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Abstract

Both the threat of bioterrorism and the natural emergence of contagious diseases underscore the impor-
tance of quantitatively understanding disease transmission in structured human populations. Over the last
few years, researchers have advanced the mathematical theory of scale-free networks and used such theo-
retical advancements in pilot epidemic models. Scale-free contact networks are particularly interesting in
the realm of mathematical epidemiology, primarily because these networks may allow meaningfully struc-
tured populations to be incorporated in epidemic models at moderate or intermediate levels of complexity.
Moreover, a scale-free contact network with node degree correlation is in accord with the well-known pre-
ferred mixing concept. The present author describes a semi-empirical and deterministic epidemic modeling
approach that (a) focuses on time-varying rates of disease transmission in both unstructured and structured
populations and (b) employs probability density functions to characterize disease progression and outbreak
controls. Given an epidemic curve for a historical outbreak, this modeling approach calls for Monte Carlo
calculations (that define the average new infection rate) and solutions to integro-differential equations (that
describe outbreak dynamics in an aggregate population or across all network connectivity classes). Numer-
ical results are obtained for the 2003 SARS outbreak in Taiwan and the dynamical implications of time-
varying transmission rates and scale-free contact networks are discussed in some detail.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The presence and likely impact of contagion are critical issues that surround a bioterrorist at-
tack, the natural emergence of a new disease, or the accidental release of a dangerous pathogen
into the natural environment. Even if effective countermeasures are available, a failure to com-
pletely contain a contagious disease may give rise to a far-reaching epidemic with considerable
social disruption and economic impact. Both civilian and military homeland biodefense planners
are thus faced with a broad spectrum of contagious disease threats and a sound conceptual frame-
work is necessary to shape and plan threat responses. Arguably, well-designed epidemic modeling
studies can contribute significantly to such a conceptual framework.

Severe acute respiratory syndrome (SARS) is the first new contagious disease to emerge in the
21st century. Initial SARS cases occurred in southern China during November of 2002 and inter-
national air travel quickly spread the disease through Asia, North America and Europe. On the
Sth of July 2003, the World Health Organization announced the global containment of SARS
cases. This international outbreak was responsible for about 8100 cases and 775 deaths. More-
over, Asian economies (for example) suffered losses in the neighborhood of 15 billion dollars (plus
additional billions of dollars for economic stimulus packages) [1].

The SARS outbreaks of 2002 and 2003 are instructive for several reasons. First, modern phar-
maceuticals could neither prevent SARS infections nor abort the natural course of SARS cases.
Each affected country controlled the spread of SARS in traditional ways: (a) case identification
and contact tracing, (b) case-patient isolation (hospital infection control), and (¢) exposure man-
agement (quarantine). Second, disease surveillance shortcomings and public health capacity lim-
itations constrained SARS responses of Asian governments. Asian public health systems were
clearly under stress and international assistance may have been critical in avoiding much larger
outbreaks. Third and last, a great deal of SARS epidemiological information has already been
published and more SARS data is likely to appear in the scientific literature.

The available SARS outbreak data has prompted researchers to reexamine the question of how
best to quantitatively describe outbreak dynamics when traditional outbreak controls are the only
viable countermeasures [2-5]. Good answers to this question have been (and will be) essential to
the development of sound biodefense requirements and plans.

Epidemic models have long been valuable tools for studying the dynamics of contagious dis-
eases in human populations. Assuming an unstructured population and the standard incidence,
disease transmission occurs by means of homogeneous mixing, where each contagious individual
is free to contact and infect any susceptible individual. But if the population is structured accord-
ing to cultural, socio-economic, demographic or geographic factors, there is a mixing matrix that
constrains opportunities for disease-causing contacts. Proportionate and preferred mixing matri-
ces have enhanced the explanatory and predictive powers of epidemic models since the late 1980s
[6]. It is also true that sufficient data is seldom accessible to quantitatively define key mixing ma-
trix elements for a large and highly structured population.
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Viewing a structured population as a contact network, nodes or vertices in this network repre-
sent individuals and links or edges indicate potential disease-causing contacts. Mounting evidence
shows that various real-world networks are scale-free; i.e., the probability distribution for the
number of links per node (or the node ‘degree’) follows a power law [7,8]. This power law is asso-
ciable with network evolution or growth. More specifically, in contrast to classical random
graphs, a scale-free network is a growing open system that accommodates a new node by attach-
ing it to certain preexisting network nodes. The growth process for a scale-free network gives rise
to another distinguishing feature, correlated degrees of connected nodes [9]. In the absence of
node degree correlation, network-based epidemic models often entail proportionate (random)
mixing assumptions.

