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Abstract: This paper numerically explores the possibility of ultrathin layering and high efficiency
of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-
dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the
carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simula-
tion results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%),
and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 µs and a doping
concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of
the graphene BSF layer (1 µm) was proven the ultrathin, optimal, and obtainable for the fabrication
of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This
simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be
highly efficient with optimized parameters for fabrication.

Keywords: CdTe solar cell; graphene; back surface; efficiency; simulation

1. Introduction

Modifications in the physical features of photovoltaic devices lead to improvement
in the efficiency of a solar cell [1–3]. In CdTe/CdS solar cells, a metal layer with the work
function ≥5.7 eV is needed to achieve a low contact resistance for proper functionality and
sustainability. Generally, the Schottky barrier of a solar cell is rectified by a highly doped
p-CdTe and insertion of a back surface field (BSF) layer at the CdTe/metal layer [4,5]. The
BSF is an additional part, which consists of a heavily doped layer next to an absorber layer
in the modern CdTe solar cell, i.e., a rear surface of the cell [6]. The highly doped BSF region
acts as a barrier layer for minority mobile charge carriers at the CdTe/metal interface. The
main purpose of providing a BSF layer in the structure of solar cells is to reduce the barrier
width in the valence band and to reduce the recombination losses at the back surface of
the CdS/CdTe solar cell [7–9]. The main technical problems of CdS/CdTe solar cells are
related to higher efficiency, less material usage, and stable back contact formation [10,11].
These problems should be addressed and numerically evaluated to discover the unseen
potentiality of CdS/CdTe solar cells for higher cell performance [10–13]. CdTe has good
electronic properties, a high optical absorption coefficient of over 1 × 104/cm, and has
a direct energy bandgap of 1.45 eV, which is very near to the optimal bandgap for solar
cells [10,14]. However, a lower thickness of the absorber layer is required, which can help
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to minimize cell material usage and reduce the cost of the manufacture of cells [10,15,16].
Due to the limitation of the reduction in the thickness of the absorber layer, the insertion
of a thin back surface field (BSF) is essential to maintain a higher efficiency of CdTe solar
cells [10,17]. The BSF layer of solar cells enhances the efficiency and FF because it degrades
the shunting effects in the absorber layer [18]. A thickness of 1 µm for a BSF is sufficient
for the recombination process of carriers at the interface of layers in the solar cells [7,19].
Providing a BSF layer in a CdTe solar cell may lead to some improvements like a thinner
absorber layer with significant performance and reduction in cell fabrication cost [20].
The BSF layer helps the hole collection capability of CdTe cells due to the penetrating
network and offers massive electrical transference routes to tie the individual graphene
sheets [18,21,22]. Low-cost materials like graphene could be used as ultimate back contact
without interrupting cell performance and stability.

The exploration of a stable and efficient back contact layer is important for the long-
term stability of CdTe/CdS solar cells. CdTe has a high electron affinity and thus a high
work function element is required to generate a good ohmic contact on p-type CdTe [10,23].
Graphene materials exhibit high carrier mobility (2 × 105 cm2/V·s) at room temperature, a
high work function of 5.5 eV [18,24], excellent transparency (as they absorb light by ~2.3%
across most of the ultraviolet (UV) and visible spectrum), marvelous thermal conductiv-
ity (~103 W/m·K) [25], and a high melting point (~5000 K) [26]. Besides the atom-layer
structure, they have a large surface area and graphene sheets have high flexibility. There-
fore, low-cost graphene can be used in a wide range of applications, such as chemical
sensors [27,28], medical devices [29], photodetectors [30], energy storage, [31], manufac-
turing roll-to-roll electronic devices [32], and solar cells [33,34]. Bhandari et al., in 2021,
successfully incorporated added FeS2-NC back contact in CdTe solar cells and showed
good thermal stability under initial tests. Devices prepared with untreated FeS2-NC back
contacts display a strong “S-kink” behavior which correlates with a high hole-transport
barrier arising from inter-NC organic surfactant molecules, but maximum efficiency was
only 12.7% [7]. Liang et al., in 2012, successfully combined Cu nanowire-doped graphene
(Cu NWs/graphene) as the back contact layer in thin-film CdTe solar cells. The efficiency
of solar cells with Cu NWs/graphene was up to 12.1% [18]. The drawback with the Cu-
based back contact layer is the Cu diffusion with the grain boundaries as well as across
the junction.

