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abstract

PURPOSE High tumor mutation burden (TMB) in many cancer types is associated with the production of tumor-
specific neoantigens, a favorable outcome and response to immune checkpoint blockade (ICB) therapy.
Besides mutation-derived neoantigens, aberrant intron retention also produces tumor neopeptides that could
trigger an immune response. The relationship between intron-retention–derived tumor neoantigens (IR-neoAg)
and clinical outcomes in pancreatic cancer remains uncertain. Here, we quantify IR-neoAg in pancreatic cancer
and evaluate whether IR-neoAg load might serve as a biomarker for selecting patients who may benefit from ICB
therapy.

METHODS We developed a computational approach to estimate patient-specific IR-neoAg load from tran-
scriptome data available in The Cancer Genome Atlas pancreatic cancer cohort. Associations between IR-neoAg
load and patient overall survival were evaluated using Kaplan-Meier estimates and Cox regression. Differential
expression of immune checkpoint and HLA-I genes was evaluated in tumors with high IR-neoAg load.

RESULTSHigh IR-neoAg load predicted better overall survival in pancreatic cancer, although no association was
found for TMB. IR-neoAg load remained a significant prognostic factor after adjusting for patient age, sex, tumor
stage and grade, and TMB. Moreover, pancreatic tumors with both high IR-neoAg load and high HLA-I gene
expression had similar gene expression profiles as other tumor types that showed response to anti–programmed
cell death protein 1 therapy.

CONCLUSION IR-neoAg load is associated with favorable survival in pancreatic cancer. These findings provide
strong evidence for considering IR-neoAgs when selecting patients who might benefit from ICB therapy.
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INTRODUCTION

Advances in immune checkpoint blockade (ICB)
therapy using antibodies that block programmed cell
death protein 1 (PD-1) and cytotoxic T-lymphocyte
antigen 4 (CTLA-4) have resulted in remarkable clinical
responses in a wide variety of patients with cancer.1-3

Response to ICB therapy correlates with high tumor
mutation burden (TMB) and the cell surface display of
tumor neoantigens by major histocompatibility complex
(MHC) molecules, which is critical for T-cell recognition
and immune-mediated killing of tumor cells.4-7

Pancreatic cancer consists of two categories, namely
cancers developing from the exocrine cells that make
up the exocrine glands and ducts of the pancreas and
cancers that develop from cells in the endocrine glands.
More than 95% of pancreatic cancers arise from
exocrine cells, with pancreatic ductal adenocarcinoma
(PDAC) being the most common histologic type, as well
as one of the deadliest with a 5-year survival rate, 8%.8

PDAC is considered an immune-privileged tumor and to
date, ICB therapy has not shown efficacy in patients
with PDAC, nor affected overall survival (OS).9,10 One
explanation for why PDAC responds poorly to ICB
therapy is a low TMB.11 However, recent studies have
shown that some PDAC tumors do express neoantigens
and exhibit T-cell infiltration.12,13 These findings imply
that some patients are able to generate an antitumor
immune response and, therefore, may benefit from ICB
therapy.

In addition to somatic DNA mutations, aberrant RNA
transcripts can be a major source of neopeptides when
retained introns are translated and degraded through
the nonsense-mediated decay mechanism.14 Intron
retention (IR) commonly occurs in a wide variety of
cancer transcriptomes, including PDAC, comparedwith
normal tissues.15,16 Additionally, high IR levels in PDAC
appears to be an independent predictor of tumor
progression.17 Therefore, we hypothesized that in the
presence of low TMB, aberrant IR-induced neoantigens
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(IR-neoAg) contribute to immune-mediated clearance of
pancreatic cancer cells.

To begin to test this hypothesis, we herein used in silico
prediction on RNA-sequencing data from two large inde-
pendent cohorts of patients with pancreatic cancer from The
Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) pancreatic cancer cohorts to
determine whether IR-neoAg load was associated with
longer OS for these patients. We also estimated tumor-
infiltrating immune cell proportions and determined the
association of IR-neoAgs with various tumor lymphocyte
populations. In addition, we investigated the association of
IR-neoAg load with expression of immune checkpoint genes
and HLA genes encoding the MHC class-I molecules in
pancreatic cancer. Finally, we compared gene expression
profiles in pancreatic cancer with those of melanoma tumors
that responded to anti–PD-1 checkpoint therapy. The results
from this study could be useful in selecting patients with
pancreatic cancer who might benefit from ICB therapy.

