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One of the critical times for the survival of animals is twilight where the

most abundant visible lights are between 400 and 550 nanometres (nm).

Green-sensitive RH2 pigments help nonmammalian vertebrate species to

better discriminate wavelengths in this blue-green region. Here, evaluation

of the wavelengths of maximal absorption (kmaxs) of genetically engineered

RH2 pigments representing 13 critical stages of vertebrate evolution

revealed that the RH2 pigment of the most recent common ancestor of ver-

tebrates had a kmax of 503 nm, while the 12 ancestral pigments exhibited

an expanded range in kmaxs between 474 and 524 nm, and present-day

RH2 pigments have further expanded the range to ~ 450–530 nm. During

vertebrate evolution, eight out of the 16 significant kmax shifts (or |

Dkmax| ≥ 10 nm) of RH2 pigments identified were fully explained by the

repeated mutations E122Q (twice), Q122E (thrice) and M207L (twice), and

A292S (once). Our data indicated that the highly variable kmaxs of teleost

RH2 pigments arose from gene duplications followed by accelerated amino

acid substitution.

Vision is initiated by the absorption of lights by visual

pigments, each of which consists of an opsin, encoded

by an opsin gene, and the retinal (11-cis-retinal or 11-

cis-3, 4-dehydroretinal) derived from diet [1–4]. Prior

to the appearance of the vertebrate ancestor, five

groups of visual pigments already existed: rhodopsin

(or RH1), rhodopsin-like (or RH2), shortwave length-

sensitive type 1 (SWS1), SWS type 2 (SWS2) and mid-

dle- and long-wavelength-sensitive (M/LWS) pigments

that absorb light maximally (kmax) at 480–510, 450–
530, 360–440, 400–450 and 510–570 nm, respectively

[5-7].

One of the critical times for the survival of organ-

isms is twilight [8] where prevalent wavelengths are

between 400 and 550 nanometres (nm) [9,10]. As lights

pass through to deeper depth in the clear oceans and

lakes, the amount of light is reduced and short and

long wavelengths are absorbed by water and the

remaining lights also become limited to about 480 nm

[11]. Visual acuity of many species in these dim-light

environments has been improved by gene duplications

within RH1 [12], RH2 [13–17] and SWS2 pigment lin-

eages [14–15,18-26].

The molecular bases of the kmax shift (or spectral

tuning) in visual pigments have been studied mostly by

introducing various mutations into various present-day

pigments. This approach is based on two implicit

assumptions: (a) identical amino acid changes in differ-

ent pigments shift the kmax by the same magnitude and

(b) forward and reverse mutations shift the kmax in

opposite directions by the same magnitude. These

assumptions often fail because of the interactions
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among different amino acids, and conclusions derived

from these mutagenesis experiments can be erroneous

[27–30]. To elucidate the correct mechanism of spectral

tuning, it is imperative to genetically engineer and

manipulate ancestral pigments by following the actual

evolutionary processes in forward directions [27–30].

This was done for RH1 [30], SWS1 [31], and M/LWS

[32] pigments, but the similar molecular analyses have

not been applied to the RH2 and SWS2 pigments.

Here, we inferred and genetically engineered the

ancestral RH2 pigments at 13 critical stages of verte-

brate evolution and determined their kmaxs. Then, by

introducing additional mutations, the molecular mech-

anisms of kmax shifts at eight evolutionary steps of

RH2 pigments have been established.

Materials and methods

Inference of ancestral sequences

The amino acid sequences of ancestral RH2 pigments were

inferred by applying the phylogenetic analyses by maximum

likelihood (PAML) with Jones–Taylor–Thornton (JTT),

Whelan and Goldman (WAG), and Dayhoff amino acid

substitution models [33] to the amino acid sequences of the

37 vertebrate RH2 pigments and those of the more

restricted 24 pigments with known kmaxs (Fig. 1), together

with the RH1 pigment of bovine (Bos taurus) and the

RH1, SWS1 and SWS2 pigments of lamprey (Geotria aus-

tralis) as the outgroup (Table S1). Among the four paralo-

gous groups of pigments, RH2 pigments are most closely

related to RH1, SWS2 and SWS1 pigments, in that order

[6,34]. The divergence times of nonduplicated RH2 pig-

ments were estimated from the TimeTree of Life Web ser-

ver (www.timetree.org). The actual branch lengths of the

composite phylogenetic tree were also determined by apply-

ing PAML to the user tree based on the amino acid

sequences.