May and Lloyd seem to have been the first researchers to incorporate scale-free network char-
acteristics in a basic SIR (susceptible-infectious-removed) model for structured populations [10].
These investigators relied upon a random mixing matrix and treated the discrete node degree as a
continuous variable. They derived mathematical expressions and obtained numerical results
describing (a) the infected fraction of the entire population as a function of a basic reproductive
parameter and (b) the infected fraction by node degree for selected parameter values. These
researchers focused on epidemic threshold issues and they did not discuss how a scale-free net-
work could affect outbreak dynamics.

Barthelemy, Barrat, Boguna, Pastor-Satorras and Vespignani have published a series of inter-
esting and informative papers that explore network effects on outbreak dynamics [11-16]. They
have mathematically defined important properties of scale-free networks and examined epidemi-
ological implications of these properties using susceptible-infectious (SI), susceptible-infectious-
susceptible (SIS) and SIR models. In their network-based SI, SIS and SIR analyses, Barthelemy
and coauthors routinely assumed an unbounded total population and employed a uniform initial
condition (forcing all node degree or connectivity classes to be initially infected at the same level);
additionally, they concentrated on an epidemic’s exponential growth phase. The principal finding
of these analyses is that, once high connectivity classes become infected, a cascade of infection
occurs and affects lower and lower connectivity classes over time. Lastly, with regard to a non-uni-
form initial condition, the investigators found that confining all initially infected individuals to a
single high-connectivity class would lead to an outbreak involving a faster rise and a faster inva-
sion of the network.

Two published studies describe stochastic SARS outbreak simulations based upon lattices or
grids and ‘small world’ linkages. Masuda, Konno and Aihara [17] argue that their simulations
of the 2003 SARS outbreak in Singapore (as well as the general nature of SARS epidemics) are
inconsistent with clustering properties and epidemic thresholds of scale-free networks. On the
other hand, findings of the present author indicate that a finite scale-free network with node de-
gree correlation is consistent with the 2003 SARS outbreak in Taiwan. Small and Tse [18] discuss
their simulation of the 2003 SARS outbreak in Hong Kong and they make the following obser-
vations: (a) a small world network with long distance links can exhibit scale-free behavior and (b)
further work must be done to ascertain whether their simulation results reveal that type of behav-
ior. Although clear evidence of scale-free contact networks is at hand for sexually transmitted dis-
eases [19], similar published evidence of SARS-related contact networks is currently unavailable.

The main objectives of the present study are to: (a) develop congruent epidemic models for
unstructured and structured populations that can better exploit currently available information
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on SARS progression and outbreak controls; (b) demonstrate the utility of these models by
carefully reconstructing the dynamics of a historical SARS outbreak; and (¢) employ historical
time-varying rates of SARS transmission to assess effects of control measures in possible future
outbreaks. Zoonotic infections and ordinary human activities in Asia may again be responsible
for major SARS outbreaks, but it is also conceivable that a bioterrorist attack (for example,
human vectors and intentional person-to-person SARS transmission) would cause even more
human suffering and deaths. Epidemic models are clearly needed to quantitatively understand
both natural and unnatural outbreaks of contagious diseases and to help improve or delimit
outbreak response capabilities of health care systems.

