralog of yfnH and spsI). Putative gene functions are color-coded. b score for each prediction
is indicated in parenthesis.

B Left: Fluorescence microscopy images for the YtdA-GFP fusion in sporulating cells in the indicated mutant backgrounds. Except where indicated otherwise, images
were collected for sporulating cells at hour 6 after suspension in Sterlini–Mandelstam medium at 37°C. Right: Possible binding site for rK in the ytdA promoter. The
consensus binding sequence for rK is also indicated (M is A or C).

C Spore coat localization of YtdA-GFP and SpsI-GFP is dependent on cotE and independent of cotXYZ.
D Subcellular localization of YtcB-YFP, SpsJ-YFP, and SpsK-CFP during sporulation.
E Time course and dual labeling analysis of YfnH-YFP and SpsM-CFP during sporulation.
F Spore adhesion to glass: A spsI deletion mutant and a spsI ytdA double mutant display strong adhesion.
G Spore adhesion to hydrocarbons (hexadecane): A spsI deletion mutant and a spsI ytdA double mutant display strong adhesion. A spsI yfnH double mutant and a spsI

yfnH ytdA triple mutant display intermediate adhesion. Error bars represent the standard deviation for three independent experiments.
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spores (PY79), suggesting that the spore surface is more hydrophilic

in the presence of polysaccharides, thus favoring spore dispersal in

water (Abe et al, 2014). The main contributor to this property is

SpsI, because a spsI mutant showed the strongest adhesion pheno-

type. In summary, deletions of spore polysaccharide synthesis genes

(especially spsI) result in significant modifications of spore surface

properties.

Conclusions

Our inferred model of the B. subtilis TRN is a significant improve-

ment over the initial GS network and previous TRN models. Our

inferred TRN recalls a high proportion of known interactions and

simultaneously adds 2,258 putative interactions. Our methods were

tested in a variety of contexts (using real and synthetic data) and

shown to tolerate error in the GS (in excess of that expected here).

Our predictions are associated with error estimates that can be used

to guide biologists using the model. Importantly, we obtained further

experimental support for 391 (out of 635 evaluated) novel regulatory

edges (representing 17% of all novel interactions), demonstrating

the high accuracy (62%) of our predictions. The number of

B. subtilis genes devoid of regulatory hypotheses has thus been

significantly reduced (not just for genes of unknown function, but

also for genes in well-known pathways such as sporulation, other

stress responses, metabolism, and competence, Appendix Table S2).

The new network model exhibits more connections spanning

function and cell process boundaries, suggesting previously unsus-

pected links between cellular processes. Our model could, however,

be further improved by the addition of data for conditions that

have remained untested. In future network inference attempts, the

inclusion of complementary data types should be prioritized, espe-

cially genomewide binding assays (for poorly characterized TFs)

and proteomics (to characterize post-transcriptional regulatory

events). The most important conclusion from our work is that

incorporating TFA critically improves the predictive performance of

network inference approaches, while maintaining a high tolerance

to error in the methods used to generate these structure priors. Our

results further suggest that estimating TFA increases the ability to

distinguish true transcriptional interactions from random correla-

tions, in particular for TFs that are activated by post-translational

modifications and/or require co-factors. Moreover, using TFA

reduces the number of predictions with incorrect sign. A remaining

limitation is that we make fewer confident predictions for regulators

with few (or no) known targets, because TFA estimation is less

accurate. Overall, the strategy delineated here can be applied to

other bacteria and eukaryotic cells as long as a minimal set of priors

and large transcriptional datasets are available.

Materials and Methods

Media and growth conditions, strains, plasmids, and primers

A detailed description of culture media and growth conditions is

provided in the Appendix. All B. subtilis strains used in this study

were derivatives of the wild-type strain PY79 (Table EV1). Strains

expressing fusions to fluorescent proteins were generated as

previously described (McKenney et al, 2010).

Collection of transcriptomic datasets

RNA isolation, cDNA synthesis, labeling, and hybridization

to microarrays

RNA was extracted for a total of 403 samples in 38 separate experi-

mental designs (Table EV2), converted to cDNA, fluorescently

labeled, and hybridized to microarrays (PY79 dataset, GEO acces-

sion number GSE67023). These procedures have been described

before (Cozy et al, 2012). The previously published BSB1 dataset is

accessible at GEO with accession number GSE27219 (Nicolas et al,

2012).

