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Abstract: Poor solubility is the major challenge involved in the formulation development of new
chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion
(SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly
soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the
physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was
conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer
was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent
evaporation methods. The prepared formulations were assessed for physiochemical parameters
such as saturation solubility, drug content and in vitro drug release. The optimized formulations
were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro
cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release.
However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of
drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM
analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC
may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic
activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of
RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of
cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can
be successfully fabricated by EPO, and have all the characteristics that are favourable for superior
dissolution and better therapeutic response to the drug.

Keywords: solid dispersion; rosuvastatin calcium; Eudragit® EPO; docking; improved solubility;
anti-hyperlipidemic activity
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1. Introduction

The oral route has been found to be the most convenient route for taking medications,
owing to ease of administration and flexibility in the design of dosage systems [1]. It is
frequently documented that nearly 40% of newly discovered drugs have low solubility
and reduced bioavailability, regardless of their high permeability [2].This poor solubility of
drugs at various pH levels of the gastrointestinal fluid is a gigantic challenge in attaining the
desired therapeutic response. Thus, formulation scientists are constantly putting dynamic
efforts into developing strategies to advance the dissolution and/or apparent solubility of
poorly soluble drugs into orally bioavailable drugs [3].

Numerous formulation schemes—such as liposomes, nanoparticles [4], self-emulsifying
drug delivery systems (SMEDDS) [5], hydrotrophy [6], cyclodextrin complexation [7], cosol-
vency [8], micronization [9,10], chemical modification [11], solid lipid nanoparticles [12] and
amorphous solid dispersion (ASD) [13–16] are utilized in research to address the problems
of poorly soluble drugs. Currently, the fast-tracked progression of FDA-approved drugs
has decisively made solid dispersion (SD) an established technology for the design of hy-
drophobic drugs. SD consists of at least two different components: generally, a hydrophilic
matrix that is either crystalline or amorphous, and a hydrophobic drug that is dispersed
either as a discrete molecule or as an amorphous/crystalline particle [17]. The enhanced
dissolution rate of drugs from SDs may be reinforced by the reduction in particle size to
a molecular level, improved wettability and increased porosity [18]. SD can be prepared
using numerous methods such as fusion [19], precipitation [20], trituration [21], solvent evap-
oration [22], kneading [23], spray drying [24], hot-melt extrusion [25], lyophilization [20]
and electrospinning [26].

Rosuvastatin calcium (RoC) is the most effective antihyperlipidemic drug that compet-
itively inhibits hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase and decreases
the biosynthesis of cholesterol. It is mainly designated for the treatment of dyslipidemia.
Unlike other statins, it is considered to be highly potent and well tolerated in humans for
the management of hyperlipidemia [27]. However, being a BCS Class II drug, RoC mainly
exhibits poor oral bioavailability of 20% due to low aqueous solubility of 0.01 mg/mL [28].
This reduced solubility of RoC influences its dissolution rate and, in turn, its bioavail-
ability. Therefore, there is a need for a system that can augment the dissolution and oral
bioavailability of RoC [29].

The appropriate selection of a hydrophilic carrier for SDs has a significant impact on the
release of drugs in the upper part of the GIT. Eudragit® EPO (MW: 100,000–250,000 g/mol)
is basically a cationic terpolymer based on methyl methacrylate, N-N-dimethyl aminoethyl
methacrylate and butyl methacrylate monomers in the ratio of 1:2:1. EPO was selected
because the tertiary amine groups that ionize at an acidic pH make it highly soluble up to
pH 5. Additionally, it is also swellable and permeable in the GIT above pH 5. These features
make it a successful candidate for augmenting the solubility of hydrophobic drugs [30–32].

The intent of this study was to use the SD technique to improve the solubility, as well
as the dissolution, of BCS Class II rosuvastatin calcium (RoC) in the upper part of the GIT
by using pH-dependent methacrylate polymer (EPO). Additionally, the uniqueness of this
study lies in the fact the EPO-based SDs were first investigated for the improvement of anti-
hyperlipidemic activity. To achieve the goal line, the study was thoroughly characterized and
evaluated to meet a set level of improvement in terms of bioavailability and dyslipidemia.

2. Results
2.1. Saturation Solubility Studies

RoC has low aqueous solubility of 0.051 mg/mL and 0.421 mg/mL in distilled water
and 0.1 N HCl, respectively (Figure 1). The study of solubility conducted in bio-relevant
media shows a drastic increase of 4054.76, 4059.52, 6531.14, 5942.86, 5647.62, 4080.95, 7100,
6773.80, 5611.90 and 4647.62% for RoC-1, RoC-2, RoC-3, RoC-4, RoC-5, RSE-1, RSE-2,
RSE-3, RSE-4, and RSE-5, respectively (p < 0.05). Thus, the hydrophilic carrier (EPO) had
a significant role in enhancing the solubility of the pure drug (RoC) in the upper part
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of the GIT. The maximum and significant (p < 0.05) solubility is found to be for RoC-
3 (27.88 mg/mL) and RSE-2 (32.4 mg/mL) using the CG (co-grinding) and SE (solvent
evaporation) methods, respectively.
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2.2. Gibb’s Free Energy Calculation

Gibb’s free energy is basically an indicator of the spontaneous solubilization behavior
of a drug. The values for the Gibbs free energy are negative and in the range of 13,034.50 to
11,309.70. The higher negative Gibbs energy values of −12,385.67 and −12,627.16 are
revealed by RoC-3 and RSE-2, respectively.

