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Low levels of plasma high-density lipoprotein (HDL) cholesterol are asso-

ciated with an increased risk of heart failure, regardless of the presence or

absence of coronary artery disease. However, the direct effects of HDL on

failing myocardium have not been fully elucidated. We found that HDL

treatment resulted in improved cell viability in H9c2 cardiomyocytes under

oxidative stress. This cardioprotective effect of HDL was regulated via the

phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin

(mTOR) pathway. mTOR signaling promotes cell survival through the

inactivation of the BCL2-associated agonist of cell death via phosphoryla-

tion of ribosomal protein S6 kinase. Modulation of cardiac PI3K/mTOR

signaling by HDL could represent a novel therapeutic strategy for heart

failure.

Heart failure is a worldwide public health problem, and

its prevention and treatment should be of high priority

to our society [1,2]. According to the American Heart

Association, there are around 550 000 new patients with

heart failure each year [1]. The inverse relationship

between circulating high-density lipoprotein (HDL)

cholesterol level and incidence of cardiovascular disease

has been demonstrated in a number of clinical trials

[3–6]. It has been also demonstrated that lower plasma

HDL levels are associated with increased risk of heart

failure [7–9]. Efflux of cholesterol from macrophages

and its return to the liver, known as reverse cholesterol

transport, is one of the most important mechanisms

by which HDL suppresses the progression of atheroscle-

rosis [10,11]. Additionally, HDL is well known to

have anti-inflammatory, antioxidative, and antiapoptotic

effects in the cardiovascular system [12]. Interestingly,

Frias et al. and others have reported that sphingosine-

1-phosphate (S1P), a component of HDL particles,

protects cardiomyocytes against myocardial ischemia/

reperfusion injury [13–15]. However, beyond its anti-

ischemic and antiatherogenic properties, the direct effects

of HDL on heart failure have not been fully elucidated.

The serine threonine protein kinase mammalian tar-

get of rapamycin (mTOR) is a critical regulator of

protein synthesis and controls cell survival, growth,

and proliferation [16]. mTOR belongs to phos-

phatidylinositol 3-kinase (PI3K)-related kinase family

and interacts with a large number of proteins to form

two different complexes named mTOR complex 1

(mTORC1) and 2 (mTORC2) [17]. These complexes

modulate many major cellular functions and are
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associated with several pathological conditions, includ-

ing cancer, obesity, type 2 diabetes, and neurodegener-

ation [17,18]. In this study, we therefore sought to

determine whether HDL exerts cardioprotective effects

on cardiomyocytes under oxidative stress via the

mTOR signaling pathway.

Materials and methods

Cell culture

Rat cardiomyoblast cells (H9c2) were purchased from the Euro-

pean Collection of Authenticated Cell Cultures (ECACC) and

maintained in Dulbecco’s modified Eagle’s medium (DMEM;

Wako, Tokyo, Japan) supplemented with 10% fetal bovine

serum and 100 U�mL�1 penicillin/streptomycin (both from

Sigma-Aldrich, St. Louis, MO, USA) at 37 °C and 5% CO2. For

all experiments, cells were serum-starved overnight. LY294002

(Cell Signaling Technology, Danvers, MA, USA) and rapamycin

(Wako) were added 1 h before the treatment of HDL.

HDL preparation

Human HDL used in this study was purchased from EMD

Millipore (Temecula, CA, USA). According to the manu-

facturer’s information, HDL was isolated using KBr den-

sity gradient ultracentrifugation technique, and the purity

of more than 95% was confirmed by SDS/PAGE.

Western blotting

Western blot analysis was performed as previously reported

[19]. Briefly, cells were washed with cold phosphate-buf-

fered saline, and the proteins were extracted with ice-cold

lysis buffer (20 mM 4-(2-hydroxyethyl)-1-piperazineethane-

sulfonic acid, pH 7.4, 150 mM NaCl, 1% sodium dodecyl

sulfate, and 1% nonyl phenoxypolyethoxylethanol (NP-40))

and separated by 8–15% sodium dodecyl sulfate/polyacry-

lamide gel electrophoresis. Gels were transferred to

polyvinylidene difluoride membranes (Immobilon-P; Milli-

pore, Billerica, MA, USA) and blocked in 5% (w/v) milk

in Tris-buffered saline with Tween 20. After blocking, the

membranes were incubated with primary antibodies over-

night at 4 °C and then with horseradish peroxidase-conju-

gated secondary antibodies for 1 h at room temperature.