This paper puts forward two complementary epidemic models for unstructured and structured
populations. The SEIR-like compartmental framework' for both models is deterministic and
encompasses the standard incidence. An ‘X’ compartment (with Xs, Xg and X7 sub-compart-
ments) is also a feature of this framework and it facilitates quantitative characterizations of
outbreak control measures (quarantine, contact tracing and patient isolation). Most importantly,
in order to enhance epidemiological realism, the two models accommodate a time-varying
transmission rate and probability density functions (PDFs) for several important time intervals:
namely, latent (incubational), contagious, onset-to-diagnosis, admission-to-discharge (from a
hospital) and onset-to-death.

When exponential PDFs govern the latent and contagious periods, only mean values of these
random variables enter a typical SEIR model. But alternative SEIR formulations make the
assumption of exponentially distributed time intervals unnecessary. This is to say, by replacing
differential equations (DEs) with integro-differential equations (IDEs), previous investigators
have utilized non-exponential PDFs in fully characterizing latent and contagious periods
[20,21]. The present author adopts a similar approach and obtains IDEs containing general PDFs
for all key time intervals. Although numerical algorithms for these IDEs can require substantially
more computer time than those for exponential PDFs and associated DEs, the higher level of epi-
demiological realism helps to confidently resolve critical dynamical aspects of network-based
models.

The finite and discrete scale-free network of primary interest is the product of a rigorous math-
ematical analysis and the derived node degree PDF is in good agreement with results of numerical
simulations [22]. Network characteristics enter our epidemic model for a structured population
through (a) the node degree PDF and (b) the Pearson correlation coefficient for degrees of con-
nected nodes. The size of the total population and the node degree PDF determine sizes of all con-
nectivity classes, which are the selected sub-populations for the epidemic model. Similarly, the
aforementioned correlation coefficient can be related to the preferred mixing parameter for our
structured population. This correlation coefficient has been evaluated for some scale-free social
networks [23], but it is essentially an unknown quantity in the realm of SARS outbreaks and

! Typical SEIR (susceptible-exposed-infectious-removed) models allocate the fixed total population among compart-
ments in accordance with a constant disease transmission rate and mean incubation and contagious periods. In these
models, ‘exposed’ individuals are infected and non-contagious, ‘infectious’ people shed the pathogen and can infect
others, while those in the ‘removed’ category are immune and no longer sources of infection. Removed individuals can
be alive or dead and, if alive, they may still need medical care.
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contact networks. Numerical results in the main body of this paper thus cover a range of corre-
lation coefficient values as well as different locations (connectivity classes) of the index case.

Utilizing a network-based model to analytically reconstruct a historical outbreak indicates the
model’s explanatory value and also ties its dynamical behavior to real epidemiological circum-
stances. For instance, if the analytical reconstruction of a 2003 SARS outbreak demonstrates a
cascade of infection (from higher to lower connectivity classes) within the selected contact net-
work, this resultant chain of disease transmission is at least connected with (a) the observed pro-
gression of one specific disease, (b) specific social (including health care) settings and (¢) modern
implementations of traditional control measures.

Since it has received relatively little attention from the epidemic modeling community at large,
the 2003 SARS outbreak in Taiwan is analyzed herein. Ying-Hen Hsieh at the National Chung
Hsing University (along with colleagues at other universities and government organizations in
Taiwan) co-authored some interesting descriptive and analytical papers dealing with the Taiwan
SARS outbreak. Hsieh and colleagues used SARS hospitalization and fatality data spanning one
month (May 5 through June 4, 2003) to obtain parameter values for an epidemic model (i.e., a
system of ordinary DEs) without quarantine or hospital isolation [24]. Subsequently, these
researchers included a two-level quarantine and hospital isolation in another system of ordinary
DEs and they performed a stability analysis that identified necessary quarantine rates for out-
break containment [25].