2.3. Percentage Yield and Drug Loading

The prepared formulations were assessed for product yield and drug content (Table 1)
to govern the efficiency of the used methods. It is found that all the formulations demon-
strated good product yields ranging from 63 ± 0.84 to 96.87 ± 0.18%. The drug content is
in the range of 90.01 ± 0.29 to 98.50 ± 0.88 which is within accepted pharmacopeia limits.
RSE-2 confines the highest amount (98.50 ± 0.88%) of RoC in contrast to RSE-1 and RoC-5.
Based on the saturation solubility, Gibbs energy, percentage yield and percentage drug
content, RoC-3 and RSE-2 were selected for further studies, including FTIR, XRD, DSC,
SEM and PD.

2.4. FTIR Analysis

FTIR analysis is a procedure broadly utilized for the determination of chemical contact
between drugs and excipients. The FTIR spectrum of RoC (Figure 2a) exhibits evidence
of quite a lot of characteristic peaks at 1546.6 cm−1 (aromatic C–N stretching vibrations),
1507.3 cm−1 ( C–C stretching in aromatic ring), 1383.6 cm−1 (aromatic C–F stretching
vibration), 1322.9 cm−1 (sulfone asymmetric stretching) and 1223.45 cm−1 (C=O stretch
in carbonyl group). The intense broad bands at 3339.1 cm−1 are due to carboxylic OH
stretching and are suggestive of H-bonding between two molecules of RoC.
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Table 1. Gibbs energy, percent yield and drug loading of SDs.

Formulation Code Gibbs Energy Yield (%) Drug Content (%)

RoC-1 −12,327.79 90.96 ± 0.42 90.01 ± 0.29
RoC-2 −12,337.81 95.91 ± 0.28 90.69 ± 0.89
RoC-3 −12,385.67 96.87 ± 0.18 91.38 ± 0.83
RoC-4 −11,949.02 95.75 ± 0.21 92.88 ± 1.02
RoC-5 −11,309.71 95.21 ± 0.56 95.48 ± 1.32
RSE-1 −13,034.54 75.73 ± 0.14 96.17 ± 2.13
RSE-2 −12,627.16 79.75 ± 0.35 98.50 ± 0.88
RSE-3 −12,114.25 72.27 ± 0.09 95.89 ± 1.09
RSE-4 −11,846.16 68.75 ± 0.07 96.03 ± 1.04
RSE-5 −11,528.73 63.06 ± 0.84 95.62 ± 1.22
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The FTIR spectrum of EPO (Figure 2b) shows weak hydroxyl (O–H) stretching at
3437.43 cm−1, a strong aromatic C–H stretching band at 2954.81cm−1, a strong band of
alkene C–H stretching at 2814.88 cm−1, an intermediate alkene C=C stretching bend at
1449 cm−1, a strong bend of C–O stretching of the ester group at 1389.21 cm−1 and a strong
bend of C–C stretching at 1149.19 cm−1. The sharp peak at 1721 cm−1 is indicative of the
occurrence of carbonyl groups in EPO polymer. Moreover, the characteristic functional
group peak for dimethyl amino groups is observed between 2770 and 2824 cm−1.

The significant similarities are perceived in the spectra of pure RoC with reference to
physical mixture (1:1), RoC-3 and RSE-2 (Figure 2c–e). There is insignificant alteration in the
peak pattern of RoC in RoC-3 and RSE-2, which confirms the lack of chemical interaction
within the components of SDs.

2.5. Thermal Analysis

The thermal behavior and possible physicochemical interaction between the ingre-
dients were further investigated using DSC to foresee the shifting and disappearance of
peaks in SDs. A DSC thermogram (Figure 3) of pure RoC shows multiple onsets of glass
transition peaks in the ranges of 123–170 ◦C, and one deep endothermic peak at 219.89 ◦C
corresponding to its fusion and degradation. This predicts the semi-crystalline structure
of pure RoC. The pure hydrophilic polymer (EPO) does not show a melting endotherm
because of its amorphous nature. The DSC curves of RoC-3 and RSE-2 (also presented in
enlarged form in Figure S1) are seen to be flattened, corresponding to the strong molecular
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dispersion and entrapment of RoC inside the EPO polymeric matrix. The TGA thermo-
grams, Supplementary Figure S2, showed that onset of decomposition was delayed in both
RoC-3 and RSE-2. Moreover, thermal stability was found much better in RSE-2 in contrast
to the pure drug (RoC).
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2.6. PXRD Analysis

The PXRD spectra of pure drug, EPO and SDs (RoC-3 and RSE-2) are presented in
Figure 4. The pure drug indicates a semi-crystalline nature, with characteristic peaks at
8.05◦, 12.95◦ and 22.2◦ (depicted by arrows). Halo patterns are obtained for EPOs with no
intrinsic peaks. The complete disappearance of diffractogram peaks, such as 8.05◦, 12.95◦

and 22.2◦ in the optimized SDs, may be attributed to transformation into an amorphous
state with no crystallization during the formulation stages. This confirms that both the
drug and the polymer existed in an amorphous state in both RoC-3 and RSE-2.
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2.7. SEM Analysis