The blots were enhanced with either LuminataTM Forte

Western HRP Substrate (Millipore, USA) or SuperSignal

West Pico chemiluminescence substrate (Thermo Scientific,

Waltham, MA, USA), and detected using an Amersham

Imager 600 (GE Healthcare, Tokyo, Japan). The antibodies

used in this study were as follows: phospho-Akt (Ser473),

Akt, phospho-p70 S6K (Thr389), p70 S6K (Cell Signaling

Technology), phospho-BAD (Ser136) (GeneTex, Irvine,

CA, USA), BAD (Abcam, Cambridge, MA, USA), and b-

actin (Sigma-Aldrich). Band quantification was performed

using IMAGEJ
� software (National Institutes of Health,

USA).

Cell viability assay

H9c2 cells were cultured into 96-well plates at 5 9 103 cells

per well. After serum starvation and pretreatment with 50,

100, or 200 lg�mL�1 HDL overnight with or without

50 lM LY294002 or 10 nM rapamycin, the cells were stimu-

lated with 100 lM H2O2 for 2 h. Cell viability was mea-

sured using a commercially available assay (Cell Counting

Kit-8; Dojindo, Kumamoto, Japan).

Fluorescent imaging of cell death

H9c2 cells were seeded on eight-well chamber slides (Nunc�

Lab-TEKTM Chamber SlideTM; Sigma-Aldrich) at 2 9 104

cells per well. Cells were serum-starved and treated with

100 lg�mL�1 HDL overnight with or without 10 nM rapa-

mycin, and then stimulated with 100 lM H2O2 for 2 h.

Dead cells were detected using propidium iodide (Takara,

Kusatsu, Japan) according to the manufacturer’s protocol.

The images were acquired with a fluorescence microscope

(BZ-X700 microscope; Keyence, Osaka, Japan).

Caspase 3 activity assay

H9c2 cells were seeded into 3 9 106 cells/150-mm culture

dishes and incubated in DMEM containing 10% fetal

bovine serum at 37 °C and 5% CO2. After 24 h of incuba-

tion, cells were subjected to serum starvation and treated

with 100 lg�mL�1 HDL overnight with or without 10 nM

rapamycin. After 2 h of stimulation with 100 lM H2O2,

cells were harvested, and caspase 3 activity was measured

using a commercially available assay (Caspase 3 Assay kit;

Abcam) according to the manufacturer’s protocol.

RNA interference

SR-BI-targeting and negative control small interfering RNA

(siRNA) were purchased from SIGMA Genosys (#1;

Rn_Scarb1_9396_s and Rn_Scarb1_9396_as, #2; Rn_Scar-

b1_9397_s and Rn_Scarb1_9397_as, negative control;

SIC-001_s and SIC-001_as) and Invitrogen (Yokohama,

Japan) respectively. The siRNA were transfected into H9c2

cells using Lipofectamine RNAiMAX reagent (Thermo

Fisher Scientific, Yokohama, Japan) according to the manu-

facturer’s protocol. After 48 h of transfection, the medium

was changed to the experimental medium.

Statistical analysis

Data among multiple groups were tested by one-way

ANOVA followed by Tukey’s multiple comparison test.
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Differences in means between two groups were evaluated

using an unpaired two-tailed Student’s t-test. Statistical sig-

nificance was determined as P values < 0.05 (*P < 0.05;

**P < 0.01). All statistical analyses were conducted using

GRAPHPAD PRISM software (La Jolla, CA, USA).

Results

HDL protects cardiomyocytes from oxidative

stress

There is a strong, well-established relationship between

the levels of myocardial reactive oxygen species [18],

cardiomyocyte damage due to oxidative stress, and left

ventricular contractile dysfunction, leading to heart

failure [20,21]. To assess the effects of HDL against

oxidative stress in cardiomyocytes, we incubated H9c2

cells with H2O2 after pretreatment with HDL, and

analyzed cell viability. HDL protected cells from

oxidative stress in a dose-dependent manner (Fig. 1).

HDL cardioprotective effects are mediated by the

PI3K/mTOR signaling pathway

Phosphatidylinositol 3-kinase/AKT signaling has been

demonstrated to protect cardiomyocytes from ische-

mia/reperfusion injury [22]. Therefore, we considered

the possibility that, under oxidative stress, HDL may

exert positive effects on the myocardium through the

PI3K/Akt pathway. Consistent with this hypothesis,

addition of the PI3K inhibitor LY294002 suppressed

the cell survival effects of HDL (Fig. 2A). We also

examined whether HDL activated the PI3K/Akt path-

way using western blot analysis. Treatment of HDL

significantly increased the phosphorylation of Akt in

H9c2 cells, whereas treatment with LY294002 blocked

HDL-induced phosphorylation of Akt (Fig. 2B). To

determine which pathway downstream of PI3K/Akt

HDL was activating, we tested the contribution of

mTOR signaling to the observed cytoprotective effects.

Treatment with rapamycin, a classical mTOR inhibi-

tor, significantly attenuated the cell survival effects of

HDL treatment (Fig. 3A). Propidium iodide staining

and caspase 3 activity assay revealed that HDL treat-

ment protected against H2O2-induced apoptosis, and

rapamycin attenuated the antiapoptotic effects of

HDL (Fig. 3B,C). These findings indicate that the

PI3K/mTOR signaling pathway plays an important

role in the cardioprotective effects of HDL during

oxidative stress.