In this work, a CdTe solar cell was designed and simulated using the PC1D simulation
tool to investigate the influence of carrier lifetime, doping concentration, bandgap, and
thickness of the BSF layer on the conversion efficiency of the CdTe solar cell. The carrier
lifetime, doping concentration, and thickness of the BSF layer are critical parameters for
the PV properties of solar cells. This modeling study aimed to check the effect of carrier
lifetime, doping concentration, and thickness of BSF layer on the Isc, Voc, and efficiency
and recommend the best possible combination for fabrication.

2. Materials and Methods
2.1. Solar Cell Structure and BSF Layer

The purpose of numerical investigation in the PV cell analysis is to examine the
validity of the projected device structure’s arranged cell geometry and cell efficiency. In
this proposed model, p-type CdTe and n-type CdS were used as an absorber layer and
window layer, respectively. An additional layer of highly doped graphene [35] was applied
as a back surface field (BSF) layer next to the absorber layer on the substrate, as shown in
Figure 1.
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Figure 1. The device structure of graphene back surface-based CdTe solar cell.

The layers in this solar cell were organized according to the energy bandgap, in which
the layer with a lower bandgap was placed on the bottom, while the layer with a higher
bandgap was placed on the top surface [36]. The layer with a higher bandgap can absorb a
wide range of solar radiation of a shorter wavelength [37]. An additional ultrathin layer
of graphene as a BSF was added to reduce the recombination losses at the back contact,
which enhances the efficiency of a solar cell.

2.2. PC1D Modeling Tool

The personal computer one-dimensional (PC1D) modeling tool is used to study the
photovoltaic properties of solar cells, and it was developed by a team of the UNSW [38].
PC1D allows the simulation of the optoelectrical properties of semiconductor devices. The
main advantages of PC1D include rapid calculation speeds, an intuitive user interface, and
an extensive list of material and physical parameters. By varying the wavelength of the
excitation light source, PC1D can calculate both current-voltage characteristics and the
spectral quantum efficiency of a solar cell [39,40]. The PC1D software contains plentiful
library files including numerous parameters for semiconductor devices such as GaAs,
Ge, c-Si, GIN, CIGS, a-Si, AlGaAs, and InP [41–43]. In the simulation tool, the input
key parameters, such as device area, device thickness, carrier concentration, bandgap,
temperature, reflectance, etc., were used to elucidate the photovoltaic parameters of the
solar cell. The detailed input parameters of this software have been summarized in Table 1.
All simulations were executed under a constant light intensity of 0.1 W/cm2 (AM) 1.5 at
300 K temperature. For all PV simulations, the bulk recombination time was set from 1 to
100 µs and the doping concentration in the solar cell was set in the range of 1 × 1015 to
1 × 1020 cm−3 as reported in previous research articles [44–46].

Table 1. Internal parameters of the PC1D simulation tool.

Parameters CdS CdTe Graphene

Thickness 80 nm [7] 4 µm [7] 1 µm
Energy band gap (eV) 2.4 [47] 1.5 [47] 0.5 [48]

Electron affinity 4.2 [49] 4.28 [49] 4.7 [48]
Bulk recombination 1000 µs 1000 µs 10–106 µs

Doping concentration 1 × 1017 cm−3 1 × 1016 cm–3 1 × 1015–1 × 1020 cm−3

Excitation mode Transient Transient Transient
Constant intensity One sun One sun One sun
Dielectric constant 10 9.4 7.1

Temperature 300 K 300 K 300 K
Constant intensity 0.1 W/cm−2 0.1 W/cm−2 0.1 W/cm−2

Primary light source AM 1.5 D spectrum AM 1.5 D spectrum AM 1.5 D spectrum
Other parameters Internal PC1D Internal PC1D Internal PC1D
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3. Results and Discussion
3.1. Impact of Carrier Lifetime in BSF Layer