A number of investigators have developed epidemic models (systems of ordinary DEs) that
match certain temporal data from SARS outbreaks. In their study of SARS transmission and con-
trol in China, Zhou, Ma and Brauer assumed an inexhaustible supply of susceptible individuals,
formulated a system of linear difference equations, and followed a process of trial and error in
obtaining a time-varying transmission rate that enabled the model to closely match data on diag-
nosed cases per day [26]. A more complex model of the SARS outbreak in China was later put
forward by Zhang, Lou, Ma and Wu [27]. These authors first quantified their ‘basic adequate con-
tact rate’ using about three weeks of data on diagnosed SARS cases and then they obtained model
results for the daily number of SARS patients (in good agreement with epidemiological data).
Lastly, Gumel and co-authors studied a system of ordinary DEs with constant parameters and
the chosen values of the two free parameters (transmission rates for contacts involving contagious
individuals within and without hospital isolation) provided the ‘best’ agreement between calcu-
lated and reported cumulative SARS fatalities over time. After obtaining values of the two free
parameters for four SARS outbreaks (Toronto, Hong Kong, Singapore and Beijing), calculations
of cumulative probable cases over time generally conformed to reported data for each outbreak
[28].

The three previously-summarized studies are just a few examples of how simpler SARS out-
break models (systems of ordinary DEs) have been structured and parameterized to produce re-
sults that fully or partially agree with selected epidemiological data. Perhaps it goes without
saying that any epidemic modeler must work with the data that is accessible. In other words, even
though an epidemic model is capable of emulating a particular temporal feature of an outbreak,
this does not mean that the underlying modeling approach is necessarily a systematic or suitable
vehicle for analyzing outbreak dynamics on the whole. To examine the relative value of the pro-
posed epidemic models of intermediate complexity, the present author also formulates and numer-
ically evaluates a parallel or companion system of ordinary DEs.
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Fig. 1. Average new infections per day (upper graph), probable daily onsets of illness (dashed curve in lower graph) and
derived daily onsets (solid curve in lower graph) for the 2003 SARS outbreak in Taiwan.

2. Basic epidemic model for an unstructured population

The dashed curve in the lower graph of Fig. 1 identifies daily onsets of illness during the Taiwan
outbreak [29], but this curve excludes the index case to draw attention to the new infections.
These 670 onsets of illness (without the index case) were originally classified as probable new
SARS cases. But the Center for Disease Control in Taiwan later published separate epidemic
curves for both probable and laboratory-confirmed SARS cases [30]. Only 346 probable SARS
cases were confirmed through laboratory testing. Arguably, the true number of SARS cases in
Taiwan could have been larger (even substantially larger) than 346. As a consequence, an epi-
demic curve representing a total of 671 probable onsets in Taiwan is deemed to be adequate
for our modeling purposes.

2 The onset of illness in the index or initial case occurred on February 24, 2003. In this paper, the initial infection is
assumed to have occurred on February 20, 2003 (day number 0).
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One way of inferring new infections from symptom onsets is to uniformly shift these onsets back-
ward in time according to the mean latent period. On the other hand, the Monte Carlo method is a
more rigorous way to obtain average new infections per day. A useful Monte Carlo algorithm is
straightforward and a single trial involves a tractable number of computations. First, obtain ran-
dom latent periods for all onsets of illness (excluding the index case). Second, backtrack in time to
determine when all infections began. And third, compile the total score for each time step. Aver-
aging scores per day for a large number of Monte Carlo trials yields the desired infections per day.

The solid curve (vice points) in the upper graph of Fig. 1 comes from 50000 Monte Carlo trials.
In these trials, the assumed PDF for the latent period was a Gamma distribution, Gy(x). The mean
value (u;) and standard deviation (o;) of the latent period are in Table 1 with a supporting note
and reference. This table likewise displays mean values and standard deviations of several addi-
tional random time intervals that, by assumption, follow Gamma distributions [31-36].

Solid curves in the upper and lower graphs of Fig. 1 are related by means of a mathematical
convolution. Treating the time ¢ as a continuous independent variable, the desired convolution
integral can be expressed in the following manner:

p*xG = /Otp(u)Gl(t— u) du. (1)

The function p(u) is the new infection rate at time u, whereas Gy(¢ — u)du is essentially the prob-
ability of developing SARS at time ¢ after becoming infected at time u. Thusly, Eq. (1) defines the
expected onsets of illness per unit time [37]. Regarding the numerical evaluation of this convolu-
tion integral, series of discrete p and G, values and fast Fourier transforms (FFTs) led to the cal-
culated onsets (solid curve) in the lower graph of Fig. 1.