A micrograph of the pure RoC (Figure 5a) depicts well-defined crystals with rectangu-
lar dimensions and rough edges, which is quite typical of the semi-crystalline nature. The
microphotograph of physical mixture (Figure 5b) revealed differentiation in the manner as
smaller particles of EPO were seemed to be adhered to the bigger particles of RoC. The SEM
of RoC-3 (Figure 5c) exposed amorphous structure with irregular surface edges whereas
the SEM image of RSE-2 (Figure 5d) revealed more asymmetrical and amorphous features
that is quite typical of the lack of original shape of RoC.
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2.8. In Vitro Dissolution Study

The dissolution profiles of pure RoC and SDs in dissolution media maintained under
sink conditions are illustrated in Figures 6 and 7. In the initial 5 min, pure RoC exhibits the
slowest release rate of only 16%, and more than 40% of the drug is released from each of
the SDs (Figure 6). At 60 min, when the dissolution rate of the pure RoC is approximately
48.02%, the release rates for RoC-1, RoC-2, RoC-3, RoC-4 and RoC-5 are 88.78%, 89.74%,
96.91%, 92.99% and 91.19%, respectively. RoC-3 has the highest dissolution rate of 80.03%
in the first 5 min (p < 0.05) among all of the dissolution profiles using the CG method.

In case of the SE method, dissolution rates are 90.91%, 99.68%, 98.33%, 96.51%, and
93.81% for RSE-1, RSE-2, RSE-3, RSE-4 and RSE-5, respectively, at 60 min (Figure 7). Out of
all the formulations, RSE-2 exhibits the maximum percentage of drug release (92%) within
the initial 5 min (p < 0.05). It is evident that the dissolution rates of all the SDs significantly
differ from that of the pure RoC (p < 0.05). The dissolution profile and statistical analysis
suggest domineeringly favorable effects on the dissolution rate of RoC by RoC-3 and RSE-2,
and therefore, were designated for PD studies.

2.9. Docking Studies for In Silico Prediction of Solubility

The result (Figure 8) demonstrats that complexes with the lowest binding affinity
represent the most stable conformation. The docking gold score (binding affinity) presents
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interaction in the order of RoC-EPO (−7.82 Kcal·mol−1) > RoC-Kollidon (−2.74 Kcal·mol−1)
> RoC-PEG (−1.41 Kcal·mol−1). These negative values show that EPO could effectively
interact, owing to H-bonding with RoC, and could have the potential to prevent crystal
formation of RoC. Moreover, the hydrophobic interaction reveals the entrenchment of
drug RoC in the carrier (EPO). This prediction of a better interaction of EPO with RoC is
practically confirmed in this study by its enhanced solubility and improved bioavailability.
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Figure 8. Molecular docking Of RoC with (a) PEG, (b) Kollidon and (c) EPO at the receptor site: 1(a–c) depict
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2(a–c) present magnified views of 1(a–c), respectively; and 3(a–c) depicts amino acids involved in
H-bonding. The green dotted lines in 3(a–c) are symbolic of H-bonding, and pink dotted lines are
indicators of hydrophobic interaction.

2.10. Pharmacodynamic Studies
2.10.1. Influence on the Gain of Body Weight and Liver Index

The animals in the NC (normal control) group did not show any significant gain
(p < 0.05) in body weight during the entire experimental period, as they were fed a normal
diet. The most common cause for the induction of obesity with hyperlipidemia in rat models
is the consumption of a high-fat diet. As is clearly evident in Figure 9, the consumption of
a DRF (diet rich in fat) for 6 weeks led to significant gain (p < 0.05) of 230.87%, 208.01%,
204.10% and 204.72% in the body weight of rats in the HC (hyperlipidemia control) groups—
Group I, Group II and Group III, respectively—compared to the NC group. After the
treatment period of 4 weeks, a total increase of 286.56% was observed in the body weight of
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the HC group, which was found to be statistically significant (p < 0.05) in contrast to the NC
group (186.06%). During the end of treatment period, the elevated body weights of Group
I, Group II and Group III, respectively, presented drastic declines of 24.44%, 57.09% and
66.50%, in contrast to the HC group. The hyperlipidemia-induced rats treated with RoC-3
(Group II) and RSE-2 (Group III), respectively, attained more significant reductions (p < 0.05)
of 28.45% and 42.06% in their body weight gain in contrast to those who received pure RoC
(Group I). Interestingly, among all the treatment groups, Group III appeared to be much
more successful at weight gain reduction.
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Figure 9. Impact on % body weight of hyperlipidemia-induced rat models (n = 6) after oral adminis-
tration of DRF (6 weeks) and DRF + RoC-loaded SDs (4 weeks).

Likewise, the weight of the liver was significantly increased (p < 0.001) in the HC group
in contrast to the NC group, as graphed by the liver index (Figure 10). The calculated value
of the liver index of the HC group was 4.71 ± 0.45 and is comparable to the 2.71 ± 0.08 NC
value of the NC group. In contrast, the hyperlipidemic rats treated with pure RoC and
SDs (RoC-3, RSE-2) showed a significant decline (p < 0.05) of 24.46%, 31.06% and 39.57%,
respectively, in liver index, compared to the HC group. The liver index of RoC-3 and
RSE-2 was 3.24 ± 0.07 and 2.84 ± 0.15. Thus, it is confirmed that RSE-2 appears to be more
effective than ROC-3 and pure RoC (p < 0.05) in controlling the liver weight and index.

