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Abstract: FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis,
but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and
cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the
signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various
mechanisms involved in regulating FADD functions have been identified, essentially posttranslational
modifications and secretion. All these aspects have been thoroughly addressed in previous reviews.
However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported
either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in
cancer is a complex issue since both overexpression and downregulation have been reported, but the
mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications
also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this
review, we aim to provide detailed, updated information on alterations leading to changes in FADD
expression and function in cancer. The participation of FADD in various biological processes is
recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as
regulation of gene expression and control of metabolic pathways. Finally, we gather all the available
evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been
proposed as a potential biomarker with prognostic value.

Keywords: FADD; chromosomal alterations; mutations; polymorphisms; transcription
factors; epigenetic regulation; posttranslational modifications; gene expression; metabolism;
clinical implications

1. Regulation of FADD Gene Expression

1.1. Genetic and Chromosomal Alterations Affecting FADD

The FADD gene is located on chromosome 11q13.3 in humans, and consists of two exons separated
by a 2-kb intron and only one isoform. FADD is expressed in every adult and embryonic tissue in mice
and humans [1,2] (Figure 1).
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Figure 1. FADD expression in healthy human tissues, performed by RNA sequencing. (A) Data 
obtained from BioProject PRJEB4337 of samples from 95 individuals representing 27 different healthy 
tissues [3]. RPKM, Reads Per Kilobase Million. (B) Data obtained from GTEx Analysis Release V7 
(dbGaP Accession phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), 
calculated from a gene model with isoforms collapsed to a single gene and no other normalization 
steps applied. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 

FADD expression is altered in many cancer types. This is, however, a controversial issue, since 
both overexpression [4–10] and downregulation [11–15] have been observed, depending on the 
cancer type. According to The Human Protein Atlas, FADD protein levels are low in most normal 
tissues. In cancer, FADD is detected in all tumor types analyzed by RNA sequencing according to 
The Cancer Genome Atlas (TCGA), and FADD protein levels obtained by immunohistochemistry 
with two different antibodies reveal results that are consistent with RNA-seq and/or protein/gene 
characterization data (Figure 2). A variety of FADD protein levels can be observed across the different 
tumor types; the mechanisms responsible for altered expression are, however, not always elucidated. 

Figure 1. FADD expression in healthy human tissues, performed by RNA sequencing. (A) Data
obtained from BioProject PRJEB4337 of samples from 95 individuals representing 27 different healthy
tissues [3]. RPKM, Reads Per Kilobase Million. (B) Data obtained from GTEx Analysis Release V7
(dbGaP Accession phs000424.v7.p2). Expression values are shown in transcripts per million (TPM),
calculated from a gene model with isoforms collapsed to a single gene and no other normalization
steps applied. Box plots are shown as median and 25th and 75th percentiles; points are displayed as
outliers if they are above or below 1.5 times the interquartile range.

FADD expression is altered in many cancer types. This is, however, a controversial issue, since
both overexpression [4–10] and downregulation [11–15] have been observed, depending on the cancer
type. According to The Human Protein Atlas, FADD protein levels are low in most normal tissues.
In cancer, FADD is detected in all tumor types analyzed by RNA sequencing according to The Cancer
Genome Atlas (TCGA), and FADD protein levels obtained by immunohistochemistry with two different
antibodies reveal results that are consistent with RNA-seq and/or protein/gene characterization data
(Figure 2). A variety of FADD protein levels can be observed across the different tumor types;
the mechanisms responsible for altered expression are, however, not always elucidated.
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Figure 2. FADD expression in cancer. (A) RNA-sequencing data from The Cancer Genome Atlas 
(TCGA) project of Genomic Data Commons (GDC). Seventeen cancer types representing 21 cancer 
subtypes with a corresponding major cancer type in The Human Pathology Atlas were included to 
allow for comparisons with the protein staining data from The Human Protein Atlas. The FPKMs 
(number fragments per kilobase of exon per million reads) were used for quantification of expression 
with a detection threshold of 1 FPKM. (B,C) FADD protein levels from The Human Protein Atlas. For 
each cancer, color-coded bars indicate the percentage of patients (maximum: 12) with high and 
medium protein expression level. Low or not detected protein expression results in a white bar. (B) 
Results obtained using HPA001464 antibody. Cases of colorectal, breast, ovarian, urothelial, gastric, 
pancreatic, and liver cancers, and melanomas showed weak to moderate cytoplasmic positivity. The 
remaining cancers were negative. (C) Results obtained using CAB010209 antibody. The majority of 

Figure 2. FADD expression in cancer. (A) RNA-sequencing data from The Cancer Genome Atlas
(TCGA) project of Genomic Data Commons (GDC). Seventeen cancer types representing 21 cancer
subtypes with a corresponding major cancer type in The Human Pathology Atlas were included to allow
for comparisons with the protein staining data from The Human Protein Atlas. The FPKMs (number
fragments per kilobase of exon per million reads) were used for quantification of expression with a
detection threshold of 1 FPKM. (B,C) FADD protein levels from The Human Protein Atlas. For each
cancer, color-coded bars indicate the percentage of patients (maximum: 12) with high and medium
protein expression level. Low or not detected protein expression results in a white bar. (B) Results
obtained using HPA001464 antibody. Cases of colorectal, breast, ovarian, urothelial, gastric, pancreatic,
and liver cancers, and melanomas showed weak to moderate cytoplasmic positivity. The remaining
cancers were negative. (C) Results obtained using CAB010209 antibody. The majority of cancer cells
showed weak to moderate cytoplasmic positivity. Nucleolar staining was observed in several cases.
A few breast cancers were strongly stained. (D) Selection of five standard cancer tissue samples
representative of the overall staining pattern. Scale bar: 50 µm.
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A major event leading to overexpression is DNA amplification. Chromosome 11q13.3 is a
1.7 Mb-region that contains 12 other genes apart from FADD [7]. Amplification of this region has been
frequently found in human cancers and is associated with poor prognosis. Among the candidate genes
within the region, FADD has attracted interest since it was described as the only gene in the minimum
region of overlap within the amplification in a series of squamous cell carcinomas of the head and neck
(HNSCC) [16]. Furthermore, this group and others have demonstrated the association between FADD
amplification and high FADD levels with poor overall survival and disease-free survival, especially if
both events occur together [6,17,18]. This supports the notion that FADD is a driver of the tumorigenic
effects of the 11q13.3 amplification. Based on the results from the recent TCGA PanCancer Atlas
Studies (https://www.cbioportal.org/results/cancerTypesSummary?case_set_id=all&gene_list=FADD&
cancer_study_list=5c8a7d55e4b046111fee2296), with 10,953 patients and 10,967 tumor samples from
various cancer types, DNA amplification is by far the most frequent event affecting FADD and is
most prominent in esophageal squamous cell carcinoma and HNSCC, with nearly 60% and 30% of
cases harboring the amplification, respectively [19–24]. Other cancer types showing FADD-containing
chromosomal amplification of 11q13 region are breast cancer [25–27], bladder cancer [28–31], lung
squamous cell carcinoma [32], and, less frequently, ovarian cancer, where the region commonly
involved is more distal [33–35].