Microarray design

Agilent’s eArray software was used to design 60-mer probes (fea-

tures) for all annotated protein-coding genes (three probes per gene)

from the B. subtilis 168 genome (Barbe et al, 2009). The “b.subt-

final-sense-3probes-july29” array was obtained from Agilent (GEO

accession number GPL15179).

Processing microarray data

For the PY79 dataset, we performed the following steps separately

for each channel: (i) take the median of all probes of the same gene;

(ii) log2-normalize the intensities; (iii) normalize between arrays

using the cyclic loess method; and (iv) average replicates of

common reference conditions.

Inferring the regulatory network

Gene filter

For network inference, we only considered genes with a coefficient

of variation > 0.05 in either dataset. For consistency, we also

removed genes that were unique to one of the two strains or

microarray platforms [the list of genes considered for network

inference is provided in Dataset EV1 (Excel sheet 2)].

Gold standard

A set of experimentally validated transcriptional interactions was

downloaded from SubtiWiki (Michna et al, 2014), while a list of

rA-controlled genes was obtained from the study by Helmann

(1995). Genes filtered out due to a lack of expression variance were

also removed from the GS. The final GS includes 3,040 interactions

involving 1,874 genes (Dataset EV2).

Estimating transcription factor activities

Let X be the matrix of gene expression values, where rows are genes

and columns represent experiments/samples. Let P be a matrix of

known regulatory relationships between transcription factors

(columns) and target genes (rows). The entries in the prior matrix

(P, derived directly from the GS set described above) are members

of the set {�1, 0, 1}. We set Pi,j to zero if there is no known regula-

tory interaction between transcription factor (TF) j and gene i, to

minus one if TF j is known to repress gene i, and to one if TF j is

known to activate gene i. Auto-regulatory interactions are always

set to zero in P. Estimation of TF activities is then based on the

following model (Liao et al, 2003; Fu et al, 2011):

Xi;j ¼
X

k2TFs
Pi;kAk;j
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where the expression of gene i in sample j can be written as the

weighted sum of connected TF activities A (with the key distinc-

tion/modification that we load activators and repressors into P

separately as 1 and �1, respectively). In matrix notation, this can

be written as X = PA, which we solve for the unknown TF activi-

ties A. This is an overdetermined system, but we can find Â which

minimizes jjP Â � Xjj2 using the pseudoinverse of P. Special treat-

ment is given to time series experiments, with the modified model:

Xi;tnþs
2
¼

X

k2TFs
Pi;kAk;tn

where the expression of gene i at time tn + s/2 is used to inform

the TF activities at time tn. Here, s is the time shift between TF

expression and target expression used when inferring regulatory

relationships (see next section). Here, we use a smaller time shift

of s/2, because changes in TF activities should be temporarily

closer to target gene expression changes. If there is no expression

measurement at time tn + s/2, we use linear interpolation to fit

the values. In cases where there are no known targets for a TF, we

cannot estimate its activity profile, and use the observed transcrip-

tion as a proxy instead.

Inferring regulatory relationships

The main input to the network inference procedure is the expression

data X, the estimated transcription factor (TF) activity Â, and the

known regulatory relationships encoded in the matrix P. The core

model is based on the assumption that the expression of a gene i at

condition j can be written as linear combination of the activities of

the TFs regulating it. Specifically, in the case of steady-state

measurements, we assume

Xi;j ¼
X

k2TFs
bi;kÂk;j (1.1)

For time series data, we explicitly model a time shift between the

target gene expression response and the TF activities:

Xi;tn ¼
X

k2TFs
bi;kÂk;tn�s (1.2)

Here, we are modeling the expression of gene i at time tn as the

sum of activities at time tn � s, where tn is the time of the nth

measurement in the time series and s = 15 min is the desired time

shift. In cases where we do not have measurements for Âk;tn�s, we

use linear interpolation to add missing data points.