To infer the ancestral RH2 pigments, the amino acids

between sites 31 and 311 were considered (Fig. S1A). In

engineering ancestral pigments, we used an expression vec-

tor pMT5 that contained the amino (N) and carboxyl (C)

termini (amino acids between positions 1–30 and 312–354,
respectively) of the chameleon (P495; red letters in

Fig. S1B) with the proper internal segment of a RH2 pig-

ment. The N and C termini of chameleon (P495) do not

affect the kmax of a RH2 pigment significantly. For exam-

ple, zebrafish4 (P505) with its own and the chameleon

(P495) termini with the proper internal segment of a RH2

pigment have kmaxs of 505 nm [16] and 507 nm, respec-

tively, and gecko (P467) with its own and the chameleon

termini have kmaxs of 467 nm [35] and 466 nm, respectively.

Similarly, different amino acids at the N and C termini do

not modify the kmaxs of SWS1 pigments [31].

Thirteen ancestral pigments, inferred from JTT model

based on the 24 sequence data with more evenly distributed

kmaxs, were engineered: those of all vertebrates (AncAg-

natha, node 1), jawed fishes (AncJawedFish, node 2), Tele-

ostei (AncTeleost, node 3), Clupeocephala (AncClupeo,

node 4), Cypriniformes (AncCyprini1–2, nodes 5 and 6),

Euteleosts (AncEuteleost1–4, nodes 7–10), Tetrapods

(AncTetrapod, node 11), Sauropsids (AncSauropsid, node

12) and Squamates (AncSquamata, node 13; Fig. 1). In this

process, we engineered AncCyprini2 and AncSquamata first

by introducing six and 12 mutations into zebrafish4 (P505)

and chameleon (P495), respectively, and the remaining 11

ancestral pigments were engineered by sequentially intro-

ducing additional 128 mutations into various ancestral pig-

ments.

All mutant opsins were generated by using QuikChange

Site-Directed Mutagenesis Kits (Stratagene, La Jolla, CA,

USA). To rule out spurious mutations, the DNA fragments

were sequenced by cycle sequencing reactions using the

Sequitherm Excel II long-read kits (Epicentre Technologies,

Madison, WI, USA) with dye-labelled M13 forward and

reverse primers. Reactions were run on a LI-COR (Lincoln,

NE, USA) 4300LD automated DNA sequencer.

The in vitro assay

Ancestral and other mutant opsins were expressed in

COS1 cells by transient transfection [36]. The contiguous

RH2 opsins between sites 31 and 311 were cloned into

the EcoRI and SalI restriction sites of the expression vec-

tor pMT5, which contained the N terminus (amino acids

between positions 1 and 30) and C terminus (amino acids

between positions 312 and 354) of the chameleon (P495;

red letters in Fig. S1B). The visual pigments were regener-

ated by incubating the opsins with 11-cis-retinal (provided

by R. K. Crouch at Storm Eye Institute, Medical Univer-

sity of South Carolina and the National Eye Institutes)

and were purified using immobilized 1D4 (The Culture

Center, Minneapolis, MN, USA) in buffer W1 (50 mM

N-(2-hydroxyethyl) piperazine-N0-2-ethanesulfonic acid

(HEPES; pH 6.6), 140 mM NaCl, 3 mM MgCl2, 20% (w/

v) glycerol and 0.1% dodecyl maltoside). UV-visible spec-

tra were recorded at 20 °C using a Hitachi U-3000 dual

beam spectrophotometer (LI-COR Biosciences, Lincoln,

NE, USA). Visual pigments were bleached for 3 min using

a 60 W standard light bulb equipped with a Kodak Wrat-

ten #3 filter at a distance of 20 cm. Data were analysed

using SIGMAPLOT software (Jandel Scientific, San Rafael,

CA, USA).