Nevertheless, increased FADD levels do not always coexist with FADD gene amplification,
as reported in acute myelogenous leukemia [36] or lung adenocarcinoma [5,37], suggesting the
occurrence of additional mechanisms capable of modulating FADD levels in cancer.

Allelic losses or chromosomal deletions might account for FADD downregulation.
However, the results compiled in databases (cBioPortal) point to this being a very infrequent event
affecting FADD. For a long time, allelic losses within 11q13 have been observed in several cancer types,
but the analyses have focused on a more proximal region of the chromosome [38–42]. An association
between isolated familial somatotropinoma (IFS) and loss of heterozygosity (LOH) on a 2.21 Mb-region
of chromosome 11q13 has been well established, although the driver gene has not been identified [43].
Deletions and LOH encompassing FADD gene within 11q13 have been found in 25% (9/36) of cervical
cancer samples [44], although FADD was not identified as a driver of the potential LOH-derived
tumorigenic effects. In a cohort of 60 cases of non-small-cell lung cancer (NSCLC), LOH at chromosome
11q13.3 was found in around 20% of the samples [45]. Hemizygosity affecting FADD has also been
reported in ocular coloboma [46], a manifestation of otodental syndrome or, as more recently re-named,
the chromosome 11q13 deletion syndrome [47].

Data from TCGA PanCancer Atlas Studies show a correlation between FADD expression,
as determined by RNA sequencing, and copy number alterations (Figure 3).

Apart from cancer, allelic losses or gains involving FADD have been associated with developmental
disabilities or congenital anomalies (specifically, global developmental delay for ClinVar Variation
ID 153941; global developmental delay and abnormal heart morphology for ClinVar Variation ID
442080; abnormality of the ear, obsolete malformation of the heart and great vessels, short stature
and polydactyly for ClinVar Variation ID 441904; and micrognathia, syndactyly, intrauterine growth
retardation, ventricular septal defect and abnormal facial shape for ClinVar Variation ID 441903) [48].

Mutations in FADD might also account for altered expression. However, FADD mutations are
not frequent in cancer. According to the COSMIC v89 (Catalogue of Somatic Mutations in Cancer)
database, only 48 gene variants have been found in 56 out of 36187 (0.15%) tested tumor samples to
date. Of them, 11 are synonymous and 37 affect the protein sequence either by nucleotide substitution
or deletion. This concurs with the results gathered by the aforementioned TCGA PanCancer Atlas
Studies, which showed 0.4% of somatic mutations in FADD and a total number of 47 different
mutations, 41 of them affecting the protein sequence and six involving FADD in fusion proteins
(FADD mutations, TCGA PanCancer Atlas, cBioPortal) (Figure 4A). The IntOGen-mutations platform
(http://www.intogen.org/mutations/) identifies cancer drivers according to specific criteria [49]. To date,

https://www.cbioportal.org/results/cancerTypesSummary?case_set_id=all&gene_list=FADD&cancer_study_list=5c8a7d55e4b046111fee2296
https://www.cbioportal.org/results/cancerTypesSummary?case_set_id=all&gene_list=FADD&cancer_study_list=5c8a7d55e4b046111fee2296
http://www.intogen.org/mutations/
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it has only compiled 12 FADD mutations, two of them synonymous (Figure 4B), and none of them is
catalogued as a driver.
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Particular studies confirm that FADD mutation is indeed a rare event in cancer. In NSCLC, four 
missense mutations of FADD were detected in 80 samples (5%) [50], whereas only one FADD 
mutation was found in 98 colorectal adenocarcinomas (1%) and no FADD mutation was detected in 
116 advanced gastric adenocarcinomas [51]. Moreover, no mutations in FADD were found either in 
92 samples from diverse hematological malignancies [52], in 24 lung adenocarcinomas with high 
FADD expression [5], in 15 osteosarcoma tumor samples [53], or in murine (14 samples) [12] and 
human (22 samples) [13] T-cell lymphoblastic lymphoma (T-LBL). 
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according to the data from TCGA PanCancer Atlas Studies (Figure 5). 

Figure 4. FADD mutations. (A) Screenshot modified from cBioPortal. Mutation diagram circles are
colored with respect to the corresponding mutation types. In case of different mutation types at a
single position, the color of the circle is determined with respect to the most frequent mutation type.
(B) Screenshot image modified from IntOGen. The mutations needle plot shows the distribution of
the observed cancer mutations along the protein sequence and its possible mutational clusters and
hotspots. The needles’ height and head size represent mutational recurrence. Needles of different
categories that fall in the same amino acid residues are stacked.
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Particular studies confirm that FADD mutation is indeed a rare event in cancer. In NSCLC,
four missense mutations of FADD were detected in 80 samples (5%) [50], whereas only one FADD
mutation was found in 98 colorectal adenocarcinomas (1%) and no FADD mutation was detected in
116 advanced gastric adenocarcinomas [51]. Moreover, no mutations in FADD were found either in 92
samples from diverse hematological malignancies [52], in 24 lung adenocarcinomas with high FADD
expression [5], in 15 osteosarcoma tumor samples [53], or in murine (14 samples) [12] and human
(22 samples) [13] T-cell lymphoblastic lymphoma (T-LBL).