2.10.2. Biochemical Analysis of Serum Lipid Levels

The measurement of serum lipid levels (Figure 11) reveals a significant (p < 0.001) in-
crease in TC (total cholesterol), TG (triglycerides), LDL-C, and VLDL-C levels (115.75 ± 5.73,
187.15 ± 4.98, 94.82 ± 1.37, 37.43 ± 1.98), and a reduction in the HDL-C level (32.05 ± 1.90)
of the HC group in comparison to the NC group (74.75 ± 5.84, 70.27 ± 1.94, 52.22 ± 1.36,
37.43 ± 1.22 and 51.11 ± 1.16), respectively. These disturbed levels of lipids in the sera
of rats are indicative of dyslipidemia. The hyperlipidemic rats showed improvement in
dyslipidemia after the administration of pure RoC and SDs (RoC-3 and RSE-2), simulta-
neously with DRF, for 4 weeks. The intergroup comparison revealed that RSE-2 causes
significant (p < 0.05) improvement in the serum lipid levels of TC, TG, LDL-C, VLDL-C and
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HDL-C to almost normal values of 76.25 ± 6.70, 70.70 ± 3.90, 52.35 ± 5.25, 14.14 ± 1.78
and 49.10 ± 3.07, respectively, contrary to therapy with pure RoC and RoC-3.
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Figure 10. Influence of pure RoC and SDs on the liver index of rats (n = 6) fed DFR: α indicates statisti-
cally significant difference (p < 0.05) to NC group; β indicates statistically significant difference (p < 0.05)
to HC group; and η indicates statistically significant difference (p < 0.05) to Group I (DRF + Pure RoC).
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Figure 11. Influence of pure RoC and SDs on the serum lipid levels of rats (n = 6) fed DFR:
α indicates statistically significant difference (p < 0.05) to NC group; β indicates statistically sig-
nificant difference (p < 0.05) to HC group; η indicates statistically significant difference (p < 0.05) to
Group I (DRF + Pure RoC); and φ indicates statistically significant difference (p < 0.05) to Group II
(DRF + RoC-3).

The elevated levels of cholesterol and LDL-C and the decreased value of HDL-C have
prominent roles in the progression of atherosclerosis, while the anti-hyperlipidemic drugs
have the potential to reduce the atherogenic index (A.I) and cardiovascular complications
in diabetics with hypercholesterolemia (Figure 12). All the treated groups (I, II, III) reveal
a significant (p < 0.001) decline of 46.95%, 56.60% and 65.22%, respectively, in the occurrence
of atherosclerosis (Figure 12a) compared to HC group (4.1 ± 0.26). There is an insignif-
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icant difference (p < 0.05) between the A.I of the NC group (1.29 ± 0.029) and group III
(1.43 ± 0.14), while the A.I of groups I (2.19 ± 0.19) and II (1.79 ± 0.07) differ significantly
(p < 0.05), contrary to the NC group. Likewise, both groups (II & III) show a significant
(p < 0.05) decline in A.I compared to group I. This improved dyslipidemia suggests that
EPO-based SDs have the potential to overcome severities, even those prompted by the
simultaneous consumption of DRF.
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Figure 12. Influence of pure RoC and SDs on the A.I and TG/HDL-C ratio of rats (n = 6) fed on DRF:
where α indicates statistically significant difference (p < 0.001) to NC group; β indicates statistically
significant difference (p < 0.05) to HC group; η indicates statistically significant difference (p < 0.05) to
Group I (DRF + Pure RoC); and φ indicates statistically significant difference (p < 0.05) to Group II
(DRF + RoC-3), (a) Effect of pure drug (RoC) and optimized SDs on the Atherogenic index (A.I), (b) Effect
of pure drug (RoC) and optimized SDs on the TG/HDL-C ratio (an insulin resistance marker).

A TG/HDL-C ratio value greater than 3 is an indicator of insulin resistance (I.R), as well
as metabolic syndrome, whereby the risk factor for heart disease, diabetes and stroke increases.
The results (Figure 12b) indicate the worst TG/HDL-C ratio in the HC group (5.8 ± 0.25) and,
thus, present the lowest I.R. All the treatment groups (I, II, III) exhibit a significant (p < 0.05)
decline in I.R compared to the HC group. Similarly, both groups (II & III) show a significant
(p < 0.05) decline in I.R compared to group I. The TG/HDL-C ratio for group III (1.45 ± 0.16)
is very much similar (p < 0.05) to that of the NC group (1.37 ± 0.04).

2.10.3. Biochemical Analysis of Liver Functions (LFTs)

The main organ for lipid metabolism is the liver, so injury and damage to hepatocytes
can be estimated by observing elevated levels of liver enzymes. In the present study, the
increased levels of ALT and ALP (Figure 13) in the serum of HC rats were the indicator for
liver injury. Treatment with ROC and SDs (RoC-3 & RSE-2) significantly (p < 0.05) decreased
the elevated liver markers compared to the HC group, while group III (DRF + RSE-2) down
regulated the elevated levels of ALT and ALP and revealed an insignificant (p < 0.05)
difference to the NC group.