METHODS

Pancreatic Cancer and Normal Pancreas Data Sets

RNA-seq data from TCGA-PAAD (N = 178) with clinical and
pathologic characteristics were downloaded from the Ge-
nomic Data Commons.18 RNA-seq data from the ICGC
Pancreatic Cancer cohorts (ICGC-PDAC-AU, N = 81) were
downloaded from the ICGC data portal.19 One sample each
from TCGA-PAAD and ICGC-PDAC-AU cohorts was missing
survival event time and was excluded from survival analyses.
RNA-seq data from normal pancreas samples (n = 68) were
retrieved from genotype-tissue expression (GTEx) projects.20

Four PDAC microarray data sets, GSE15471, GSE16515,
GSE28735, and GSE62452,21-24 were downloaded from the
GEO database, and the Bioconductor affy package was used
for raw data processing and normalization.

Identification of IR Events

Raw fastq files were aligned to GRCh38 reference genome
using STAR (v.2.7.2).25 The exon sets for each protein-
coding gene were reannotated using GTF files (Genco-
de.v32). The union of each exon set was used to define
introns as the interval between exon sets (Data Supplement).
Exons and introns were quantified using uniquely mapped
reads on the basis of the reannotated GTF file using HTseq.26

IR events were further filtered using the following criteria:
(1) both the intron region and its flanking exon regions had
read counts. 10 and (2) the transcripts per million ratios of
the intron to flanking exons was . 0.05 and , 0.5. These
filters allowed identification of IR events that had expression
levels that were comparable with the flanking exons in the
messenger RNA transcripts that were composed of a
mixture of normal and aberrant splicing products. IR events
that were also observed in at least 25% of normal pancreas
RNA-seq data sets from GTEx20 were filtered to obtain the
final set of pancreatic tumor-specific IR events.

IR Neoantigen Prediction

To obtain the set of neopeptides derived from retained introns,
the open reading frames of the upstream exons were extended
into introns until the first stop codon. The translated peptides
were segmented into fragments of 8-11 amino acids that
contained at least one intron-encoded amino acid. We esti-
mated the binding affinity of each IR-derived neopeptide with
specific MHC class-I molecules for each sample using
NetMHCpan (v.4.1).27 Each patient’s HLA genotype was de-
duced from RNA-seq data using arcasHLA (v1.1).28

NetMHCpan compares raw prediction scores to a set of
random natural peptides to calculate the % rank, which
provides robust binding metrics.27 Neopeptides with % rank
, 0.5 were defined as strong binders, as recommended by
NetMHCpan, and were considered as IR-neoAgs in this study.

CONTEXT

Key Objective
Our aim was to use a bioinformatics approach to predict tumor-specific neoantigens that are derived from retained intron

sequences in publicly available transcriptome data. We asked whether the level of intron-retention neoantigens (IR-neoAg)
could predict a favorable outcome in patients with pancreatic cancer.

Knowledge Generated
We found that the IR-neoAg load is an independent predictor of overall survival in patients with pancreatic cancer. In addition,

a subset of tumors with high IR-neoAg load and high HLA class-I gene expression showed an immune response consisting
of infiltrating cytotoxic T cells, and also had transcriptome profiles similar to immune checkpoint blockade
therapy–responsive tumors.

Relevance
RNA sequencing data from patient tumor samples can be used to evaluate intron retention and HLA-I gene expression. These

two tumor markers could be potentially important for selecting patients with pancreatic cancer who might benefit from
immune checkpoint blockade therapy.
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Tumor Immune Cell Proportions and Prediction of

Immunotherapy Response

The relative proportion of 22 types of tumor-infiltrating im-
mune cells were inferred from bulk RNA-seq expression data
using the online CIBERSORT application,29 with parameters
set as LM22 signatures and 100 permutations. We used
SubMap30 to evaluate the similarity between global gene
expression patterns of TCGA-PAAD tumors with either high
or low IR-neoAgs and samples from immunotherapy-treated
melanoma patients.31 The mapping information generated
by SubMap identifies subclasses common to two inde-
pendent data sets and calculates the probability that they
share similar biologic properties. Default parameters were
used.32