Contrary to the correlation observed between FADD expression and copy number alterations
(Figure 3), no specific relationship between FADD expression and mutations can be deduced according
to the data from TCGA PanCancer Atlas Studies (Figure 5).Cancers 2019, 11, 7 of 27 
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c.287-8C > G 

Likely benign 
(21 Jul 2017) 

11: 70052231 11: 70206125 471685 462293 

Figure 5. FADD expression in human cancer, indicating the occurrence of mutations. Screenshot image
modified from cBioPortal. RNA-sequencing data are obtained from TCGA PanCancer Atlas Studies in
10967 tumor samples from various origins.

Polymorphisms in FADD are numerous. To date, 816 variants have been described (Ensembl
Release 97). However, only seven of them have had clinical consequences attributed, and these are not
specifically related to any tumor type (Table 1) [54,55].

Among the 816 variants, the specific consequence of 135 of these variants is to affect the regulatory
region of FADD, although none of them is catalogued in ClinVar due to reported clinical significance.
Global minor allele frequency (MAF), defined in humans by the 1000 Genomes Project phase 3, is only
available for 17 of them. According to this information, only two variants can be considered as
common (MAF ≥ 5%), specifically rs12295430 (global MAF = 0.053) and rs41268205 (global MAF
= 0.051). Interestingly, no publication has reported any functional impact associated with their
occurrence. The remaining 15 are rare variants, with very low global MAF values (<0.001 for 13 of
them). Among the 816 variants, 63 are reported as affecting transcription factor binding sites; only one
of them (rs10898853) exhibits a minor allele frequency above rare variance (5%), specifically of 0.318.
In particular, this variant has been associated with susceptibility to papillary thyroid cancer [56].
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Table 1. ClinVar search results for FADD [gene] and “single gene” [properties].

Name Condition(s) Clinical Significance
(Last Reviewed)

GRCh37
Location

GRCh38
Location Variation ID Allele ID(s)

NM_003824.3(FADD):
c.31G > A

(p.Val11Met)

Infections,
recurrent, with
encephalopathy,

hepatic
dysfunction, and

cardiovascular
malformations

Uncertain significance
(26 February 2018) 11: 70049596 11: 70203490 579410 566162

NM_003824.3(FADD):
c.93G > T (p.Val31=)

Benign (30 October
2017) 11: 70049658 11: 70203552 471687 461658

NM_003824.3(FADD):
c.168G > T

(p.Glu56Asp)

Uncertain significance
(22 September 2017) 11: 70049733 11: 70203627 539062 526519

NM_003824.3(FADD):
c.287-8C > G

Likely benign (21 July
2017) 11: 70052231 11: 70206125 471685 462293

NM_003824.3(FADD):
c.315T > G

(p.Cys105Trp)

Pathogenic (10
December 2010) 11: 70052267 11: 70206161 30267 39223

NM_003824.3(FADD):
c.452C > T

(p.Thr151Ile)

Uncertain significance
(26 June 2018) 11: 70052404 11: 70206298 575179 564906

NM_003824.3(FADD):
c.475G > A

(p.Ala159Thr)

Uncertain significance
(3 July 2017) 11: 70052427 11: 70206321 471686 461663

Polymorphisms reported in murine Fadd [57] did not show evident functionality. Regarding
humans, the recent GTEx Project (GTEx Analysis Release V8, dbGaP Accession phs000424.v8.p2)
identifies variations in gene expression that are highly correlated with genetic variation (the so-called
eQTL, expression quantitative trait loci). To date, eighty-two functional polymorphisms predicted
to influence tissue-specific FADD expression have been identified. However, according to the
interpretation of the data, a limited number of variants are predicted to have an eQTL effect, specifically
those with m-values > 0.9 (e.g., the three dots on the right in Figure 6).

In summary, FADD expression is frequently altered in cancer and its increase is most often related
to DNA amplification. However, although allelic losses affecting FADD usually lead to decreased
expression, the latter is not always explained by copy number alteration, nor is it by mutations or
functional polymorphisms since these are infrequent.
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Figure 6. Example of FADD expression quantitative trait loci (eQTLs), or FADD genetic variants
exhibiting high correlation with changes in gene expression. Screenshot from GTEx Portal showing,
for variant ID chr11_70241122_G_GCTT_b38, SNP rs559543475, single-tissue eQTL normalized effect
size (NES) with 95% confidence interval (left) and Single-tissue eQTL p-value vs. Multi-tissue posterior
probability (right). The Y axis indicates the −log10 of p-value (obtained from a t-test that compares
observed beta from single-tissue eQTL analysis to a null beta of 0). The X axis indicates the m-value,
which indicates the posterior probability that an eQTL effect exists in each tissue tested in the cross-tissue
meta-analysis. The m-value ranges between 0 and 1 and is interpreted as follows: m-value < 0.1
indicates that the tissue is predicted to not have an eQTL effect; m-value > 0.9 indicates that the
tissue is predicted to have an eQTL effect; otherwise, the prediction of the existence of an eQTL effect
is ambiguous [58]. Normalized effect size (NES): the slope of the linear regression of normalized
expression data versus the three genotype categories using single-tissue eQTL analysis, representing
eQTL effect size. The normalized expression values are based on quantile normalization within each
tissue, followed by inverse quantile normalization for each gene across samples. Colors represent
distinct tissue categories.
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1.2. Transcription Factors Affecting FADD