HDL promotes the phosphorylation of S6 kinase

and the proapoptotic protein BAD via the PI3K/

mTOR signaling pathway

To assess the effects of HDL treatment downstream

of mTOR signaling, we examined the phosphorylation

state of the ribosomal protein S6 kinase (S6K), one

of the most well-characterized targets of mTORC1,

by western blot analysis. HDL treatment led to

increased phosphorylation of S6K, and this was sup-

pressed by pretreatment with rapamycin (Fig. 4).

mTORC1 signaling promotes cell survival through the

inactivation of BCL2-associated agonist of cell death

(BAD), a proapoptotic BH3-only member of the Bcl-

2 family, via phosphorylation by S6K [23,24]. As

shown in Fig. 5, we also found that HDL treatment

led to increased phosphorylation of BAD, as well as

Akt and S6K, under H2O2 stimulation, and both

LY294002 and rapamycin reduced HDL-induced

phosphorylation of BAD. As previously reported, the

phosphorylation of Akt was upregulated to compen-

sate for oxidative stress [25]. Furthermore, HDL

treatment strongly augmented the phosphorylation of

Akt and S6K.

Discussion

In this study, we have demonstrated that HDL treat-

ment improves cardiomyocyte viability under oxidative
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Fig. 1. HDL protects cardiomyocytes from oxidative stress. H9c2

cells were serum-starved and incubated with 50, 100, or

200 lg�mL�1 HDL overnight and then stimulated with 100 lM

H2O2 for 2 h. Cell viability was assessed using a cell counting kit

(n = 5 in each group). *, P < 0.05 by one-way ANOVA followed by

Tukey’s multiple comparison test. All values are mean � SEM.
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stress and that the PI3K/mTOR signaling pathway

mediates these effects. We have also revealed that

S6K, a downstream effector kinase of mTOR signal-

ing, is involved in antiapoptotic signaling through the

maintenance of BAD phosphorylation, and HDL
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Fig. 2. The cardioprotective effects of HDL are mediated by the

PI3K signaling pathway. (A) After serum starvation and incubation

with 50, 100, or 200 lg�mL�1 HDL overnight, H9c2 cells were

stimulated with 100 lM H2O2 for 2 h. The PI3K inhibitor LY294002

was added 1 h before incubation with HDL. Cell viability was

assessed using a cell counting kit (n = 5 in each group).

*, P < 0.05, **, P < 0.01 by unpaired two-tailed Student’s t-test. All

values are mean � SEM. (B) Western blot analysis of total and

phospho-Akt in H9c2 cells. After overnight serum starvation, cells

were treated with 40 lg�mL�1 HDL for 15 or 30 min with or

without 50 lM LY294002, which was added 1 h before incubation

with HDL. The band intensity of total and phospho-Akt was

quantified and normalized to b-actin. Note that the higher exposure

for the P-Akt blot and the lower exposure for the total-Akt and

actin blots are presented for optimal contrast (n = 5 in each group).

*, P < 0.05 by one-way ANOVA followed by Tukey’s multiple

comparison test. All values are mean � SEM.
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Fig. 3. The cell survival effect of HDL depends on mTOR signaling.

(A) After serum starvation and incubation with 50, 100, or

200 lg�mL�1 HDL overnight, H9c2 cells were stimulated with

100 lM H2O2 for 2 h. To inhibit mTOR, 10 nM rapamycin was added

before incubation with HDL. Cell viability was assessed using a cell

counting kit (n = 5 in each group). **, P < 0.01 by unpaired two-

tailed Student’s t-test. All values are mean � SEM. (B) Propidium

iodide staining of H9c2 cells. Cells were cultured in serum-free

medium with or without 10 nM rapamycin, treated with 100 lg�mL�1

HDL overnight, and then stimulated with 100 lM H2O2 for 2 h. The

photographs were acquired with a fluorescence microscope. Images

are representative of three independent experiments. Scale

bars = 50 lm. (C) Caspase 3 activity of H9c2 cells under oxidative

stress. Cells were seeded into 3 9 106 cells/150-mm culture dishes.

After serum starvation, cells were treated with 100 lg�mL�1 HDL

overnight and stimulated with 100 lM H2O2 for 2 h. To inhibit mTOR,

10 nM rapamycin was added 1 h before incubation with HDL.

Caspase 3 activity was analyzed using caspase 3 assay kit (n = 3 in

each group). *, P < 0.05 by one-way ANOVA followed by Tukey’s

multiple comparison test. All values are mean � SEM.
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treatment, signaling through PI3K/mTOR, increased

the phosphorylation of both S6K and BAD under

oxidative stress (Fig. 6).