Ethics

Research was carried out under approval of Emory

University according to the university’s animal ethics

guidelines.
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Fig. 1. A composite tree topology of 37 representative RH2 pigments in vertebrates. The numbers in ovals and after P in parentheses show

kmaxs of the ancestral and present-day pigments, respectively. Blue, grey, black and red indicate the kmaxs of 452–478, 488–492, 495–511 and

516–530 nm, respectively. The critical amino acid substitutions are shown along branches. Asterisks (*) indicate the gene duplication events.

Branches with significant kmax shift (|kmax| ≥ 10 nm) are indicated by thick lines, and the amino acid changes that fully explain the kmax shift are

indicated by bold italics. The divergence times at the bottom are taken from the TimeTree of Life Web server (www.timetree.org).
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Results

The amino acid sequences of ancestral pigments

The ancestral amino acid sequences inferred are highly

consistent. For example, when the earliest vertebrate

ancestor AncAgnatha (node 1, Fig. 1) is considered,

the amino acid sequences inferred by JTT and WAG

models show that 241 (86%) out of a total of the 281

comparable sites are identical with Bayesian posterior

probabilities (PPs) ≥ 0.95, 22 out of the remaining 40

sites also have identical amino acids with a

0.70 ≤ PP < 0.95, and different amino acids are pre-

dicted only at eight highly variable sites. The ancestral

sequences inferred using the 24 and 37 sequences are

also very similar. For AncAgnatha, JTT model shows

that amino acids at 263 out of 281 sites (94%) are

identical and only those at the other 18 sites differ

(indicated by * in Table S2). At these 18 sites, the pre-

sent-day pigments have variable amino acids, but their

kmaxs are similar, which implies that these amino acids

are not critical in determining the kmaxs of visual pig-

ments [34,37].

At potentially critical sites 122, 207 and 292 [5], the

24 and 37 data sets predict identical amino acids

throughout vertebrate evolution (Table S3). Specifi-

cally, E122Q, Q122E and M207L occurred three, four

and two times, respectively, while A292S occurred

once during the vertebrate evolution (Fig. 1).

One of these results disagrees with the published

result. Previously, using PAML with JTT model, it

was suggested that AncCyprini1 (node 5, Fig. 1; or

Ancestor1 in Fig. S2A) had E122 with a PP of 0.77

[38], but our result using the identical method shows

that AncCyprini1 (Fig. S2B) had Q122 with PPs of

0.89 and 0.97 using the 24 and 37 sequences, respec-

tively (Table S3). Comparing the two data sets, we can

find the cause of the discrepancy. That is, Chinen

et al. used the teleost data consisting of 10 pigments

with E122 and four pigments with Q122, which were

heavily biased towards E122. On the other hand, our

teleost data consist of eight pigments with E122 and

nine pigments with Q122 (Fig. S2A,B, respectively).

Because of the less-biased data set and significantly

higher PPs, it is most likely that AncCyprini1 had

Q122.

Functional differentiation

We applied the in vitro assay to the 13 ancestral pig-

ments engineered. The results show that (a) the amino

acid sequence of AncJawedFish differs from that of

AncTetrapod at multiple sites (Fig. S1B), but these

two pigments have identical kmax values at 488 nm,

and (b) the ratio of absorbance at ~ 280 nm to that at

~ 500 nm of the in vitro assay ranged from 2.5

(AncEuteleost) to 4.8 (AncSquamata; Fig. S3). In par-

ticular, AncAgnatha had a kmax of 503 nm and its

closest descendant, AncJawedFish (node 2, Fig. 1),

decreased its kmax to 488 nm, which had been main-

tained by six out of the remaining 11 ancestral pig-

ments (nodes 3–5, 7, 8 and 11; grey ovals, Fig. 1;

Fig. S3). However, the five others expanded their kmaxs

from 474 nm (node 9) to 524 nm (node 10) and the

kmaxs of present-day pigments have been expanded fur-

ther between ~ 450 and 530 nm.

We can find a total of 16 significant kmax shifts

(Dkmax ≥ 10 nm), and three branches stand out with

much larger kmax shifts (|Dkmax| ≥ 30 nm): (a) AncEu-

teleost2 (P489) (node 8) ? AncEuteleost4 (P524)

(node 10); (b) AncEuteleost4 (P524) (node

10) ? medakaC (P492); and (c) AncSquamata (P497)

(node 13) ? gecko (P467) (represented by thick

branches; Fig. 1).