Differential Expression and Pathway

Enrichment Analysis

Salmon (v1.2.1) was used to quantify the gene expression
levels from RNA-seq data,33 using the reference annotation
GRCh38 (gencode.v32). Differentially expressed genes
among patient groups were identified with the limma
package in R.34 The clusterProfiler package was used to
test the pathway enrichment significance.35 P values were
adjusted using the Benjamini-Hochberg method.36

Statistical Analysis

All analyses and visualization were performed in R
(v.4.0.2). Kaplan-Meier survival estimates and Cox pro-
portional hazard analysis were performed with log-rank test
and hazard ratio (HR) to compare patient groups, using the
Survival package.37 Mann-Whitney-Wilcoxon test was used
to compare differences in the value distribution between
groups.38

RESULTS

IR Is a Potential Source of Neoantigens in PDAC

We first surveyed PDAC primary tumors in the TCGA
SpliceSeq database to examine the frequency of IR com-
pared with other alternative splicing events. We found that
IR accounted for 16.5% of all alternative splicing events,
which was second behind skipped exon (56%) and more
common than alternative 5′- and 3′-splice site and mutually
exclusive exons (13.7%, 12.1%, and 0.7%, respectively).
Using Kyoto Encyclopedia of Genes and Genomes gene set
enrichment analysis, we also found that the spliceosome
pathway was significantly upregulated in PDAC compared
with adjacent normal tissue (Data Supplement). These
findings are consistent with those of Wang et al,16 who first
reported the frequency of different alternative splicing
events and dysregulation of the spliceosome machinery
using Affymetrix exon array data from PDAC tissues.

Next, we investigated the immunogenic potential of IR-
derived neopeptides using RNA-seq data from 178 pan-
creatic cancer patient samples in the TCGA-PAAD cohort.
An overview of the data processing steps in our compu-
tational pipeline to identify IR events and IR-neoAgs is

diagrammed in Figure 1A. IR events were first identified in
68 normal pancreas GTEx RNA-seq data sets. We found a
total of 5,927 IR events that occurred in at least 25% of the
GTEx samples (Data Supplement). After filtering these
normal IR events, there were an average of 600 tumor-
specific IR events per sample. Each patient’sHLA genotype
was further deduced from RNA-seq data (Data Supple-
ment) and used to predict the number of IR-neoAgs in their
tumor sample. A total of 171,526 IR-neoAgs were predicted
with an average IR-neoAg load of 963 (range 43-4,284) per
tumor sample (Data Supplement). The number of IR-
neoAgs per tumor was strongly correlated with the num-
ber of IR events (Spearman correlation rho = 0.93, P ,
.001, Fig 1B). Interestingly, the predicted number of IR-
neoAgs presented by each HLA type was not related toHLA
allele frequency (Fig 1C). For example, HLA-A02:01
showed the highest allele frequency (24.2%), but this allele
was only predicted to present 11,014 (6.4%) of the IR-neoAg
peptides. By contrast, HLA-B07:02 had a lower allele
frequency (8.7%) but was predicted to present 23,481
(13.7%) IR-neoAgs. These findings suggest that a patient’s
HLA genotype is an important factor in predicting immu-
nogenicity of potential IR-neoAgs.

IR-neoAg Load Is an Independent Prognostic Factor for

Pancreatic Cancer

TCGA-PAAD tumors (N = 178) were divided into high and
low IR-neoAg groups on the basis of the median IR-neoAg
number. The high and low IR-neoAg groups were not
significantly different with respect to age, sex, tobacco
smoking, or for clinical features such as tumor stage, grade,
or microsatellite instability (Table 1). However, the median
OS time for patients with high IR-neoAg load was 24months
compared with 19 months for those with low IR-neoAg load
(Kaplan-Meier log-rank test, P = .011; Fig 1D). The as-
sociation between high IR-neoAg load and survival was
independent of clinicopathologic factors (P = .008, mul-
tivariate Cox regression analysis; Table 2). The HR was
0.55, indicating that high IR-neoAg load reduced the risk of
poor outcome by 45%. High IR-neoAg load was also as-
sociated with longer survival in the ICGC PDAC cohort
(N = 81), although these findings did not reach statistical
significance likely because of the smaller sample size (Data
Supplement).