The 5’ terminus of FADD gene was first studied by Kim and colleagues [59], who reported a
1-kb region containing consensus sequences for regulatory elements such as Lyf-1, a reverse copy
of the core element of the insulin enhancer (EI), AP-1, N-Myc and SP-1; a TATA-box was identified
620 bp upstream of the translation start site. Much more recently, the signals of DNase hypersensitivity
together with histone modification H3K4me3 have been used to predict promoter-like regions by
ENCODE 4 consortium. This method has been applied to 107 human cell types and 14 mouse cell
types with both DNase and H3K4me3 data generated by the ENCODE and Roadmap Epigenomic
consortia. Transcription factor binding sites within promoter-like regions have been proposed based on
of ChIP-seq data, generating peaks for 161 transcription factors in 91 cell types [60]. Regarding FADD,
these transcription factor binding sites have been identified in the promoter region (UCSC Genome
Browser); however, very few publications have so far reported the role of specific transcription factors
on regulating FADD expression. One of them demonstrates that HIF-1α binds to and represses the
FADD promoter [61]. Since HIF-1α is overexpressed in many cancers and has been associated with
tumor aggressiveness and poor prognosis [62], it could be speculated that FADD downregulation
would be involved. Another study [63] reports the interaction with and activation of FADD promoter
by BRCA1, suggesting that BRCA1 loss or inactivation in a tumor can cause reduced levels of FADD
that in turn desensitize cells to apoptosis. Hence, the authors propose FADD as a candidate biomarker
for BRCA1-associated breast cancer. In addition, the PAX2 and VAX2 transcription factors have been
reported to co-regulate fadd transcriptional activation in zebrafish [64]. As mentioned before, LOH
affecting FADD was reported in ocular coloboma [46]; since PAX2 mutations have been identified
as one of the most common causes of coloboma [65], it could be speculated that reduced FADD
expression—either due to LOH or to mutations in PAX2 causing regulation of transcription—would
play a role in coloboma.

1.3. Epigenetic Regulation of FADD Expression

Epigenetic regulation of gene expression is without a doubt a relevant mechanism. Changes in
promoter methylation, histone modification, or the action of microRNAs (miRNAs) have been reported
with variable frequency as regulatory processes affecting FADD levels.

1.3.1. Methylation of FADD Promoter Region

DNA methylation in cytosines within CpG islands of gene promoters is a prominent mechanism
of gene expression regulation, since hypermethylation is related to inactivation of transcription and the
opposite is true for hypomethylation [66,67]. Evidence for such mechanism affecting FADD expression
is very limited. To date, FADD reduction due to hypermethylation of its promoter has been reported in
myelodysplastic syndrome [68] and inflammatory processes like apical periodontitis [69]. Regarding
cancer, one study reported an association between significant hypermethylation of FADD promoter in
oral squamous cell carcinoma and reduced FADD expression [70,71]. Therefore, further studies on
whether FADD promoter hypermethylation is a frequent event leading to FADD reduction, particularly
in cancer, where resistance to apoptosis is a hallmark, would be of interest. If confirmed, FADD
promoter hypermethylation could be tested as a prognostic factor.

1.3.2. Histone Modification of FADD

Histones undergo reversible, dynamic and multiple modifications at their basic amino acids, such
as methylation, acetylation and phosphorylation. These modifications constitute the histone code,
which can be implicated in the regulation of gene expression among other functions. As they can change
the structure of chromatin, some epigenetic modifications are associated with active transcription,
such as acetylation, while others are related with repression of transcription [67,72]. During recent
years, interesting bioinformatics tools for prediction of histone modification and related function have
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been developed [73]. An in silico search for predicted histones marks affecting FADD using CHIP-seq
data deposited in ENCODE (SCREEN hg19) revealed 12 candidate cis-regulatory elements (ccREs)
located between the first and last transcription start sites of FADD plus 50kb upstream (Figure 7) [74,75].
In addition to the four core epigenomic marks used to generate the registry (representative DNase
hypersensitivity sites, H3K4me3, H3K27ac, and CTCF ChIP-seq signals) all available histone marks
and transcription factor ChIP-seq peaks are annotated, identified using ENCODE uniform processing
pipelines. Each of the 12 candidate elements for FADD shows significant signals for many different
histone marks (up to 31 in the candidate with the highest scores), but these data are not supported by
any experimental evidence in the literature. Moreover, scarce evidence of histone modifications directly
affecting FADD expression is available. It has been proposed that the inhibitor of growth 1 (ING1)
may contribute to regulate acetylation levels of different histones, thus promoting transcriptional
activation of components of the apoptotic pathway, such as FADD [76]. The authors propose that ING1
downregulation in glioblastoma would result in FADD suppression, leading to apoptosis resistance
in cancer cells upon treatment with histone deacetylase inhibitors (HDACi). The expression of Fadd
was found to be suppressed in murine leukemia expressing the aberrant RUNX1-EVI1 generated by
t(3;21) [77]. RUNX1-EVI1 recruits histone deacetylase, thus resulting in transcriptional dysregulation
of wild-type RUNX1-target genes. Fadd bears binding sites for RUNX1, so RUNX1-EVI1-driven Fadd
deacetylation is a plausible explanation for Fadd repression in these tumors. Interestingly, the authors
demonstrate the restoration of Fadd expression upon treatment with HDACi, proposing that such
inhibitors could be useful for leukemia patients expressing RUNX1-EVI1.Cancers 2019, 11, 11 of 27 
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1.3.3. microRNAs Controlling FADD