The kmax shifts of RH2 pigments reveal three char-

acteristics (Fig. 1). First, despite their similarities, the

kmaxs of zebrafish3 (P488) and medakaC (P492) did

not evolve directly from that of AncJawedFish (P488),

but these pigments reversed their kmaxs to over 500 nm

before reaching about 490 nm. These changes can be

found only by reconstructing ancestral pigments at

intermediate evolutionary steps. Second, with the

exceptions of eel (P506), loosejaw (P468), coelacanth

(P478) and gecko (P467), significant kmax shifts have

been generated by gene duplications followed by criti-

cal amino acid substitutions. Third, the decreased

kmaxs of loosejaw (P468) and coelacanth (P478) are

closely connected with their unique adaptations to

their highly species-specific light environments ([39–

41]) and that of gecko (P467) indicates the adaptation

to its nocturnal environment.

Our mutagenesis results show that E122Q, Q122E,

M207L and A292S shifted the kmaxs of ancestral pig-

ments by 7–20 nm (Table 1). These mutations explain

eight evolutionary transitions: (a, b) AncAgnatha

(P503) (node 1) ? AncJawedFish (P488) (node 2) and

AncCyprini2 (P505) (node 6) ? zebrafish3 (P488) by

E122Q; (c–e) AncTeleost (P491) (node 3) ? eel

(P506), AncCyprini1 (P489) (node 5) ? AncCyprini2

(P505) (node 6), and AncEuteleost1 (P488) (node

7) ? scabbardfishC (P506) by Q122E; (f, g) AncAg-

natha (P503) (node 1) ? lamprey (P492) and AncTe-

trapod (P488) (node 11) ? coelacanth (P478) by

M207L; and (h) AncEuteleost2 (P489) (node

8) ? AncEuteleost3 (P478) (node 9) by A292S. How-

ever, the kmax shifts of AncEuteleost1 (P488) (node
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7) ? Loosejaw (P468) and AncEuteleost4 (P524)

(node 10)? medakaC (P492) cannot be explained by

M207L and E122Q alone, respectively. D83N can also

shift the kmaxs of other visual pigments by ~ 3–5 nm

[5], but it does not shift the kmax of AncSquamata

(P497) (node 13; Table 1).

We also searched for additional critical mutations

along two branches: AncEuteleost2 (P489) (node

8) ? AncEuteleost4 (P524) (node 10; Dkmax = 35 nm)

and AncTeptrapod (P488) (node 11) ? AncSauropsid

(P499) (node 12; Dkmax = 11 nm; Fig. 1). For the first

branch, the present-day pigments descended from

AncEuteleost2 (P489) can be distinguished into two

groups: (a) medakaB (P516), tilapiaAa (P528), tila-

piaAb (P518) and bfin killifish (P530) with

kmax ≥ 516 nm; and (b) medakaA (P452), tilapiaB

(P472) and medakaC (P492) with kmax ≤ 492 nm

(Fig. 1). Since nine changes (V60F, F74Y, Y96T,

Q122E, T209V, C213F, I255V, L259M and A273G)

are shared only by the pigments in the first group, we

hypothesized that some of these mutations were

responsible in increasing the kmax of AncEuteleost4

(P524). But, Q122E, Y96T/Q122E/C213F and V60F/

F74Y/Y96T/Q122E/T209V/C213F/I255V/L259M/

A273G explain only 43% (15 nm), 57% (20 nm) and

60% (21 nm) of the observed kmax shift (35 nm),

respectively (Table 1). Hence, the interactions between

E122Q and newly found critical changes Y96T and

C213F do not improve the result significantly.

For the second branch, nine changes (L40V, A42C,

M44I, I50T, V87A, A166S, I205L, L214I and L309M)

are found in pigeon (P503), chicken (P505) and zebra

finch (P508) with kmax ≥ 503 nm, but are missing from

coelacanth (P478) and gecko (P467) with

kmax ≤ 478 nm (Fig. 1). We found a new critical muta-

tion (M44I), which increased the kmax by 3 nm, but

neither M44I nor all nine changes (L40V, A42C,

M44I, I50T, V87A, A166S, I205L, L214I and L309M)

explain the kmax shift attained by AncSauropsid (P499)

(Table 1).