‘Nested’ convolution integrals appear in many of the equations that follow and the notation of
Eq. (1) can be extended to cover integrals of this type. Consider four continuous functions of time:
fa(t), f8(2), fc(t) and fp(r). Two examples using these functions demonstrate the extended notation
for nested convolution integrals, namely,

fax o) = | ) { / et —u—o) dv} au

and

o s G fo)) = | t fA<u){ / D { / el —u—v—w) dw] dv}du.

Table 1
Mean values and standard deviations of critical random time intervals
Time interval Subscript (i) g; Notes and references
Latent 1 449 2.63 Guangdong and Beijing epidemic data [31]
Contagious 2 12.5 5.60 Nasopharyngeal aspirate data from Hong Kong Epidemic [32]
Onset-to-diagnosis 3 2.89 2.10 s from Taiwan epidemic data & o3 Inferred from
secondary source [33,34]
Admission-to-discharge 4 23.1 7.80 Hong Kong epidemic data [35]

Onset-to-death 5 23.5 13.2 Hong Kong epidemic data [36]
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The new infection rate, previously defined PDFs, the size of the fixed total population, Ny, and
the number of initial or primary infections, £(0), are key elements of the basic epidemic model for
an unstructured population. A general mathematical description of this model begins with a set of
IDE:s:

No=S8(t) +E(t) +1(t) +R(z) + X(2), (2)

X(t) = Xs(t) + Xe(t) + X1(2), (3)

$(6) = —p(t) — Xs(0), (4)

E(t) = —E(0)Gi(1) + p(t) — p+ Gi — Xg(1), (5)

I(1) = E0)[G(t) — G, * G)]| + p* G, — p* (G, * Gy) — X (1) (6)
and

R(t) = E(0)Ga * Gy +p* (Ga % Gy) = =S(t) — E(t) — 1) — X (1). (7)
Remaining initial conditions become

1(0) = R(0) = X(0) =0 (8)
with

S(0) = Ny — E(0). 9)

Laplace transforms simplify the integration of Egs. (5)—(7) and the results can be stated in terms
of the time-dependent cumulative number of follow-on (new) infections, y(¢):

o= [ ' plu)du = S(0) — (1) — Xs(0). (10)

Let z be the independent variable in the Laplace domain, let an underlined letter (e.g., £) denote a
function in the Laplace domain and let L' signify an inverse Laplace transformation. Eq. (5) in
the Laplace domain becomes

zE(z) — E(0) = —E(0)G,(z) —i—;_)(z) —g(z)Gl (z) — zX&(z) + XE(0),

or
E(z) = E(0)[1.0 = Gi(9)]/z+ p(2)/z — [p(2) /2] Gi(2) — Xe(2).
Several inverse Laplace transforms are requisites for writing the last equation in the time domain:
specifically,
L7'(1.0/z) = 1.0(for ¢ > 0),

LG = [ Gl

L™ (p(z)/2) = »(2)

and
L([p(2)/2]Gi(2)) = y * G1.
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Allocations of individuals among the E, [/ and R compartments are now defined by
B() = £0) [ Gi(u)dut 3(0) ~ v+ Gy — Xe(0), (1)
t

I(t)_E(O)/Ot [Gl(u)—/uGz(v)Gl(u—v)dv duty+ G —y(Gax Gy) — Xa(t) (12)

0

and

R(t) = E(0) / / Go(0)G1 (1 — v) dvdu + v # (Gs * Gy)
Ny — S(t) — E(t) — 1(t) — X(2). (13)

Integrals in Eqs. (11)—(13) are readily interpretable and the parallel progression of initial and fol-
low-on infections is apparent. For instance, the first term on the right-hand side of Eq. (11) is the
number of initially infected individuals who still remain in the £ compartment at time ¢, while the
difference between the second and third terms is the number of individuals whose follow-on infec-
tions began before time ¢ and who have not yet moved into the I compartment.