HDL is a complex particle containing a number of

multifunctional proteins and lipids, and can activate

intracellular signaling pathways in cardiomyocytes,

leading to cardioprotection [26,27]. We sought to

determine how HDL initially communicates with car-

diomyocytes, and investigated the interaction with

scavenger receptor type I (SR-BI), a receptor involved

in the uptake of cholesterol from HDL [28]. SR-BI is

mainly expressed in hepatocytes, ovary, adrenal

glands, and macrophages and also in cardiomyocytes

[29]. As the precise role of SR-BI is not fully under-

stood, particularly in cardiomyocytes, we conducted

several experiments to investigate whether the interac-

tion between SR-BI and either HDL particles or

apolipoprotein AI mediated cardioprotective effects.

We could not find any evidence to support the involve-

ment of SR-BI in the cardioprotective effects of HDL

(Figs S1–S3).
As mentioned above, S1P, a major constituent of

HDL, binds to its receptors on the surface of

myocardium, generating multiple downstream signals

related to prosurvival proteins such as extracellular

signal-regulated kinase 1/2, the transcription factor sig-

nal transducer and activator of transcription 3, and

PI3K/Akt [22,30]. For instance, in an in vivo transient

ligating left coronary artery model, HDL injection

reduced infarct size and necrotic cell death, and this

was mediated via S1P-dependent nitric oxide produc-

tion [14,31]. S1P causes the activation of S1P(2) and

S1P(3) receptors, leading to Akt phosphorylation. This

S1P-mediated Akt activation plays a significant role in

protecting cardiomyocytes from ischemia/reperfusion

damage in vivo [13]. These studies indicate that the

cardioprotection caused by HDL is partly due to S1P,

and it has become a promising target in the treatment

for ischemic heart disease. In the present study, S1P
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Fig. 4. HDL upregulates the phosphorylation of S6K, the

downstream kinase of mTOR. Western blot analysis of total and

phospho-S6K in H9c2 cells. After serum starvation, cells were

incubated with 40 lg�mL�1 HDL for 1 or 2 h with or without 20 nM

rapamycin. The images are representative of three independent

experiments. The band intensity of phospho-S6K was quantified

using IMAGEJ software and normalized to S6K. *, P < 0.05 by one-

way ANOVA followed by Tukey’s multiple comparison test. All

values are mean � SEM.
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Fig. 5. HDL treatment leads to the phosphorylation of S6K and

BAD via the PI3K/mTOR signaling pathway. Western blot analysis

of BAD, phospho-BAD, phospho-S6K, and phospho-Akt in H9c2

cells. After serum starvation, cells were incubated with

40 lg�mL�1 HDL for 2 h with or without 50 lM LY294002 or 20 nM

rapamycin, followed by 100 lM H2O2 stimulation for 1 h. The

images are representative of four independent experiments. The

band intensity of phospho-BAD was quantified using IMAGEJ

software and normalized to BAD. *, P < 0.05; **, P < 0.01 by one-

way ANOVA followed by Tukey’s multiple comparison test. All

values are mean � SEM.
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contained in HDL particles might act as the origin of

the signal transduction pathway (Fig. 6).

Recently, several studies have identified mTOR as

an important regulator of cardiac adaptation, as its

overexpression was protective in pressure-overloaded

mouse hearts [18,32], and a murine heart conditional

knockout caused cardiac dysfunction [33]. By generat-

ing a targeted myocardial deletion in raptor, a vital

component of mTORC1, Shende et al. reported that

mTORC1 activity was essential for the preservation of

cardiac function. The deletion deteriorated cardiac

function rapidly, resulting in dilated cardiomyopathy

and high mortality [34]. Similarly, they showed that

mTORC2 was involved in maintaining left ventricular

contractile function of pressure-overloaded mouse

hearts. Cardiac dysfunction caused by transverse aortic

constriction was more severe after ablation of rictor, a

specific component of mTORC2 [35]. Our work sug-

gests that, in terms of cardiac protection, HDL could

be an activator of mTOR signaling.

In the present study, we assessed the phosphoryla-

tion of S6K using the mTORC1 inhibitor rapamycin.

It has been reported that long-term incubation with

rapamycin can also inhibit mTORC2 [36], which

directly activates Akt by phosphorylation of its

hydrophobic motif, leading to cell survival [37]. Hence,

it is possible that the cardioprotective effects of HDL

are due to not only mTORC1 but also mTORC2 and

that both mTOR complexes contribute to cell survival

in the heart.

In conclusion, the present study demonstrates that

HDL protects cardiomyocytes from oxidative stress

and that this effect is mediated through the PI3K/

mTOR signaling pathway. This suggests that modula-

tion of cardiac mTOR signaling by HDL could repre-

sent a novel therapeutic strategy for heart failure.
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