Our findings agree with those of Tan et al,17 who showed
that IR was associated with PDAC patient outcome in a
curated subset of the TCGA-PAAD cohort (n = 150), which
excluded non-PDAC tumors such as acinar cell carcinoma,
pancreatic neuroendocrine tumors (PanNET), benign
neoplasms, and tumors with , 1% neoplastic cellularity.39

Since our initial survival analysis was performed using all
178 TCGA-PAAD samples with RNA-seq data, we repeated
the multivariate Cox regression analysis on the curated set
of 150 PDAC samples and considered tumor purity as a
covariate. Our results showed that high IR-neoAg load
remained significantly associated with longer OS (HR,
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0.605; 95% CI, 0.377 to 0.971; P = .037; Data Supple-
ment). These results, taken together, support IR and IR-
neoAg load as independent predictors of pancreatic cancer
progression and patient survival.

IR-neoAg Load Is Associated With Features of Tumor

Immune Response

To test whether high IR-neoAg load was accompanied by
immune cell infiltration in the TCGA cohort, we used a
deconvolution algorithm to estimate the relative percent-
ages and activation states of 22 types of immune cells from
bulk RNA-seq data.29 Seven cell types showed statistically
significant differences between high and low IR-neoAg
load tumors (Fig 2A). There were more memory B cells

(P = .014), follicular helper T (Tfh) cells (P = .011), and
naive CD4+ T cells (P = .044) in tumors with high IR-
neoAg load. By contrast, these tumors had fewer resting
mast cells (P = .002), resting dendritic cells (P = .011),
M1-macrophages (P = .013), and neutrophils (P = .003).
However, no significant correlation was observed between
IR-neoAg load and the relative percentage of CD8+ T cells
or other cytotoxic immune cell types (Data Supplement).
Although the overall percentage of infiltrating immune
cells was low, higher levels of memory B and Tfh cells are
generally associated with better prognosis and cancer
immunotherapy response.40-42 These findings imply that
IR-neoAg load may affect the immune cell composition of
the tumor microenvironment (TME).
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To better understand the molecular differences that might
contribute to OS between pancreatic cancers with high and
low IR-neoAg load, we compared the expression levels of a
collection of genes related to immune cell response,

consisting of nine B7 ligand genes, five B7 receptor genes,
six MHC-I genes, and nine MHC-II genes. We found that 12
of 14 B7 ligand and receptor genes had lower expression in
samples with high IR neoAg load, with CD86 and PD-L2
reaching statistical significance (Fig 2B). In addition, all
nine MHC-II genes were expressed at lower levels in the
high IR-neoAg group, with eight of nine reaching statistical
significance. Only one MHC-I pathway gene, TAPBP,
showed significant differential expression between tumors
with high and low IR-neoAg load. Thus, longer OS in pa-
tients with high IR-neoAg load tumors could be partially
explained by low expression levels of immune coinhibitory
genes that dampen effector T-cell responses.

IR-neoAg Load Together With Immune Checkpoint Gene

Expression Levels Are Associated With OS

The expression level of immune checkpoint genes, such as
PD-L1, is associated with ICB response and survival out-
comes in multiple cancers.43-45 Therefore, we asked
whether the correlation of IR-neoAg load and patient sur-
vival was associated with the expression levels of immune
checkpoint genes. To address this question, we stratified
TGCA-PAAD samples into four groups by IR-neoAg load
and immune checkpoint gene expression levels (median as
the cutoffs, Data Supplement). Kaplan-Meier survival
analysis revealed that patients with high IR-neoAg load
tumors and low PD-L1 gene expression (Fig 2C) had the
longest survival time compared with the other groups.
Similar findings were observed for the combinations of high
IR-neoAg load and low PD-1 (Fig 2D) or low CTLA-4 (Fig
2E) gene expression. Additional Kaplan-Meier survival
curves comparing these four patient groups stratified by IR-
neoAg load and expression of other inhibitory checkpoint
genes are shown in the Data Supplement. Taken together,
our results suggest that although most pancreatic cancers
have an immune-privileged phenotype, a subset of patients
with high tumor IR-neoAg and low expression of coinhi-
bitory genes may be able to generate a spontaneous an-
titumor immune response that could potentially restrain
tumor progression and increase patient survival. Further