2.10.4. Macroscopic and Microscopic Examination of Liver

The liver of the NC group (Figure 14a) appeared reddish brown, which is a sign of
a healthy liver. Despite this, the liver of hyperlipidemic rats (HC group) appeared enlarged
and discolored (Figure 14b) due to consecutive consumption of DRF for 10 weeks. After
the treatment period, the visual appearance of the liver transformed from very pale red to
more reddish in the order of group III > group II > group I, which was clear evidence of
recovery to a healthy red liver (Figure 14c–e).
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Figure 13. Influence of pure RoC and SDs on the levels of liver enzymes ALT and ALP in rats (n = 6)
fed on DRF: where α indicates statistically significant difference (p < 0.001) to NC group; β indicates
statistically significant difference (p < 0.05) to HC group and η indicates statistically significant
difference (p < 0.05) to Group I (DRF + Pure RoC); (a) Effect of pure drug (RoC) and optimized SDs
on the levels of liver functioning enzyme alanine transaminase (ALT), (b) Effect of pure drug (RoC)
and optimized SDs on the levels of liver functioning enzyme alkaline phosphatase (ALP).
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The histology of normal liver tissues presented hepatocytes with centrally located
nuclei and intact cytoplasmic structures (depicted by arrow a) along with no noticeable
steatosis (Figure 15a). On the other hand, certain degrees of hepatosteatosis, illustrated
by the displacement of nuclei to eccentric position; some ballooning (indicated by arrow
b & c, respectively); and slight activation of Kupffer cells (Kc) (Figure 15b), an indication of
progressive non-alcoholic fatty liver disease (NAFLD), were observed in rat models of the
HC group. All the treatment groups presented reduction in the area of hepatic steatosis
and ballooning degeneration, contrary to the HC group. The liver samples of group I
(Figure 15c) displayed moderate hepatic degeneration with less vesicular steatosis and fat
accumulation. Likewise, these pathological anomalies induced by DRF were almost shifted
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towards less eccentric nuclei, along with intact cytoplasm and no vesicular ballooning in
the order of group III (Figure 15d) is better than group II (Figure 15e).
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Figure 15. Microscopic images of liver tissues at 40× magnification (H & E staining): (a) NC group;
(b) HC group; (c) Group I (DRF + RoC); (d) Group II (DRF + RoC-3); and (e) Group III (DRF + RSE-2).

2.11. Cell Viability Assay

A cell viability assay (Figure 16) showed no significant difference between the cytotox-
icity of pure RoCa, RSE-2, and the control (p < 0.05), suggesting that RoC, along with the
polymer (EPO) used, has excellent viability against the human hep G2 cell line. Thus, these
finding clearly indicate the non-toxicity and biocompatibility of RSE-2 in the formulation.
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Figure 16. Percent cell viability of control, pure drug and optimized formulation (RSE-2).

3. Discussion

A number of trials were conducted to finalize the formulation by varying the quantity
of the solvent, the time for solvent removal and its solubility in the presence of varying
concentrations of polymer. The selection criteria to obtain an optimized formulation were
set based on the percentage of drug content, solubility in bio-relevant media, and in vitro
release performance. The suitability of SD systems was suggested by the increasingly
negative value of ∆G [33]. The established SDs exposed the intensification in the solubility
of RoC by both methods, which might be ascribed by intermolecular H-bonding between
the carbonyl group of EPO and the hydroxyl group of RoC. Moreover, this improved
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solubility is thought to be due to reduced particle size and augmented surface area [34]. It
was also witnessed that the concentration of polymers played a vital role in the solubility
and drug content. The solubility was increased to twice the amount of polymer, and
after that, a reduction in solubility was noticed with increasing amounts of polymer. This
behavior exhibited by EPO was also noticed with the SDs of curcumin [35] and valsartan [9]
Saturation solubility studies conducted in phosphate buffer (pH 6.8) presented a reduction
in solubility with increasing amounts of EPO, which is also evidence of the pH-dependent
attribute of EPO (data not shown). The good drug content has been suggested to be due to
the higher concentration of EPO in SDs [36]. SDs (RSE-2), carrying acetone as a solvent,
have been seen to retain the maximal quantity (98.50 ± 0.88%) of RoC, probably due to
the better solubility of RoC in acetone [37,38]. These findings suggest an enhancement in
solubility and dissolution that can be more clearly seen in optimized SDs (RoC-3 and RSE-2).
A computer simulation predicted the strength of the interaction between the drug and the
excipients and directed that binding energy, with a higher negative value being suggestive
of a lack of phase separation with better stability of the system. Thus, this superlative
negative binding energy of EPO for RoC has the potential to form strong H-bonds [39].
These results of docking were found to be in excellent agreement with FTIR results.

The occurrence of peaks at the same wavenumber in the FTIR spectra confirmed the
compatibility between the drug and the excipients, with no chemical interactions. The
complete absence of a characteristic peak due to O–H bending at 1435.48 cm−1, and the
shifting of the characteristic peaks of RoC from 3339.1 cm−1 to 3127.13 cm−1, confirmed the
complete entrapment of RoC inside the EPO polymer [40]. The complete disappearance
of the melting point peak of the drug in RoC-3 and RSE-2 is suggestive of diminished
crystallinity and superior complexation of the hydrophilic polymer (EPO) with the drug. It
was established that the heat of fusion of the semi-crystalline RoC was diminished when
they were processed by CG and SE techniques [41]. The presence of amorphous polymer
EPO in SDs may be an indicator of the conversion of RoC to an amorphous form. The
absence of characteristic diffractions peaks in RoC-3 and RSE-2 confirmed that change in the
crystal habitat of RoC might be the reason for the enhanced solubility and dissolution. The
outcomes of the PXRD studies were proven to be consistent with the DSC studies [42]. The
asymmetrical and irregular appearance of the drug in SEM images indicated that SDs had
formed drug-loaded milieus with noticeable reduction in the drug crystallinity. This loss of
crystallinity of the pure drug was also supported by the perception that the SDs of RoC with
the methacrylate polymer (EPO) boosted its solubility and dissolution [43]. The dissolution
of orally administered drugs having poor aqueous solubility is an essential consideration
in terms of bioavailability. The dissolution behavior of RoC-loaded SDs exhibited better
and immediate release compared to that of the pure drug. This intensification in the release
of the drug from SDs may originate from numerous mechanisms such as reduced particle
size (depicted for RoC-3 and RSE-2 in Figure S3 of Supplementary file), enhanced surface
area and the conversion of a semi-crystalline form to a more thermodynamically stable
amorphous form. The rise in dissolution might also be due to the pH-dependent attribute
of the hydrophilic carrier, which immediately dissolves and instantly exposes the drug to
dissolution medium in the form of fine particles, as there is no lattice energy to overcome
unlike crystalline material [35,37].