Gene silencing by microRNAs is another prominent mechanism of regulation, combining
translational repression and mRNA destabilization of target genes [78]. According to miRTarBase,
there are 20 miRNAs that putatively target murine Fadd. Of them, only mmu-miR-134-5p and
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mmu-miR-155-5p have been reported with strong evidence [79–81]. In humans, miRTarBase only
contains seven putative miRNAs targeting FADD. Again, only two of them have been proven with strong
evidence, hsa-miR-155-5p and hsa-miR-128-3p [82–84]. Thus, miR-155-5p is the only microRNA strongly
demonstrated to regulate FADD both in mice and humans. In mice, mmu-miR-155-5p is upregulated in
response to lipopolysaccharide and subsequent silencing of Fadd promotes an anti-apoptotic effect [80].
A similar effect has been observed in RAW264.7 cells, where mmu-miR-155-5p upregulation leads
to Fadd silencing and, in consequence, to reduced apoptosis [81]. In the human gastric epithelium
and mucosa, FADD silencing due to hsa-miR-155-5p overexpression induced upon Helicobacter pylori
infection promotes the activation of an inflammatory response [83]. In contrast, hsa-miR-155-5p is
downregulated in degenerative nucleus pulposus, leading to FADD increase, which promotes high
levels of apoptosis and eventually intervertebral disc degeneration [82]. Its alterations in cancer are
reviewed in [85]: miR-155 is upregulated in most hematological malignancies, such as B cell lymphomas,
acute myelomonocytic leukemia, and acute monocytic leukemia, as well as in solid tumors, such as
breast, colon, and lung cancers. However, a direct link between miR-155 overexpression and FADD
downregulation in those tumor samples has not been demonstrated. Interestingly, the level of miR-155
expression can be used to distinguish between germinal center B cell-like and activated B cell-like
subtypes of diffuse large B cell lymphoma, so its convenience for diagnosis has been suggested.

2. Posttranslational Modifications of FADD Protein

The discrepancy between genetic alterations affecting FADD and protein levels suggests that the
latter would be regulated by mechanisms affecting the stability of the protein, such as posttranslational
modifications (PTMs) [6]. For example, it was demonstrated that transcription was not altered
in samples from acute myelogenous leukemia exhibiting reduced FADD protein [36]. Previously,
the same authors had proposed in the adenomatous or adenocarcinomatous mouse thyroid gland a
non-proteasome mediated loss of FADD protein [15].

Different PTMs have been reported to affect the functions of FADD, but the most important
and well-studied is phosphorylation [86–88]. Several phosphorylation sites have been identified in
FADD [89–91], but the most relevant site conserved between mice and humans is serine 191 and serine
194, respectively [90]. The impact of FADD phosphorylation on apoptosis is controversial [5,90,92,93].
Our data indicate that the phosphorylation status of FADD does not affect apoptosis [13], but FADD
phosphorylation could affect apoptosis indirectly, as a consequence of protein availability in the
cell. It has been suggested that phosphorylated FADD normally resides in the nucleus and that
activation with Fas or TNFα/ActD reduces its phosphorylation and redistributes unphosphorylated
FADD to the cytoplasm, contributing to the efficient propagation of cell death signaling [94–97].
Phosphorylation in this serine has been reported to play a very important role in regulating cell growth
and proliferation [37,88,90,98,99]. Moreover, the deregulation of FADD phosphorylation at serine 194
has been identified as a relevant clinical issue in several types of hematological [13,100,101] and solid
cancers [5,7,37,88,90,98,99,102,103]. A molecular mechanism associating the increase in phosphorylated
FADD with tumorigenesis has been hinted at only in limited studies. In lung cancer, it has been
demonstrated that increased levels of nuclear phosphorylated FADD induce NF-κB, which is suggested
to induce the expression of cyclin D1 (CCND1) at the transcriptional level, ultimately resulting in cell
cycle deregulation [5]. Also in lung cancer, the induction of mitosis seems to depend on activation of
KRAS and CK1α phosphorylation of FADD during G2–M, where FADD interacted with G2–M cell-cycle
regulatory components PLK1, AURKA, and BUB1 [102]. In breast cancer, AK2 downregulation results in
reduced interaction of AK2-DUSP26 complex with FADD and, subsequently, increased phosphorylated
FADD levels in the nuclei of tumor cells, correlating with increased proliferation [98].

There is limited information regarding FADD regulation by PTMs other than phosphorylation,
but the available evidence indicates that ubiquitination regulates FADD stability and, consequently,
the ability of FADD to mediate apoptosis [104]. Interestingly, both modifications could be related.
Very recently, we proposed that FADD phosphorylation stabilizes the protein and that its degradation
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is mediated by the proteasome [13]. However, a direct link between FADD phosphorylation
status, FADD ubiquitination, and proteasome-mediated degradation has not been established so
far. It has been described that E3-ubiquitin ligase Makorin RING Finger Protein 1 (MKRN1) induces
K48-linked polyubiquitination of FADD and, therefore, its degradation by the proteasome [105].
However, it cannot be ruled out that other E3 ligases could also ubiquitinate FADD [104]. Eight
lysines are susceptible to ubiquitination in FADD (K24, K33, K35, K110, K120, K125, K149, and K153).
K6-linked polyubiquitination at residues K149 and K153 by C terminus HSC70-interacting protein
(CHIP) has been reported to prevent the formation of the death-inducing signaling complex (DISC)
and therefore to suppress the apoptosis mediated by Fas or DR4/DR5, although it does not affect
FADD degradation [106]. On the other hand, the linear ubiquitin chain assembly complex (LUBAC),
which is composed of HOIP, HOIL-1L, and SHARPIN subunits, specifically generates M1-linked linear
polyubiquitination of FADD and NEMO upon NF-κB activation, also suppressing cell death [107].
Recently, it has been demonstrated that FADD is ubiquitinated by speckle-type POZ protein (SPOP),
which causes proteasome-mediated degradation [108] and impairs the FADD-mediated activation of
NF-κB signaling [108,109]. SPOP has been reported to suppress tumorigenesis by inhibiting the NF-κB
pathway in certain tumor types [109,110], indicating that this SPOP-FADD-NF-κB axis might represent
a molecular mechanism underlying the role of FADD alteration in non-small-cell lung cancer [109].
In summary, E3-ubiquitin ligases constitute a potential therapeutic target with regards to FADD
availability and function in the tumor cell. The combined treatment with E3-ubiquitin ligase inhibitors
and agents able to activate extrinsic apoptosis such as TRAIL or TNFα might be beneficial for certain
tumor types.