Egs. (2)—(4) and (8)—(13) establish the general form of the basic epidemic model. Although the
Xg sub-compartment is not part of our analytical reconstruction of the Taiwan SARS outbreak,
Xs and X7 sub-compartmental dynamics are indeed required to emulate, respectively, the quaran-
tine of susceptible individuals and the isolation of SARS patients in hospitals. And because R(?) is
just the time-dependent cumulative number of individuals who are no longer contagious, exten-
sions of the basic epidemic model are necessary to evaluate time-dependent cumulative deaths
and recoveries (or recovered SARS case-patients who are discharged from a hospital). At the
end of an outbreak, the total number of individuals in the R compartment must be the same as
the total number of SARS-related deaths plus the total number of SARS recoveries.

Six parameters characterize the sub-compartment for quarantined susceptible individuals, X.
The parameters ¢; and ¢, denote the respective proportions of initial and follow-on infections
that result in hospital isolation upon symptom onset.® Half of the quarantine parameters are time
constants: (a) delay time, 7p, extending from day number 0 up to the start of contact tracing, (b)
average time, ft, to trace and quarantine the contacts of a case patient entering hospital isolation
and (c) quarantine period, fq. Also, the average number of quarantined susceptible people per
case-patient is A. Values of all quarantine parameters for the SARS outbreak in Taiwan and sup-
porting references are in Table 2.

If the diagnosis-to-isolation time is (on average) small, the time derivative of Xg basically de-
pends on diagnoses per unit time. Letting ¢; and ¢, be time-dependent numbers of diagnosed ini-
tial and follow-on cases per unit time, respectively, the delay differential equation for Xg is

Xs(1) = g, (t — tp — t1) + q(t — tp — t1) — q,(t — tp — b1 — 1q) — ¢, (t — tp — b1 — L)),
(14)

3 Hospital isolation upon symptom onset is most likely to happen in conjunction with contact tracing activities
(identifying, localizing and monitoring people who have been in contact with infected individuals). These activities are
not modeled here, but an attempt is made to emulate their general dynamical impacts.
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Table 2

Parameter values for the basic and network-based epidemic models

Parameter Parameter value(s) Notes and references

Ny 1000000 Computational resource limitations (network-based model)

E(0) 1 Single index case in the basic model

@1 0 No early isolation of index case-patient

02 0.0672 45/670 [29]

tp (days) 27 Quarantine in Taiwan began on March 18, 2003 [29]

tr (days) 3 By assumption

tq (days) 12 Duration of Taiwan quarantine varied from 10-14 days [33]

J (day™h 242 151,460/(671-45) [29,33]

0, 0 Index case-patient survived

0, 0.109 73/670 [29,33]

E0) Ojm Location of the single index case in the network-based
model: m =3, 10, 30 or 100

€ r+0.047 Combinative mixing parameter in the network-based

model where r =0.1, 0.2, 0.3 or 0.4

where

q,(t) = (1 — 9)E(0)G; * G, (15)
and

9:(t) = (1 — @2)p * (G3 * Gy). (16)

Egs. (8) and (14)—(16), along with the average new infection rate in Fig. 1 and parameter values in
Tables 1 and 2, are sufficient to evaluate the quarantine rate, which is input for Eq. (4).

An early detection of symptoms or a later clinical diagnosis can trigger hospital isolation in the
basic epidemic model. In other words, the hospital isolation sub-compartment, X7, accommodates
initial and follow-on case-patients who are identified by either tracing activities or clinicians. Gen-
erally, a case-patient stays in hospital isolation until he or she is no longer contagious; the patient
then continues to receive medical care for some period of time (ending in hospital discharge or
death). During the 2003 SARS outbreaks, efforts to isolate contagious people were not always
successful. Nevertheless, in the model, everyone with a case of SARS is eventually admitted to
a hospital and each case-patient within the X7 sub-compartment is assumed to be adequately iso-
lated during the contagious period. The model does allow people with undiagnosed cases of SARS
(who are outside the X7 sub-compartment) to infect other individuals (who may be in hospitals or
elsewhere).