Anti-hyperlipidemic agents were recommended as a targeted approach for the treat-
ment of patients with NAFLD, as approximately 70% of them have coexisting dyslipi-
demia [40] Additionally, literature has also reported the superior behavior of RoC over other
statins in tailoring the dyslipidemia and its associated complications of diabetic dyslipidemia
and coronary heart diseases. The current study also took into consideration the impact of the
developed formulation on dyslipidemia and its associated complications. The superiority of
anti-hyperlipidemic activity [27] and connected I.R (TG/HDL ratio) and A.I of RoC-3 and
RSE-2, unlike the pure drug, was probably due to their reduced size, facilitating their uptake
and transport across the fenestrae of the liver sinusoids. The better gross appearance and
recovery of the enzyme levels of the liver were suggestive of a lack of hepatic deterioration
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and hepatoprotection [12]. The underlying justification again relies on the diminished size
of the particles [44]. Thus, the better performance of RSE-2 compared to the pure drug
and RoC-3, from the standpoint of improved hepatic steatosis, biochemical analysis and
liver index, was suggestive of an advancement in physicochemical features of RoC; this
might be a reason for its improved therapeutic efficiency. Moreover, RSE-2 was found to
be bio-safe against the human liver cell line. This was found to be in accordance with the
phospholipid-based self-nanoemulsifying systems of RoC with the Caco2 cell line [42].

4. Materials and Methods
4.1. Materials

Rosuvastatin calcium (RoC, 98.5% pure) was generously supplied by Saffron Phar-
maceutical Pvt. limited Faisalabad, Pakistan. Eudragit® EPO (Tg = 48 ◦C) was donated
by Evonik industries (Piscataway, NJ, USA). Methyl alcohol and acetone of HPLC grade
from Daejung chemicals & metals co., Ltd., Shiheung, South Korea were procured by
Musaji Adam & Sons, Karachi, Pakistan. Freshly prepared distilled water was consumed
throughout the work. All other solvents, chemicals and reagents used in this study were of
analytical grade.

4.2. In Silico Docking Studies

Computational docking [45] was used to probe drug and polymer interactions at the
molecular level and to predict the impact of the selected polymer at the binding site of
target proteins. A 3D structure of the receptor HMG-COA reductase (1HWL) was retrieved
from the protein databank (PDB). The grid box size for the receptor, and the exhaustiveness
were set to 12. Consequently, the difference in the position and root-mean-square deviations
(RMSDs) less than 2 Å were clustered together. The energy minimization (EM), a desirable
feature prior to docking, for individual as well as drug–polymer structurewas performed,
to have the nethermost energy conformations of the complexes. All other parameters
remained at default [46]. Then, docking was conducted using GOLD docking software
(Version 5.3.0) for monomer units of PEG, Kollidon and EPO. Finally, Discovery Studio
Visualizer ver. 19.1.0 (BIOVIA, San Diego, CA, USA) was used for visualization of the
protein–ligand complexes, with the objective of optimizing the positions of the drug in the
polymer complex. The polymer with the superlative conformation and minimum binding
affinity was designated for preparation and evaluation by the SD system.

4.3. Methods for Preparation of SDs

Solid dispersions, in different ratios, were prepared using co grinding (CG) and solvent
evaporation (SE) methods, as shown in Table 2.

Table 2. Composition of solid dispersion formulations.

Formulation Code RoC-1 RoC-2 RoC-3 RoC-4 RoC-5 RSE-1 RSE-2 RSE-3 RSE-4 RSE-5

Ratio of drug 1 1 1 1 1 1 1 1 1 1
Ratio of EPO 0.5 1 2 3 4 0.5 1 2 3 4

In CG method, the definite amounts of drug and carrier polymer (EPO) were triturated
and blended with a mortar and pestle for a period of 30 min. The resulting formulations
were milled, passed through a sieve of mesh size 60, and stored in a desiccator until further
investigation. The solvent evaporation (SE) method was also used for the preparation of
SDs (Figure 17). The required amount of drug and hydrophilic polymer were accurately
weighed and dissolved separately into acetone to have a clear solution. The resultant
solutions were poured into a 250 mL round-bottom flask and evaporation was carried out
below 50 ◦C using a rotary evaporator (RE-100 Pro, Scilogex, CT, USA). Then the viscous
semisolid residue was dried at room temperature over a period of 24 h. The dried mass
was pulverized with the aid of a pestle and mortar and passed through a sieve of mesh
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size 60 to obtain SDs. All the prepared formulations were stored in an air-tight container in
a desiccator until further evaluation [35,47].
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4.4. Saturation Solubility Studies