3. The Roles of FADD and Their Participation in Cancer

As a bimodular protein, FADD is a well-known adapter for receptor-induced cell death. Through
homotypic interaction of its death domain (DD), FADD can be recruited to death receptors (DRs)
belonging to the family of tumor necrosis factor (TNF) receptors including TNF-R1, FAS (CD95/APO-1),
DR3, TRAIL (TNF-related apoptosis-inducing ligand)-R1 (DR4), and TRAIL-R2 (DR5), transmitting
apoptosis initiating signals by their specific death ligands [1,111–113]. The death-effector domain
(DED) of FADD recruits DED-only proteins (procaspase-8, procaspase-10, or c-FLIP) to form an active
DISC. Mediated both by proximity-induced dimerization and proteolytic cleavage [114], initiator
procaspases activate in the DISC and, once activated, caspase-8/caspase-10 initiate the caspase cascade,
directly through cleavage of procaspase-3 or indirectly via Bid cleavage, eventually inducing apoptosis.
Alternatively, under certain stimuli resulting in the blockade of apoptosis, such as the triggering of
viral defense mechanisms or under caspase inhibitory conditions, death receptors signaling may lead
to necroptosis, which occurs through a RIPK1-RIPK3-MLKL axis [115]. FADD acts as a negative
regulator of this process, as it adapts the recruitment of caspase-8/cFLIP to RIPK1/3, which leads to
cleavage of their kinase domain and subsequent inactivation [116,117]. The so-called ripoptosome
comprises RIPK1/FADD/caspase-8 and induces apoptosis in a ligand/receptor-independent manner as
it can be induced upon genotoxic stresses such as etoposide or removal/inhibition of the inhibitor of
apoptosis (IAP) protein family; recruitment of RIPK3 to the complex switches the ripoptosome towards
necroptosis [105,118]. In cancer, apoptosis impairment appears as a plausible consequence of FADD
reduction [87,119]. Moreover, as FADD can prevent necroptosis, FADD reduction in cancer would also
induce a switch from apoptotic signaling to necroptosis [117].

Additionally, FADD has been proposed to participate in cell cycle progression, T-cell proliferation,
survival, or genome surveillance in the nucleus [87,96,120,121]. Several studies have evidenced
defects in proliferation and cell cycle progression in FADD-deficient cells [87,101,122–124]. Although
these effects could be simply attributed to the enhancement of RIPK1-dependent cell death in the
absence of FADD, many studies using phosphorylation mutants highlight the relevance of FADD
phosphorylation in G2/M phase and its interaction with proteins that are important for cell cycle
progression [5,90,92,102,120,124–127]. Whether FADD participation in these functions is an indirect
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consequence of being sheltered from death receptors in the nucleus or an actively regulated role remains
unclear. FADD can recruit proteins that regulate the NF-κB and MAPK pathways, which promote
proliferation and cell cycle progression [5]. Our group has reported a reduction of FADD together with
reduced apoptosis in T-LBL samples, but the accumulation of phosphorylated FADD in the nuclei of
tumor cells [12,13]. Interestingly, we found that levels of phosphorylated FADD correlated with the
proliferation capacity of tumor cells, supporting previous evidence in different cancer types [5,102].

As reviewed in [86], FADD has also emerged as a component of various signalosomes apart from
the DISC and the necrosome, such as the FADDosome, the innateosome and the inflammasome. These
can be initiated by death receptors, Toll-like receptors (TLR) or pathogen-induced signaling, and they
can lead to pro-inflammatory signaling instead of cell death. The participation of FADD in signaling
complexes eventually leading to gene expression changes has long been reported, particularly in
relationship with innate immunity in mammals [128], Drosophila [129], or fish [130]. At the molecular
level, this pathway seems to involve NF-κB activation. This pleiotropic transcription factor is present
in almost all cell types and regulates the expression—either as an activator or as a repressor—of genes
involved in many biological processes such as inflammation, immunity, differentiation, cell growth,
and apoptosis. In consequence, aberrant or constitutive NF-κB activation impacts on various hallmarks
of cancer as proliferation, migration or apoptosis and it has been detected in many tumor types both
of hematological and solid nature [131]. Such hyperactivation of NF-κB signaling in cancer may be
achieved by chromosomal alterations directly affecting members of the NF-κB pathway, as amplification
of c-Rel on chromosome 2p14–15, chromosomal rearrangements or deletions affecting the NF-κB2
locus on chromosome 10q24, t(14;19)(q32;q13) translocation resulting in increased expression of the
transcriptional coactivator of p50 or p52 homodimers Bcl-3, and loss-of-function mutations in IkBα
(reviewed in [131]). However, since RelA, RelB and NF-kB1 alterations are rare in human cancer,
different mechanisms might provide the source for NF-κB hyperactivation. This is the case with the
tumor suppressor PTEN and RAS proto-oncogene, which are frequently mutated in cancer and whose
abnormalities may in turn aberrantly activate NF-κB. However, it is also the case with NF-κB activation
induced by death receptors or Toll-like receptors signaling. The formation of a “FADDosome” complex
upon TRAIL-R signaling that promotes NF-κB activation and pro-inflammatory cytokine/chemokine
production [132], operating both in nontransformed and transformed cells, has been demonstrated.
In such a complex, FADD is the necessary adapter between caspase-8 and RIPK1. The transduction is
critically dependent on caspase-8 in a protease-independent manner as a scaffold. Ubiquitin-modified
RIPK1 would recruit proteins directly involved in activating NF-κB signaling, leading to the expression
of inflammatory genes and eventually to the production of cytokines and chemokines. A similar
“FADDosome” complex is, according to the literature, likely to occur upon CD95 signaling [133]
and TLR signaling [134,135] in certain conditions. A frequent scenario in certain tumor types is the
occurrence of CASP-8 mutations that abolish the protease activity of the protein, rendering it unable to
promote apoptosis. However, as they can bind to FADD, they can promote NF-κB activation upon
appropriate death receptor or TLR stimuli [136,137]. This may act synergistically with the FADD
overexpression observed in certain cancers. Related to this, increased levels of phosphorylated FADD
have been linked to NF-κB hyperactivation in lung adenocarcinomas [5]. In this context, tumor
cells would not only benefit from apoptosis resistance, but would also trigger tumorigenic pathways
downstream NF-κB-mediated gene expression, such as inflammation or proliferation.