These two examples reveal the complex nature of

the spectral tunings in RH2 pigments. Chinen et al.

[38] encountered the same problem in explaining the

significant kmax shift from Ancestor1 (P506) to Ances-

tor2 (P474; supplementary information, Fig. S2A; for

more details, see Discussion section).

Evolutionary rates of amino acid substitution

To evaluate the effects of gene duplication on the

induction of the highly variable kmaxs in teleost RH2

pigments, we considered representative 22 sequences

and evaluated the numbers of amino acid substitutions

per site per year at three lineages: (a) the vertebrate

pigment lineage (lineage a), which excludes all Clupeo-

cephala pigments (lineage c); (b) the Tetrapod pigment

lineage (lineage b); and (c) the Clupeocephala pigment

lineage where gene duplication events are prevalent

(shown by a rectangle, lineage c; Fig. 2a). The branch

lengths from these nodes to their descendant pigments

were determined by applying PAML to the composite

evolutionary tree of the amino acid sequences. The

evolutionary rates were evaluated by taking the aver-

ages between bifurcated (or trifurcated) branches

sequentially and assuming that lineages a, b and c

Table 1. Effects of various mutations on the kmax shift. The

numbers after P show kmax values. When the kmax values of the

mutant and its descendant pigments are similar (|Dkmax| ≤ 4 nm),

the results are shown by bold letters.

Ancestral

pigment {node} Mutation

kmax

(Dkmax)

(nm)

Descendant

{node}

AncAgnatha

(P503) {1}

E122Q 486

(�17)

AncJawedFish

(P488) {2}

AncCyprini2

(P505) {6}

E122Q 489

(�16)

zebrafish3

(P488)

AncTeleost

(P491) {3}

Q122E 508

(+17)

eel (P506)

AncCyprini1

(P489) {5}

Q122E 504

(+15)

AncCyprini2

(P505) {6}

AncEuteleost1

(P488) {7}

Q122E 503

(+15)

scabbardfishC

(P506)

AncAgnatha

(P503) {1}

M207L 493

(�10)

lamprey (P492)

AncTetrapod

(P488) {11}

M207L 481

(�7)

coelacanth

(P478)

AncEuteleost2

(P489) {8}

A292S 478

(�11)

AncEuteleost3

(P474) {9}

AncEuteleost1

(P488) {7}

M207L 480

(�8)

Loosejaw

(P468)

AncEuteleost4

(P524) {10}

E122Q 504

(�20)

medakaC

(P492)

AncSquamata

(P497) {13}

D83N 496

(�1)

gecko (P467)

AncEuteleost2

(P489) {8}

Q122E 504

(+15)

AncEuteleost4

(P524) {10}

AncEuteleost2

(P489) {8}

Y96T/Q122E/C213F 509

(+20)

AncEuteleost4

(P524) {10}

AncEuteleost2

(P489) {8}

V60F/F74Y/Y96T/

Q122E/T209/

C213F/I255V/

L259M/A273G

510

(+21)

AncEuteleost4

(P524) {10}

AncTetrapod

(P488) {11}

M44I 491

(+3)

AncSauropsid

(P499) {12}

AncTetrapod

(P488) {11}

L40V/A42C/M44I/

I50T/V87A/A166S/

I205L/L214I/L309M

491

(+3)

AncSauropsid

(P499) {12}
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originated 615, 230 and 413 million years ago (MYA),

respectively (www.timetree.org). The results show that

the evolutionary rate for lineage c (0.9 � 0.12 9 10�9)

is significantly higher than that for lineage a

(0.3 � 0.05 9 10�9; Z = 4.0) and lineage b

(0.4 � 0.06 9 10�9, Z = 3.6) at 1% level (Fig. 2b).

Hence, the duplications of RH2 opsin genes were fol-

lowed by the significantly accelerated amino acid sub-

stitutions, which led Clupeocephala RH2 pigments to

expand the range of their kmaxs.