Saturation solubility was determined by employing a shake-flask method using two
different media: distilled water and 0.1 N HCl (pH 1.2). An excess amount of pure drug/SD
was added into the 3 mL of media in a 15 mL tube. The tube was vigorously vortexed for
5 min and subjected to shaking for 72 h at 37 ± 0.5 ◦C in a shaking water bath (SWB 15,
Thermo-scientific, Waltham, MA, USA) at a speed of 75 rpm. Afterwards, the mixtures were
centrifuged at 6000 rpm for 20 min, filtered through a syringe filter (nylon, 0.45 µm) and
assayed using a UV–Vis spectrophotometer (CE-7400S, Cecil, Cambridge, UK) at 240 nm.
All solubility measurements were performed in triplicate [48].

4.5. Gibbs-Free-Energy (∆G◦tr) Analysis

This is the utilization of energy formed after an insoluble drug under goes through
phase transformation into soluble form [49].The ∆G◦tr values of pure RoC and RoC SDs
were calculated using the following equation:

∆G◦TR =
{
−2.303RT ÷ LogSo/Ss

}
where So is the solubility of pure RoC in water and Ss is the solubility of RoC SD systems
in water. The R is a universal gas constant with a value of 8.31 J/K mol, and T is the
temperature in Kelvin [50,51].

4.6. Determination of Percentage Yield and Drug Content

All prepared SD powders were weighed, and the yield was calculated in percentage
by the following equation [52];

Yield (%) =
weight of dried solid dispersion

weight of pure RoC + EP0
× 100

20 mg of the sample was accurately weighed and dissolved in 10 mL of methanol. The
absorbance of the solution, filtered through 0.45 µm nylon syringe filters, was recorded at
240 nm using a UV–visible spectrophotometer (CE-7400S Cecil, Cambridge, UK) after dilu-
tion with acidic buffer media. The drug content was calculated by following equation [53]:
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Drug content =
Absorbance of sample containg 20 mg of RoC in formulation

Absorbance of 20 mg of pure RoC
× 100

4.7. FTIR for Structural Analysis

FTIR spectra were acquired from Agilent Cary 360 FTIR spectrometer (Agilent scien-
tific Instruments, Santa Clara, CA, USA) in KBr discs over a range of 500 cm−1 to 4000 cm−1

at a resolution of 2 cm−1. Data collected in the transmission mode were analyzed using
an Essential FTIR [54], to evaluate the interaction of excipients with the drug.

4.8. DSC Analysis

The thermograms of samples were recorded using a thermal analyzer (SDT Q600,
V20.9 Build 20, TA instruments, New Castle, DE, USA) by sealing samples in an aluminum
pan. Analysis was carried out at a heating rate of 10 ◦C/min with a temperature range of
25 to 400 ◦C, under a nitrogen purging rate of 20 mL/min [55].

4.9. PXRD Analysis

The diffraction patterns of samples were obtained using an X-ray powder diffrac-
tometer (D8 Advance, Bruker Corporation, Billerica, MA, USA). A sample (10 mg) was
packed in an aluminum sample container to obtain the diffraction pattern, by setting the
machine to a voltage of 30 kV, a current of 30 mA, from 5◦ to 60◦ and at the angular speed
of 2θ/min [56].

4.10. Scanning Electron Microscopy (SEM)

The shape and surface morphology of the pure RoC and optimized SDs were examined
at various magnifications using a Nova-Nano-450 (FEI, Hillsboro, OR, USA) SEM with the
aid of a TLD detector at a voltage of 10 kV [13].

4.11. In Vitro Drug Release

The dissolution behavior of the pure drug and SDs was determined using USP ap-
paratus II (DT 70, Pharma Test, Hainburg, Germany). Accurately weighed quantities of
pure RoC and SDs equivalent to 20 mg were placed in vessels containing 900 mL of freshly
prepared 0.1 N HCl. The dissolution studies were performed by keeping the temperature
of a water bath at 37 ± 0.5 ◦C and a stirring rate of 100 rpm. Aliquots of 5 mL with
replacements of fresh medium were withdrawn at predefined intervals of 5, 10, 15, 30, 45
and 60 min. Samples were filtered and analyzed for the dissolved drug, in triplicate, at
a wavelength of 241 nm using a UV–Vis spectrophotometer [57].

4.12. Pharmacodynamics (PD) Study in Rats
4.12.1. Experimental Animals

Thirty male Wistar rats, weighing about 140 ± 20 g, with ages ranging from 4–5 weeks
were purchased from the animal house of the Government College University, Faisalabad,
Pakistan. The animals were kept in a tidy and well-ventilated room at a controlled tempera-
ture of 25 ± 2 ◦C, with 60 ± 5% relative humidity, over 12 h light/dark cycles. Compulsory
arrangements were maintained for free access to food and water for all animals. The
animal experiments were conducted according to international and institutional guidelines
after approval by the Institutional Review Committee, Government College University
Faisalabad (Ref No. GCUF/ERC/2068, Study No. 19669, IRB No. 669, 5 September 2019).