Carrier lifetime in the BSF layer has a very vital role in the efficiency of a solar cell. The
probability of carriers reaching their respective direction’s end before their recombination
is higher when the carrier lifetime is longer [50]. The photovoltaic properties, like Isc, Voc,
efficiency, and FF, were characterized in the range from 1 to 106 µs of carrier lifetime of the
solar cells. When the carrier lifetime in the BSF layer increased from 1 to 103 µs, the PV
properties of solar cells increased and, after that, these factors were saturated, increasing
even further. The maximum values of Isc = 2.09 A, Voc = 0.809 V, η = 15% and FF = 88.54%
were be observed at 1 × 103 µs of carrier lifetime, as shown in Figure 2a,b. Thus, the
optimized value of carrier lifetime is 1 × 103 µs in the BSF layer of the CdTe solar cell.
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3.2. Impact of Doping Concentration in BSF Layer

A doping concentration is one of the decisive factors affecting the overall performance
of the solar cell. The values of PV parameters such as Isc, Voc, efficiency, and FF increase
with higher doping concentrations in the BSF layer due to an increase in band-bending in
CdTe solar cells [51]. It is also proven that a very high doping concentration in the back
contact layer can support the generation of a tunneling contact. It is known to be highly
difficult to obtain high p-type doping in CdTe material due to self-compensation [52].
The PV properties (Isc, Voc, η, and FF) were characterized in the range from 1 × 1015 to
1 × 1020 cm−3 of doping concentration in the BSF layer of the solar cell. When the doping
concentration in the BSF layer increased from 1015 to 1017 cm−3, the PV properties remained
unchanged and, after that, started to decrease sharply with a further increase. Lower doping
density leads to a wider depletion region, which is beneficial for the carrier collection and
recombination process [53]. The optimum values of Isc = 2.09 A, Voc = 0.809 V, η = 15%,
and FF = 88.55% were observed at 1 × 1017 cm−3 of doping concentration, as shown in
Figure 3a,b. Thus, the optimized value of doping concentration is 1 × 1017 cm−3 in the BSF
layer of the CdTe solar cell.
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3.3. Impact of the Thickness of BSF Layer

It is essential to control the optimal thickness of the BSF layer since an excessive
thickness can cause fast degradation due to diffusion; however, a much thinner BSF layer
gives insufficient intermixing and doping in the bulk CdTe [54]. The thickness of the BSF
layer should be ultrathin, which is very difficult to control. The PV properties, such as
Isc, Voc, η, and FF, were characterized in the range from 0.1 to 1.5 µm of the thickness of
graphene as the BSF layer of the solar cell. The value of Isc increased with an increase in
the thickness of the BSF layer, whereas the value of Voc decreased, as shown in Figure 4a.
Similarly, the efficiency of a cell was increased with the increase in the thickness of the BSF
layer, whereas the FF value was decreased, as shown in Figure 4b, so it is difficult to set
the optimum thickness of the BSF layer. For efficient and practicable solar cell fabrication,
an obtainable (i.e., possible) thickness of graphene as the BSF layer should be chosen. The
optimum values of Isc = 2.09 A, Voc = 0.808 V, η = 15%, and FF = 88.53% were observed at
1 µm thickness of the BSF layer. Therefore, the optimum value of the thickness of graphene
as the BSF layer might be 1 µm for fabrication.
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3.4. Impact of Photogeneration Rate of Carriers in BSF Layer

Minority carrier transport parameters critically affect the function and performance of
various p-n junction semiconductor devices with bipolar transistors and solar cells [55].
Various recombination processes were applied to find the carrier lifetime and diffusion
length of the minority charge carriers in the emitter and all parts of the solar cell [56].
The thickness of the p-n junction was about 4 µm and the photogeneration rate was
1.22 × 1019 s−1 at that thickness, which is appropriate for recombination of charge carriers.
The simulation result showed that the photogeneration rate increases logarithmically as
the distance from the front increases, as shown in Figure 5, which might be suitable for
efficient solar cells.
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3.5. Energy Bandgap of Layers in Solar Cell

The energy bandgap is the threshold energy that is required to excite electrons up to a
state in the conduction band where they can participate in conduction [57]. The theoretical
values of the energy bandgap are 2.42 eV [58], 1.45 eV [59], and 0.264–0.786 eV [60] for
window (CdS), absorber (CdTe), and BSF (graphene) layers, respectively, at room tempera-
ture. When light radiation with a wide range of wavelengths enters the solar cell, it must
cross through different materials with various energy bandgaps. The simulated values of
energy bandgaps were 2.41, 1.5, and 0.5 eV for window (CdS), absorber (CdTe), and BSF
(graphene) layers, respectively, as shown in Figure 6, which almost match the theoretical
values. From the simulation, it was confirmed that the proposed solar cell structure is
appropriate for fabrication.
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3.6. Photovoltaic Characteristics