Discussion

Depending on whether AncCyprini1 (node 5, Fig. 1)

had Q122 or E122, the evolutionary processes of zeb-

rafish RH2 pigments can be interpreted very differ-

ently. If AncCyprini1 had E122 and a kmax of 506 nm,

the kmax of zebrafish3 (P488) decreased by E122Q and

Ancestor2 (P474) by E122Q and additional unidenti-

fied mutations [38] (Fig. S2A). On the other hand, if

AncCyprini1 had Q122 and a kmax of 489 nm and if

the kmax of Ancestor2 (P474) still holds, the kmax shifts

of AncCyprini2 (P505) and zebrafish3 (P488) are

explained fully by Q122E and E122Q, respectively, but

the critical mutations that caused the kmax shift of

Ancestor2 (P474) remain to be discovered (Fig. S2B).

This example shows that the mechanism of pheno-

typic adaptation can be understood by inferring the

ancestral sequences correctly. For that, we need to use

unbiased sequence data which, among other things,

should consist of roughly equal numbers of molecules

with different functions. Furthermore, to identify

mutations that generated highly variable kmaxs of

ancestral and present-day RH2 pigments, it would be

necessary to construct various sets of chimeric pig-

ments between a pair of pigments with different kmaxs

and then perform extensive mutagenesis experiments

[42–45].

The functional differentiation of euteleost RH2 pig-

ments has been accelerated significantly by gene dupli-

cations. Evolution by gene duplication may be

classified into four categories [46]: (a) gene duplication

itself does not cause any selection, (b) the duplication

itself renders selective advantage, (c) duplication

occurs in a gene for which genetic variation already

existed, and (d) duplications occur by whole-genome

duplication or large segmental duplication. The first

category includes Ohno’s neofunctionalization model

[47] and various subfunctionalization models [48–50].

Among these possibilities, neither selection caused

by gene duplication itself (category 2) nor functionally

meaningful genetic variation (category 3) have been

established in the preduplication phase of RH2 pig-

ments. During fish evolution, Euteleost and Cyprini-

form ancestors appeared roughly 240 and 100 MYA,

respectively [51]. Hence, RH2 gene duplications in

goldfish1 (P511) 

zebrafish1 (P467) 

gecko (P467) 

zebra finch (P505) 

medakaA (P452) 

coelacanth (P478) 

a

lamprey (P492) 

zebrafish4 (P505) 
zebrafish3 (P488) 

zebrafish2 (P478) 

goldfish2 (P506) 

eel (P506) 

medakaC (P492) 
medakaB (P516) 

tilapiaB (P472)  

tilapiaAβ (518)
tilapiaAα (P528)

bfin killifish (P530) 

scabbardfishC (P506) 
scabbardfishA (P496) 

chicken (P508) 
pigeon (P503) 

b

0.05 

c 

A 

B 
Lineage Length Evolutionary rate

(× 10–9/site/year) 

Divergence time  
6 (× 10   years)

a  

c 

b  

0.209 

0.198 

0.154 

615

230 

413 

0.339 (0.047) 

0.862 (0.122)** 

0.374 (0.059) 

Fig. 2. (A) The numbers of amino acid

substitutions per site for a composite tree

of 22 RH2 pigments were determined by

applying PAML [33] to the amino acids

between sites 31 and 311. Blue, grey,

black and red indicate the kmaxs of 452–

478, 488–492, 495–511 nm and 516–

530 nm, respectively. (B) The evolutionary

rates of amino acid substitution along the

branches including gene duplications (c

lineage) and without gene duplications (a

and b lineages). **P < 0.01 for the

comparison of the branches between c-

present and a-present and between those

between c-present and b-present. The

numbers in the parentheses indicate SE.
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fishes occurred much later than the fish-specific whole-

genome duplication (WGD), which occurred about

350 MYA [52], showing that neither WGD nor large

segmental duplication (category 4) [16] seem to be

involved. The differential ontogenetic RH2 gene

expression was described as ‘subfunctionalization’ [15],

but actual dual functions of the ancestral RH2 gene

have not been established. On the other hand, coela-

canths (Latimeria chalumnae) seem to have moved into

the depth at 200 m about 200 MYA [53] and the kmaxs

of the duplicated RH1 and RH2 pigments were

decreased to 482 and 478 nm, respectively, and started

to distinguish the narrow range of wavelengths avail-

able in its habitat [30,54]. Therefore, the kmax shifts of

RH1 and RH2 pigments and newer duplicate RH2

pigments can be described best by the neofunctional-

ization model.