4.12.2. Experimental Protocol

In vivo studies were carried out on five groups each comprised of six rats. The
experimental protocol (Table 3) was conducted for ten weeks, split into two periods. The
initial period comprised of six weeks and was used for the induction of hyperlipidemia
with the diet enriched in fat [58]. At the end of dyslipidemia period, the treatment phase
with suspension of pure RoC, RoC-3 and RSE-2 was initiated and continued for four weeks.
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During this time frame, the pure drug and SDs were administrated daily via gastric lavage
at a dose of 20 mg/kg of RoC.

Table 3. Animal grouping for experimental protocol.

Groups Hyperlipidemia Induction Period
(0–6 Weeks) Treatment Period (7–10 Weeks)

Group NC SCF SCF
Group HC DRF DFR

Group I DRF DFR + pure RoC suspended in 1.33% of CMC solution
Group II DRF DRF + RoC-3 (equivalent 20 mg) suspended in 1.33% of CMC solution
Group III DRF DRF + RSE-2 (equivalent 20 mg) suspended in 1.33% of CMC solution

NC = normal control; HC = hyperlipidemia control; SCF = standard chow feed; DRF = diet rich in fat (SCF + 35% beef
tallow fat); CMC = carboxy methyl cellulose.

The weights of all animals were noted on a weekly basis for the entire period to predict
the effect of the fatty diet, as well as treatment, on the body weights of the animals.

4.12.3. Sample Collection

The animals were kept in a fasting state overnight with water provided ad libitum.
Blood samples from sacrificed animal were taken and centrifuged at 6000 rpm for 15 min
to separate the serum layer. The serum was then stored at −20 ◦C until further analysis
of the lipid and liver profiles. Additionally, the livers were excised, washed with normal
saline, and blotted between layers of filter paper for the removal of surface water. Then,
the liver index was estimated from the weight of the liver, and the total body weight using
the given equation [59].

liver index (%) =
weight of liver (g)

weight of animal (g)
× 100

4.12.4. Serum Biochemical Analysis

The serum, prepared from fasted blood samples, was analyzed to detect the con-
centration of triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL-C)
cholesterol and low-density lipoprotein (LDL-C) cholesterol by employing enzymatic col-
orimetric methods using commercially available kits (Giesse diagnostics, Guidonia, RM,
Italy). The assay was performed according to the guidelines of the manufacturer using an
auto-analyzer (Microlab 300, Merck, NJ, USA). The very low-density lipoprotein (VLDL-C)
cholesterol was calculated as VLDL = TC/5 [60]. The TG/HDL-C ratio, a marker of insulin
resistance, was also calculated in obese models. Moreover, an Atherogenic index (A.I) to
estimate the risk of atherosclerosis was calculated using the following formula, as reported
in literature [61].

A.I =
LDL − C + VLDL − C

HDL − C

Additionally, the biomarkers for LFTs were determined for levels of alanine transami-
nase (ALT) and alkaline phosphatase (ALP) in the sera using commercial diagnostic kits
(Giesse diagnostics, Guidonia, Rome, Italy) to foresee hepatic protection.

4.12.5. Histopathological Examination

For histological examination, the removed livers were fixed in 10% neutral-buffered
formaldehyde (NBF) solution. After fixation, the tissue sections were embedded in
a paraffin block, segmented at 5 µm, and stained with hematoxylin and eosin (H&E).
The microscopic images were captured via Capta Vision software (ACCU-SCOPE 3000,
Commack, NY, USA) for the examination of any pathological changes and/or improvement
in the individual liver as a result of HFD and/or formulations.
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4.12.6. Statistical Analysis

All data obtained from the six rats were expressed as the mean ± standard deviation
of the mean. One-way-AVOVA and two way-ANOVA, followed by post-hoc Tuckey test,
were performed for the pairwise comparison of columns using Graphpad prism software
ver. 5.01 (Graphpad Software, San Diego, CA, USA). Any differences among the groups
were considered statistically significant at p values less than 0.05.

4.13. In Vitro Cell Viability Assay

The in vitro cytotoxicity was assessed by employing an MTT assay using human liver
cell line. The Hep G2 cell line was seeded in 96-well plates and incubated at 37 ◦C for 48 h
before treatment with samples. Then, the prepared cells were incubated with pure RoC
suspension, and RSE-5 at 37 ◦C for 48 h with conservation of 5% CO2 and 95% fresh air
during the whole period. Afterwards, 10 µL of MTT (5 mg/mL stock) solution was added
in each well and incubated for next 4 h at 37 ◦C. The media were aspirated, followed by
the addition of DMSO (150 µL) to solubilize the formazan crystals. Finally, the absorbance
was measured at 490 nm using an ELIZA plate reader (Type 357, Thermo Fisher Scientific,
Shanghai, China), and cell viability was calculated [62] using the following equation:

Percentage cell viability =
Absorbance of treated cell
Absorbance of control cell

× 100

5. Conclusions

In this study, we successfully prepared SDs of RoC using the CG and SE method. SE
showed more promising results than CG in RoC-based SDs. The most satisfactory results
were presented by RSE-2 for enhanced solubility with an asymmetrical surface. The in vitro
release profiles indicated an immediate release of RoC from the SDs. Our findings present
an enhanced vision of pharmacodynamics studies and prove the ameliorative effect of
RSE-2 in dyslipidemia, in contrast to the pure drug. Thus, it is concluded that the prepared
EPO-based SD is not only safe for the human hep G2 cell line, but also has the potential to
improve the solubility of the hydrophobic drug (RoC) and the existence of the associated
anti-hyperlipidemic effect.
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