TABLE 1. Clinical and Pathologic Characteristics of TCGA-PAAD Data Set

Characteristics No. Low IR-neoAg Load (%)
High IR-neoAg Load

(%) P

Age, years

Median 65 65 65

IQR 57-73 57-74 56-72

≤ 60 59 29 (32.6) 30 (33.7) .999

. 60 119 60 (67.4) 59 (66.3)

Sex

Female 80 41 (46.1) 39 (43.8) .880

Male 98 48 (53.9) 50 (56.2)

Tumor stage

I-II 168 83 (93.3) 85 (95.5) .859

III-IV 8 5 (5.6) 3 (3.3)

Unknown 2 1 (1.1) 1 (1.1)

Tumor grade

G1 + G2 126 61 (68.5) 65 (73.0) .807

G3 + G4 50 27 (30.3) 23 (25.8)

Unknown 2 1 (1.1) 1 (1.1)

MSI/MSS status

MSS 141 68 (76.4) 73 (82.0) .169

Indeterminate 28 18 (20.2) 10 (11.2)

MSI-L 9 3 (3.4) 6 (6.7)

Smoking statusa

No 121 63 (70.8) 58 (65.2) .521

Yes 57 26 (29.2) 31 (34.8)

Abbreviations: G, grade; IQR, interquartile range; IR-neoAg, intron-retention
neoantigens; MSI, microsatellite instability; MSI-L, microsatellite instability-low;
MSS, microsatellite stable; TCGA, The Cancer Genome Atlas.

aSmoking status was characterized as smoking exposure by pack-years . 1.

TABLE 2. Univariate and Multivariate Cox Regression Analyses of Overall Survival in TCGA-PAAD Patients

Variable

Univariate Analysis Multivariate Analysis

HR 95% CI of HR P HR 95% CI of HR P

IR-neoAg (high/low) 0.586 0.386 to 0.890 .012 0.549 0.353 to 0.854 .008

Age, years 1.028 1.007 to 1.049 .009 1.023 1.003 to 1.045 .028

Sex (male/female) 0.824 0.548 to 1.238 .350 0.959 0.617 to 1.492 .853

Stage (I/II/III/IV) 1.301 0.889 to 1.904 .175 1.211 0.801 to 1.830 .364

Grade (1/2/3/4) 1.448 1.089 to 1.925 .011 1.27 0.933 to 1.731 .129

MSI status (indeterminate/MSS/MSI-L) 1.111 0.659 to 1.872 .694 1.477 0.859 to 2.541 .158

TMB 1.000 0.999 to 1.000 .660 1.000 1.000 to 1.0002 .918

NOTE. TMB is the count of nonsynonymous mutations.
Abbreviations: HR, hazard ratio; IR-neoAg, intron-retention neoantigens; MSI, microsatellite instability; MSS, microsatellite stable; TCGA, The Cancer

Genome Atlas; TMB, tumor mutation burden.
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analysis showed that all eight PanNET patients in the
TCGA-PAAD cohort fell into this category and were among
the patients with the longest OS.

IR-neoAg Load and HLA-I Expression Identify a Subgroup

of Tumors That Have Similar Gene Expression Patterns as

Tumors That Respond to ICB Therapy

Tumor neoantigens are critical mediators of host immune
response and immunotherapy treatment efficacy. In addi-
tion, MHC class-I expression is essential for neoantigen
presentation. Because ICB therapy has not been used
routinely for patients with PDAC, we used SubMap, a sub-
class mapping method, to determine whether TCGA-PAAD
tumors with high IR-neoAg load and high HLA-I gene