The accelerated evolutionary rates of the duplicate

RH2 genes (lineage c, Fig. 2b) agree with the predic-

tion [47,55] and observations [56-58] of the evolution

of duplicate genes, and not the decelerated evolution-

ary rates that were caused presumably by the more

critical biological functions of duplicate genes, which

cause purifying selection [59]. In general, the latter

evolutionary patterns of duplicate genes do not apply

to opsin genes because in order to move into different

ecological environments, organisms need to readjust

the kmaxs of their paralogous visual pigments.

Finally, the kmaxs of 10 out of the 13 ancestral pig-

ments and lamprey (P492), eel (P506), zebrafish3

(P488), scabbardfishC (P506) and coelacanth (P478)

can be explained fully by the amino acid changes

E122Q, Q122E, M207L and A292S. When the amino

acids at the comparable 281 sites (positions 31–311) of
these 15 pigments are compared, 123 sites are polymor-

phic (red and black circles, respectively, Fig. 3). Hence,

for these pigments, the amino acid changes only at sites

122, 207 and 292 (2.4%) out of the 123 sites cause kmax

shifts and the remaining changes can be regarded as

‘selectively neutral’. Slightly higher magnitudes (~ 5%)

of adaptive sites have been observed for RH1 [30],

SWS1 [31] and M/LWS [32] pigments.

Conclusions

By inferring and engineering the RH2 pigments at

13 critical stages of vertebrate evolution, we have

shown that the green-sensitive pigments of the verte-

brate ancestor had a kmax of 503 nm, from which

the 12 ancestral pigments changed their kmaxs

between 474 and 524 nm and the present-day RH2

pigments have further expanded the range to ~ 450–
530 nm. Eight out of the 16 significant kmax shifts

of RH2 pigments can be explained by the mutations

E122Q (twice), Q122E (thrice), M207L (twice) and

A292S (once). The highly variable kmaxs of teleost

RH2 pigments have been achieved by gene duplica-

tions followed by accelerated amino acid substitu-

tion.
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Fig. S1. Aligned amino acid sequences of RH2 pig-

ments. (A) Present-day pigments, where Bkillifish,

scabbard, and Ital lizard are bluefin killifish, scabbard-

fish, and Italian lizard, respectively. The numbers after

P in parentheses show kmaxs. Amino acids sites 122,

207, and 292 are indicated by stars (*). (B) 13 ances-

tral pigments inferred by applying the PAML with

JTT model to the 24 sequence data, where the ances-

tral amino acids with < PP of 95% or less are indi-

cated by bold italic letters. The amino acids in red

letters are those of chameleon (P495). Following the

tradition in vision science, the amino acid site numbers

are those of bovine RH1 (GenBank accession no.

M21606).

Fig. S2. Two different inferences of the RH2 pigment

evolution in Cypriniformes. The AncCyprini1 was

inferred to have either E122 (A, Chinen et al. [38]) or

Q122 (B, present analysis). The kmaxs of Ancestors 1–3
are taken from (Chinen et al. [38]). The numbers in

ovals and after P in rectangles show kmaxs of the

ancestral and present-day pigments, respectively. The

amino acids at site 122 are given at the right column.

E122Q decreases the kmax, whereas Q122E increases

kmax. E122Q* explains about 47% of the kmax shift of

Ancestor2. Blue, grey, black, and red indicates the

kmaxs of 452–478, 488–492, 495–511, and 516–530 nm,

respectively.

Fig. S3. Absorption spectra of ancestral RH2 pig-

ments. The kmax values of AncJawedFish and AncTe-

trapod are identical at 488 nm but their absorbance

levels at � 280 nm are 1.1 and 1.6, respectively.

Table S1. The source of RH2 pigment sequences.

Table S2. Amino acids of AncAgnatha with PP <

0.95 (in parentheses) inferred using PAML with JTT

model.

Table S3. Amino acids of ancestral pigments at three

critical sites with PP (in parentheses) inferred using

PAML with JTT substitution model.
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