The ultimate characteristic is the current, power, and efficiency curve to examine the
overall efficiency of the solar cell. The simulation results exhibited the highest values of
Isc = 2.09 A, Voc = 0.808 V, Imp = 2.049 A, Vmp = 0.729 V, Pmax = 1.5 W, and η = 15%, as
shown in Figure 7. Quantum efficiency is also one of the most important characteristics
to estimate the performance of the solar cell in the specific range of the wavelength. The
internal quantum efficiency (IQE) was above 100% whilst an external quantum efficiency
of approximately 85% was achieved in the wavelength range of 300–1000 nm, as shown in
Figure 8.
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The comparative study of the reported graphene back contact surface layer-based CdTe
solar cells is listed in Table 2. This simulation presented impressive results and confirmed
that the proposed structure of the solar cell could be suitable for efficient fabrication.

Table 2. Comparative study of the performance of graphene as BSF material-based CdTe solar cell.

BSF Materials Jsc
[mA/cm2]

Voc
[V]

FF
[%]

Efficiency
[%] References

Cu
NWs/graphene 22.4 0.801 67.40 12.1 [61]

CuPs/graphene 21.3 0.805 68.10 11.7 [61]
Graphene 22.2 0.633 43.01 12.2 [62]
Graphene 40.0 0.511 65.03 13.2 [63]
Graphene 20.9 0.808 88.45 15 This work

4. Conclusions

The possibility of ultrathin layering and high efficiency of graphene material as a back
surface field (BSF)-based CdTe solar cell has been simulated successfully using the PC1D
simulation tool. The highest Isc = 2.09 A, η = 15% and QE~85% by CdTe solar cell were
accomplished when the graphene as a BSF layer had a carrier lifetime of 1 × 103 µs and
doping concentration of 1 × 1017 cm−3. The obtained results suggest that the thickness of
the BSF graphene layer (1 µm) is ultrathin which is an appropriate and optimal thickness for
the fabrication of high-performance CdTe solar cells. Therefore, the simulation results prove
that the graphene as the BSF layer with ultrathin could be highly efficient, low cost, and
providing the ease of fabrication for CdTe solar cells with excellent photovoltaic properties.
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33. Czerniak-Reczulska, M.; Niedzielska, A.; Jędrzejczak, A. Graphene as a Material for Solar Cells Applications. Adv. Mater. Sci.
2015, 15, 67–81. [CrossRef]

34. Yi, Z.; Li, J.; Lin, J.; Qin, F.; Chen, X.; Yao, W.; Liu, Z.; Cheng, S.; Wu, P.; Li, H. Broadband polarization-insensitive and wide-angle
solar energy absorber based on tungsten ring-disc array. Nanoscale 2020, 12, 23077–23083. [CrossRef] [PubMed]

35. Ciuk, T.; Kaszub, W.; Kosciewicz, K.; Dobrowolski, A.; Jagiello, J.; Chamryga, A.; Gaca, J.; Wojcik, M.; Czolak, D.; Stanczyk,
B.; et al. Highly-doped p-type few-layer graphene on UID off-axis homoepitaxial 4H–SiC. Curr. Appl. Phys. 2021, 27, 17–24.
[CrossRef]

36. Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J.
NanoMater. 2018, 2018, 1–15. [CrossRef]

37. Fonash, S.J. Solar Cell Device Physics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2010.
38. Shah, D.K.; Kc, D.; Akhtar, M.S.; Kim, C.Y.; Yang, O.-B. Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for

Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties. Appl. Sci. 2020, 10, 6062. [CrossRef]
39. Belarbi, M.; Benyoucef, A.; Benyoucef, B. Simulation of the Solar Cells with PC1D, Application to Cells Based on Silicon. AEIJ

2014, 1, 3–13.
40. Devendra, K.C.; Wagle, R.; Gaib, R.; Shrivastava, A.; Mishra, L.N. Modelling and simulation of AlGaAs/GaAs solar cell. Am. J.