expression levels shared similar transcriptomic profiles with
ICB therapy–responsive melanoma tumors.31 We calculated
an HLA-I score for each TCGA-PAAD tumor sample by
averaging the expression value of the three major HLA
genes, HLA-A, -B, and -C (Data Supplement). We then di-
vided the samples into two groups on the basis of the number
of IR-neoAgs and the HLA-I score. One group contained
samples with higher than the median IR-neoAg and HLA-I
score, denoted as IR-neoAghi-HLA-Ihi (n = 43) and the other
group consisted of all other tumors (n = 135). Notably,
SubMap analysis indicated that the gene expression profiles
of the IR-neoAghi-HLA-Ihi group showed significant similarity
with the subset of melanoma tumors that were responsive to
anti–PD-1 immunotherapy (Fig 3A, Bonferroni-corrected
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P = .028). However, no significant similarities were observed
between the TCGA-PAAD samples with IR-neoAghi alone or
combinations of IR-neoAghi with PD-1, PD-L1, or CTLA-4 ex-
pression and the anti–PD-1 responsive melanoma samples
(data not shown). Notably, 93% of the IR-neoAghi-HLA-Ihi tu-
mors (40 of 43) were classified as PDAC; three tumors were
excluded from the curated 150 TCGA-PAAD set, which
included two samples with low neoplastic cellularity and
one tumor that did not arise from the pancreas. We also
found that CD8+ T cells, as well as the total number of
tumor-infiltrating immune cells, were both significantly
higher in IR-neoAghi-HLA-Ihi samples compared with the
other tumors (Fig 3B, Wilcoxon test, P , .001). Further-
more, this set of IR-neoAghi-HLA-Ihi tumors had significantly
higher expression of PD-1 and PD-L1 genes (Fig 3C), which
likely reflects the higher proportion of CD8+ T cells and
other cytotoxic immune cells. Together, these results in-
dicate that patients with pancreatic cancer with IR-neoAghi-
HLA-Ihi tumors may represent a group that is more likely to
respond to anti–PD-1 treatment.

DISCUSSION

We have shown that tumor-specific IR-neoAg load is an
independent predictor of OS in patients with pancreatic
cancer. In addition, we found that the subset of tumors with
the combination of high IR-neoAg load and high HLA-I
gene expression had transcriptome profiles with significant

similarities to melanoma tumors that were responsive to
anti–PD-1 therapy. This subset of IR-neoAghi-HLAhi tumors
showed higher numbers of tumor-infiltrating immune cells,
including CD8+ T cells. Collectively, our findings suggest
that IR-neoAg load identifies patients with better prognosis,
and together withHLA-I expression levels, could be a useful
biomarker for selecting patients who may benefit from ICB
therapy.

TMB has emerged as a biomarker of response to ICB
therapy because it is a source of tumor-specific neo-
antigens that are targets of activated immune cells. TMB
and neoantigen load have been shown to correlate with
patient response to ICB therapy in several cancer
types.1,46-48 However, pancreatic cancer is characterized
by a low TMB that frequently does not meet the threshold
defined by clinical trials for ICB benefit.39,49-52 Like TMB,
intron retention is also a source of tumor neoantigens that
can be presented by MHC-I.14,53 Thus, in cancers with low
TMB, IR-neoAgs could be a potentially important bio-
marker for selecting patients who might benefit from ICB
therapy.

Importantly, additional factors other than neoantigens in-
fluence the ability of T cells to recognize and kill tumor cells.
For example, the TME is an important factor in the poor
responsiveness of PDAC to ICB therapy. PDAC TME is
highly desmoplastic because of the presence of cancer-
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FIG 3. High IR-neoAg and high HLA class-I expression identify pancreatic cancers with similarities to tumors responsive to immune checkpoint blockade
therapy. (A) Submap analysis comparing two groups from the TCGA-PAAD cohort (IR-neoAghi-HLA-Ihi [n = 43], and all Others [n = 135]) and four groups
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associated fibroblasts and a dense extracellular matrix,54

which impedes drug delivery. Because most patients with
PDAC present with advanced disease, combination ther-
apies will undoubtedly be necessary for overcoming

resistance and improving immunotherapy strategies. We
provide evidence that IR-neoAgs may aid in advancing
these efforts by providing a new tool for selecting patients
for participation in future clinical trials.
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