As discussed previously, the participation of FADD in the regulation of gene expression would
be indirect, as a member of cytoplasmic protein complexes involved in transducing signals. Some
authors have also proposed, however, that FADD may act in a more direct manner, as it is itself
a member of the transcription factor complexes in the nucleus. In one study, it was speculated
that FADD might be involved in regulating MyoD transcription [138]. The authors proposed that
FADD would regulate the binding of SRF and/or MEF2 transcription factors to a MyoD enhancer,
facilitating acetylation via recruitment of acetyltransferases such as CBP or p300, in turn activating
gene transcription. Nevertheless, since FADD does not exhibit any DNA-binding motif, it might bind
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other proteins to form a functional transcription factor complex; in particular, the NF-κB activator
NKAP has been proposed as a candidate to associate with FADD and regulate gene transcription
in thymocytes [139]. NKAP has been shown to associate with HDAC3 as a part of a DNA-binding
complex and, with CIR, as a part of the NOTCH co-repressor complex [140]. FADD association with
NKAP in the nucleus would stabilize the latter, therefore contributing to its role as a transcriptional
repressor able to hamper NOTCH-mediated transcriptional activation. High levels of NKAP have been
observed in most tumor types (https://www.proteinatlas.org/ENSG00000101882-NKAP/pathology),
and it has been described as an oncogene in hepatocellular carcinoma [141], glioma [142], and breast
cancer [143], even as an unfavorable prognostic indicator in the latter (https://www.proteinatlas.org/

ENSG00000101882-NKAP/pathology/tissue/breast+cancer). FADD downregulation in certain cancer
types—such as T-LBL—might result in the reduced stability of NKAP complexes in the nucleus,
contributing to NOTCH hyperactivation frequently found in T-cell lymphoblastic neoplasms [144].
However, there is no evidence for this association yet.

Besides its major role in cell death and the principal nonapoptotic functions described so far,
comparative proteomics approaches have recently provided evidence for FADD’s involvement in energy
metabolism [145–148]. In particular, the comparison of FADD-expressing with FADD-deficient mouse
embryonic fibroblasts showed an enriched cluster of changed proteins involved in lipid metabolism,
fatty acid metabolism, glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation [146,147].
The same authors proposed a mechanism whereby FADD-deficient thymocytes would exhibit reduced
glucose uptake due to the accumulation of PKC-α, which may result in transcriptional repression of the
glucose transporter gene Glut1 [145]. Finally, this group has demonstrated in vivo in a mouse model
that FADD is relevant to glucose and fat metabolism [148]. If FADD involvement in these functions is
confirmed in humans, it could be speculated that the alterations in FADD observed in tumor cells may
also impact on energy metabolism. The link between cancer and altered metabolism is well recognized,
as cancer cells often utilize aerobic glycolysis, the well-known Warburg effect, to meet the needs of
rapidly dividing neoplastic cells [149]. How FADD alterations would contribute to either metabolic
switch in cancer still needs to be addressed.

4. Clinical Implications of FADD Alterations in Cancer

Considering the various alterations that FADD has been reported to undergo in pathological
processes like cancer, many authors support the notion that the FADD level is a relevant factor to
consider for diagnosis, prognosis, or therapeutic strategies. According to the information collected by
The Human Protein Atlas, the FADD level is an unfavorable prognostic marker in lung, head and neck,
and cervical cancers, whereas it constitutes a favorable prognostic marker in thyroid cancer (Figure 8).
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In the literature, an association of FADD increase with poor clinical outcome has been described
in many solid tumors [4–10,18,109,150–152]. In contrast, a reduction of FADD has been reported
in fewer tumor types, among them hematological malignancies [11–15], but also in pathologies
different from cancer like dementia [153]. Altered levels of phosphorylated FADD have also been
reported, either a reduction [12,13,154–156] or an increase [5,7,37,98,100–102], but in all cases associated
with poor outcome. This apparent discrepancy can probably be explained by the fact that FADD
can play, as explained before, various roles depending on the cell type and molecular context.
For example, our group demonstrated that both murine [12] and human [13] T-LBL samples exhibiting
overall reduction of FADD and impaired apoptosis could be stratified according to their levels of
phosphorylated FADD. S191/194-P-FADD was identified as an unfavorable clinical factor in T-LBL,
suggesting that FADD phosphorylation status may serve as a new biomarker with prognostic value.
On the contrary, another group reported that phosphorylated FADD was not prognostic in laryngeal
carcinoma treated with radiotherapy [157], confirming that the predictive value of phosphorylated
FADD also depends on cellular type and context.