Eng. Res. 2020, 9, 218–223.
41. Ameen, S.; Akhtar, M.S.; Shin, H.S. Highly dense ZnO nanowhiskers for the low level detection of p-hydroquinone. Mater. Lett.

2015, 155, 82–86. [CrossRef]
42. Weiss, T.P.; Bissig, B.; Feurer, T.; Carron, R.; Buecheler, S.; Tiwari, A.N. Bulk and surface recombination properties in thin film

semiconductors with different surface treatments from time-resolved photoluminescence measurements. Sci. Rep. 2019, 9, 1–13.
[CrossRef]

43. Devendra, K.C.; Wagle, R.; Gaib, R.; Shrivastava, A.; Mishra, L.N. InGaP Window Layer for Gallium Arsenide (GaAs) based Solar
Cell Using PC1D Simulation. JARDCS 2020, 12. [CrossRef]

44. Tinedert, I.E.; Pezzimenti, F.; Megherbi, M.; Saadoune, A. Design and simulation of a high efficiency CdS/CdTe solar cell. Optik
2020, 208, 164112. [CrossRef]

45. Marjani, S.; Khosroabadi, S.; Sabaghi, M. A High Efficiency Ultrathin CdTe Solar Cell for Nano-Area Applications. Opt. Photonics
J. 2016, 06, 15–23. [CrossRef]

46. Fathil, M.; Arshad, M.M.; Hashim, U.; Ruslinda, A.R.; Ayub, R.M.; Azman, A.; Nurfaiz, M.; Kamarudin, M.; Aminuddin, M.;
Munir, A. The impact of minority carrier lifetime and carrier concentration on the efficiency of CIGS solar cell. In Proceedings of
the IEEE International Conference on Semiconductor Electronics (IEEE-ICSE2014), Kuala Lumpur, Malaysia, 27–29 August 2014;
pp. 24–27.

47. Kc, D.; Shah, D.K.; Alanazi, A.M.; Akhtar, M.S. Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar
Cells: A PC1D Simulation Study. J. Electron. Mater. 2021, 50, 2199–2205. [CrossRef]

48. Singh, G.; Kumar, R. Simulation of perovskite solar cell with graphene as hole transporting material. AIP Conf. Proc. 2019, 2115,
030548.

49. Shah, D.K.; Kc, D.; Muddassir, M.; Akhtar, M.S.; Kim, C.Y.; Yang, O.-B. A simulation approach for investigating the performances
of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps. Sol. Energy
2021, 216, 259–265. [CrossRef]

50. Larousu, E.; El-Zohry, A.M.; Yin, J.; Zhumekenov, A.A.; Yang, C.; Alhabshi, E.; Gereige, I.; AlSaggaf, A.; Malko, A.V.; Bakr, O.M.
Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths. J. Phys. Chem. Lett.
2017, 8, 4386–4390. [CrossRef] [PubMed]

51. Zhao, H.; Farah, A.; Morel, D.; Ferekides, C. The effect of impurities on the doping and VOC of CdTe/CdS thin film solar cells.
Thin Solid Films 2009, 517, 2365–2369. [CrossRef]

52. Desnica, U.V. Doping Limits in II-Vl Compounds—Challenges, Problems and Solutions. Prog. Cryst. Growth Charact. Mater. 1998,
36, 291–357. [CrossRef]

53. Zhao, Y.; Liang, C.; Sun, M.; Liu, Q.; Zhang, F.; Li, D.; He, Z. Effect of doping on the short-circuit current and open-circuit voltage
of polymer solar cells. J. Appl. Phys. 2014, 116, 154506. [CrossRef]