The goal of our inference procedure is to find a sparse solution to

b, that is, a solution where most entries are zero. The left hand sides

of eqns (1.1) and (1.2) are concatenated as response, while the right

hand sides are concatenated as design variables. We use our previ-

ously described method Bayesian Best Subset Regression (BBSR)

(Greenfield et al, 2013) to solve for b. With BBSR, we compute all

possible regression models for a given gene corresponding to the

inclusion and exclusion of each potential predictor. For a given

target gene i, potential predictors are those TFs that have a known

regulatory effect on i, and the ten TFs with highest time-lagged CLR

(Greenfield et al, 2010; Madar et al, 2010). Prior knowledge is incor-

porated by using a modification of Zellner’s g-prior (Zellner, 1983)

to include subjective information on the regression parameters. A

g-prior equal to 1.1 was used for the combined network described in

this study. Sparsity of our solution is enforced by a model selection

step based on the Bayesian information criterion (BIC) (Schwarz,

1978).

Ranking interactions and bootstrapping

After model selection is carried out, the output is a matrix of

dynamical parameters b, where each entry corresponds to the

direction (i.e. activation or repression) and strength (i.e. magni-

tude) of a regulatory interaction. These parameters can be used

to predict the response of the system to new perturbations. In

order to rank predicted regulatory interactions by confidence, we

take into account the overall performance of the model for gene

i and the proportion of variance explained by each bi,k (for

details see Greenfield et al, 2013). To further improve inference

and become more robust against over-fitting and sampling

errors, we employ a bootstrapping strategy. We resample the

input conditions with replacement and run model selection on

the new data set. This procedure is repeated 100 times, and the

resulting lists of interactions are rank combined to a final ranked

list as in the study by Marbach et al (2010). The final confi-

dence score of an interaction is defined as the mean of the

normalized rank across all bootstraps, where at each bootstrap,

interactions are ranked by variance explained. The final network

consists of the N top ranked interactions, where N is the

maximum value so that at least 50% of the gold standard

interactions are recovered.

Combining the PY79 and BSB1 networks

We inferred the regulatory networks of PY79 and BSB1 indepen-

dently. Then, we rank combined all 200 networks (100 for each

strain), where the ranks of interactions are based on the confidence

calculated in the previous step. Similarly, we averaged the b scores

for each interaction. For any given downstream analysis, we define

a confidence threshold for selecting interactions to include in the

model (a threshold where precision is calibrated using AUPR curves

as illustrated in Fig 3A).

Other inference methods

In addition to the network inference described above, we built

networks using CLR (Faith et al, 2007) and Genie3 (Huynh-Thu

et al, 2010).

Network exploration and validation experiments

Network visualization

The combined network was visualized using Cytoscape v. 2.8

(Smoot et al, 2011).

Computational search for DNA sequence motifs

The MEME suite (Bailey et al, 2009) was used for identifying DNA

sequence motifs characteristic of binding by individual TFs. We

used the DNA sequence up to 200 bp upstream of the translational

start site for each operon predicted as target.

Differential gene expression analysis

We compared gene expression profiles of wild-type (WT) and the

respective mutant strains (KO) using Bayesian t-tests with the
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Cyber-T tool (Baldi & Long, 2001). We followed the authors’ recom-

mendation to keep the number of replicates plus the confidence

parameter equal to ten. Genes with P-values equal or smaller than

0.01 were considered differentially transcribed (DT).

Fluorescence microscopy

Microscopy experiments were performed as previously described

(McKenney et al, 2010).

Glass tube adhesion assays

The procedure has been described in the study by Abe et al (2014).

Spore adhesion to hydrocarbons assay

The hydrophobicity of the spores was tested as described by

Faille et al (2010) with the following modifications. Purified

spores are re-suspended in PBS to a final OD600 of 0.4–0.6. Three

milliliters of each sample are set out for three separate exposure

experiments. Five hundred microliters of hexadecane are added to

each sample, and they are vortexed gently at the different

hexadecane exposure times of 30, 60 and 90 s. The samples are

then left to settle for 30 min, allowing for hydrophobic spores to

travel to the hexadecane layer. The OD600 is then measured for

the aqueous phase of each sample. Percent hydrophilicity is

calculated using: (OD600 at exposure time/OD600 initial) × 100.

Data availability

The new gene transcription data have been deposited in GEO, acces-

sion number GSE67023.

Software availability

The Inferelator software is available at http://bonneaulab.bio.nyu.

edu/networks.html.

Expanded View for this article is available online.
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