Regarding the improvement of therapy, some interesting pieces of evidence concerning FADD are
also available. For example, it has been reported that overexpressing FADD in colorectal cancer [158]
or malignant glioma [159,160] renders tumor cells more sensitive to apoptosis, thus improving
the effect of chemotherapy. In tumor types with frequent FADD amplification, such as head and
neck cancer, it has been suggested that combined treatment with SMAC mimetics (Birinapant) and
radiation may be particularly useful as FADD is key in sensitization to cell death [16]. Also, some
chemotherapeutic agents—such as Carboplatin in tongue carcinoma [161] or Nortriptyline in bladder
cancer cells [162]—induce the expression of FADD, thus contributing to tumor cell sensitization to
apoptosis. FADD induction was observed in ovarian cancer cells upon combined treatment with
cisplatin and AT-101, a natural BH3-mimetic molecule [163]. Interestingly, such treatment inhibited
both DNMT and HDAC enzyme activities, allowing us to speculate that histone deacetylation
might underlie the observed induction of FADD transcription. In chronic lymphocytic leukemia,
it has been observed that the inhibition of histone deacetylase with Romidepsin exerts an apoptosis
sensitization effect molecularly mediated by enhanced FADD recruitment to the DISC, although the
exact mechanism is not clear [164]. In KRAS-driven lung cancer, it has been indicated that the inhibition
of FADD phosphorylation suppresses tumor development, suggesting that FADD kinase is a plausible
therapeutic target [102]. A summary of the FADD alterations reported in different cancer types and
therapeutic agents described to target tumor cells through mechanisms involving FADD is depicted in
Figures 9 and 10, respectively.
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Figure 9. Alterations of FADD levels reported in different cancer types. For each tumor type, reported
evidence of an increase (upwards red arrow) or a decrease (downwards green arrow) of FADD levels is
shown, indicating the underlying mechanism when this information is available (references indicated
in brackets). Arrows including a “P” indicate changes also affecting the levels of phosphorylated
FADD. Anticancer therapies reported to target FADD in certain tumor types are shown in white boxes,
and their mechanisms of action are detailed in Figure 10. Templates to build this figure were obtained
from SMART Servier Medical Art (Attribution 3.0 Unported, CC BY 3.0).
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Figure 10. Strategies for therapeutic intervention of cancer involving FADD. (A) In lung cancer, CKIα-
mediated phosphorylation of FADD leads to the translocation of S194-P-FADD to the nucleus, where 
it can induce expression of cyclins B1 and D1 through NF-κB signaling [5], or it can interact with key 
G2/M transition proteins like AURKA, PLK1 or BUB1 [102], promoting cell cycle progression and 
proliferation. Inhibiting KRAS with Lonafarnib, MEK with PD0325901, or CK1α with CKI-7 decreased 
the abundance of phosphorylated FADD and decreased cell proliferation, apparently due to a loss of 
interaction between FADD and the G2/M transition proteins. As a result, tumor treated cells would 
fail to progress through G2/M. (B) Tamoxifen and paclitaxel in breast cancer [155] and paclitaxel in 
prostate cancer [165] have been reported to activate the MEKK1/MKK7/JNK pathway, which 
contributes to FADD phosphorylation. In breast cancer, this results in cell cycle arrest and suppression 
of cancer growth through p53 stabilization or Bcl-2 phosphorylation. In prostate cancer, 
phosphorylated FADD in turn upregulates MEKK1 and downstream JNK1 activation, which is 
essential for sensitization to apoptosis induced by etoposide or cisplatin combined with paclitaxel 
[165]. Thus, chemosensitization can be amplified through FADD phosphorylation and the 
MEKK1/MKK7/JNK1 pathway. (C) In head and neck cancer, the SMAC mimetic Birinapant plus 
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Figure 10. Strategies for therapeutic intervention of cancer involving FADD. (A) In lung cancer,
CKIα-mediated phosphorylation of FADD leads to the translocation of S194-P-FADD to the nucleus,
where it can induce expression of cyclins B1 and D1 through NF-κB signaling [5], or it can interact with
key G2/M transition proteins like AURKA, PLK1 or BUB1 [102], promoting cell cycle progression and
proliferation. Inhibiting KRAS with Lonafarnib, MEK with PD0325901, or CK1α with CKI-7 decreased
the abundance of phosphorylated FADD and decreased cell proliferation, apparently due to a loss of
interaction between FADD and the G2/M transition proteins. As a result, tumor treated cells would fail
to progress through G2/M. (B) Tamoxifen and paclitaxel in breast cancer [155] and paclitaxel in prostate
cancer [165] have been reported to activate the MEKK1/MKK7/JNK pathway, which contributes to
FADD phosphorylation. In breast cancer, this results in cell cycle arrest and suppression of cancer
growth through p53 stabilization or Bcl-2 phosphorylation. In prostate cancer, phosphorylated FADD
in turn upregulates MEKK1 and downstream JNK1 activation, which is essential for sensitization to
apoptosis induced by etoposide or cisplatin combined with paclitaxel [165]. Thus, chemosensitization
can be amplified through FADD phosphorylation and the MEKK1/MKK7/JNK1 pathway. (C) In head
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and neck cancer, the SMAC mimetic Birinapant plus radiation induces tumor regression [16]. Radiation
induces DNA damage and in consequence the intrinsic cell death pathway through mitochondrial release
of SMAC. The negative effect of SMAC on IAPs is enhanced by SMAC mimetic Birinapant, resulting
in degradation of IAPs to enhance FADD-involving DR-induced apoptosis. In chronic lymphocytic
leukemia, the HDAC inhibitor Romidepsin sensitizes tumor cells to TRAIL-induced apoptosis through
enhancement of FADD recruitment to the DISC [164]. In ovarian cancer, the combination of the
BH3-mimetic molecule AT-101 with cisplatin strongly sensitize cells towards apoptosis; they inhibit
HDAC and DNA methyltransferase (DNMT) enzyme activities and they induce FADD expression
among other apoptosis-related genes [163]. Carboplatin and Nortriptyline also favor FADD expression
in tongue carcinoma [161] and bladder cancer cells [162], respectively.

5. Conclusions

The role of FADD in tumorigenesis is not fully understood. Its expression appears to be altered in
many cancer types, but the underlying mechanisms are not always clear. Chromosomal alterations
affecting FADD are more frequent than mutations or polymorphisms, but they do not always explain
the changes in expression observed in tumor cells. Regulation of FADD expression by transcription
factors and epigenetic mechanisms may also be altered in cancer, but limited evidence is available to
confirm this. Furthermore, posttranslational modifications of FADD, especially phosphorylation and
ubiquitination, may underlie the alterations of FADD functions in tumor cells. Besides its canonical
role as an adaptor for cell death, FADD has been implicated in various signalosomes that would trigger
tumorigenic pathways downstream of NF-κB-mediated gene expression, such as inflammation or
proliferation. A role for FADD in directly regulating gene expression as a member of protein complexes
in the nucleus has also been proposed, although the available evidence is still scarce. In addition,
the implication of FADD in controlling energy metabolism is mainly based on recent evidence of
protein-protein interactions. In any case, many authors agree that FADD levels are a relevant factor to
consider in the clinical management of cancer. However, discrepant results suggest that its role as a
positive or negative prognostic factor would depend on the tumor type and cellular context. Future
research will likely shed light on the molecular details of FADD functions, thus clarifying its clinical
value for each cancer type.
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