http://doi.org/10.1016/j.sse.2012.05.059
http://doi.org/10.1038/ncomms6258
http://doi.org/10.1002/adma.201506140
http://www.ncbi.nlm.nih.gov/pubmed/27061073
http://doi.org/10.1021/acs.nanolett.5b00055
http://doi.org/10.1021/nn901587x
http://doi.org/10.1515/adms-2015-0024
http://doi.org/10.1039/D0NR04502K
http://www.ncbi.nlm.nih.gov/pubmed/33179661
http://doi.org/10.1016/j.cap.2021.03.021
http://doi.org/10.1155/2018/8148072
http://doi.org/10.3390/app10176062
http://doi.org/10.1016/j.matlet.2015.04.111
http://doi.org/10.1038/s41598-019-41716-x
http://doi.org/10.5373/JARDCS/V12SP7/20202430
http://doi.org/10.1016/j.ijleo.2019.164112
http://doi.org/10.4236/opj.2016.62003
http://doi.org/10.1007/s11664-020-08696-5
http://doi.org/10.1016/j.solener.2020.12.070
http://doi.org/10.1021/acs.jpclett.7b01922
http://www.ncbi.nlm.nih.gov/pubmed/28849938
http://doi.org/10.1016/j.tsf.2008.11.041
http://doi.org/10.1016/S0960-8974(98)00011-4
http://doi.org/10.1063/1.4898692


Molecules 2021, 26, 3275 10 of 10

54. Bätzner, D.; Wendt, R.; Romeo, A.; Zogg, H.; Tiwari, A. A study of the back contacts on CdTe/CdS solar cells. Thin Solid Films
2000, 361–362, 463–467. [CrossRef]

55. Ning, T.; Isaac, R. Effect of emitter contact on current gain of silicon bipolar devices. In Proceedings of the 1979 International
Electron Devices Meeting, Washington, DC, USA, 3–5 December 1979; pp. 2051–2055. [CrossRef]

56. Uprety, P.; Subedi, I.; Junda, M.M.; Collins, R.W.; Podraza, N.J. Photogenerated Carrier Transport Properties in Silicon Photo-
voltaics. Sci. Rep. 2019, 9, 1–12. [CrossRef]

57. Available online: http://www.pveducation.org/pvcdrom/pn-junction/band-gap (accessed on 2 April 2021).
58. Zhao, P.Q.; Liu, L.Z.; Xue, H.; Wu, X.L.; Shen, J.C.; Chu, P.K. Resonant Raman scattering from CdS nanocrystals enhanced by

interstitial Mn. Appl. Phys. Lett. 2013, 102, 061910. [CrossRef]
59. Ali, A.M.; Rahman, K.; Ali, L.M.; Akhtaruzzaman, M.; Sopian, K.; Radiman, S.; Amin, N. A computational study on the energy

bandgap engineering in performance enhancement of CdTe thin film solar cells. Results Phys. 2017, 7, 1066–1072. [CrossRef]
60. Jin, Y.; Zheng, Y.; Podkolzin, S.G.; Lee, W. Band gap of reduced graphene oxide tuned by controlling functional groups. J. Mater.

Chem. C 2020, 8, 4885–4894. [CrossRef]
61. Shi, Z.; Jayatissa, A.H. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects.

Materials 2017, 11, 36. [CrossRef]
62. Romeo, A.; Khrypunov, G.; Galassini, S.; Zogg, H.; Tiwari, A. Bifacial configurations for CdTe solar cells. Sol. Energy Mater. Sol.

Cells 2007, 91, 1388–1391. [CrossRef]
63. Aldosari, M.; Sohrabpoor, H.; Gorji, N.E. Optical modeling of graphene contacted CdTe solar cells. Superlattices Microstruct. 2016,

92, 242–248. [CrossRef]

http://doi.org/10.1016/S0040-6090(99)00842-1
http://doi.org/10.1109/iedm.1979.189659
http://doi.org/10.1038/s41598-019-55173-z
http://www.pveducation.org/pvcdrom/pn-junction/band-gap
http://doi.org/10.1063/1.4792512
http://doi.org/10.1016/j.rinp.2017.02.032
http://doi.org/10.1039/C9TC07063J
http://doi.org/10.3390/ma11010036
http://doi.org/10.1016/j.solmat.2007.03.010
http://doi.org/10.1016/j.spmi.2016.02.023

	Introduction 
	Materials and Methods 
	Solar Cell Structure and BSF Layer 
	PC1D Modeling Tool 

	Results and Discussion 
	Impact of Carrier Lifetime in BSF Layer 
	Impact of Doping Concentration in BSF Layer 
	Impact of the Thickness of BSF Layer 
	Impact of Photogeneration Rate of Carriers in BSF Layer 
	Energy Bandgap of Layers in Solar Cell 
	Photovoltaic Characteristics 

	Conclusions 
	References