Since a SARS diagnosis and the associated hospital isolation are assumed to take place almost
simultaneously, case-patients in the X7 sub-compartment fall into four distinct categories: (a) ini-
tial infection and diagnosis upon symptom onset, (b) initial infection and diagnosis after symptom
onset, (c) follow-on infection and diagnosis upon symptom onset and (d) follow-on infection and
diagnosis after symptom onset. As previously indicated, when case-patients in these categories
cease to be contagious, they leave the X; sub-compartment. The time-dependent number of
case-patients in the X7 sub-compartment is below and it encompasses all four of the previously
mentioned categories:
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X0 = £0) [ {0610+ 10 0)6:(0) - 0161 - D)o b+ 3G

+ (1 = @)y * (G3 x Gi) — y * (G2 * Gy). (17)

Cumulative time-dependent numbers of case-patient recoveries, Hg(7), and deaths, Hg(?), are
the final elements of the basic epidemic model. To mathematically define these cumulative quan-
tities, proportions of initial and follow-on cases resulting in death are useful parameters: respec-
tively, 0; and 0,. (See Table 2 for values of 6; and 0,.) Cumulative case fatalities are easily defined,
ie.,

He(t) = 0,E(0) /0 /0 Gs(0)Gi (1 — v) dvdu + Oy * (Gs * Gy). (18)

Since the discharge of a case-patient from a hospital signifies a recovery, Hg depends on the above
four case-patient categories and the desired mathematical definition is

He () = (1 — 0,)E(0) /Ot{q)l / Ga(0) G (1 — v) v

0

- ) /0 Ga(v) UO Gy (W) G (s — b — w) dw} dv}du
+ (1 = 02) @y % (Gax G1) + (1 = 02)(1 — @)y * (Ga * (G5 * Gy)). (19)

The complete model for an unstructured population spans Egs. (2)—(4) and (8)—(19). A known
new infection rate and finite-difference replacements for Egs. (4) and (14) enable numerical eval-
uations of Xg and S at successive (full-day) time steps. FFTs make it possible to efficiently and
accurately convolve two or more Gamma PDFs, but convolution integrals with p (or its definite
integral, y) in the integrands call for a standard integration algorithm like the trapezoidal rule.
Numerical results for compartments and sub-compartments in the basic epidemic model are dis-
cussed in a subsequent section of this paper.

Because average new infections per unit time are derivable from a given epidemic curve, the
quantitative analysis of populated compartments and sub-compartments in the basic epidemic
model does not invoke the standard incidence. But once results of this analysis are in hand,
assuming the standard incidence allows us to characterize a historical outbreak by means of a
time-varying rate of disease transmission, f3(¢), where

p(1) = B()S()1(2)/No. (20)

Under certain circumstances, historically derived time-varying rates of disease transmission may
have predictive value [38].

The rate of disease transmission is essentially the product of (a) the probability of infection,
given an ‘adequate’ contact, and (b) the rate of adequate contacts. That is, an adequate contact
is a necessary (but not sufficient) condition for disease transmission. The conditional probability
of infection could vary during an epidemic or outbreak if, for example, the disease-causing
microorganism mutates and becomes more or less able to overcome the host’s defensive mecha-
nisms. Even in the absence of mutations, changes in environmental conditions might alter a
microorganism’s infectivity. Similarly, an actual rate of adequate contacts is likely to fluctuate
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with day-to-day human activities, imposed restrictions on these activities (e.g., quarantine) and a
growing public awareness of an ongoing outbreak. An epidemic curve and an appropriately-de-
rived time-varying rate of disease transmission may both be stepping-stones in resolving the fine
structure of outbreak dynamics.

If a safe and effective SARS vaccine were to become widely available, public health officials
might well rely on targeted vaccination programs (instead of quarantines) in controlling future
SARS outbreaks. Minor modifications of Eq. (14) and the supporting parameters yield the follow-
ing mathematical description of a populated sub-compartment that retains successfully vaccinated
people:

Xs(t) = v{a,(t — tyep — tv) + 45 (t — tvpp — tv) — (1 — &v)[q, (t — typp — ty — to)
+ q,(t — tvpp — tv — 10)]},

where Egs. (15) and (16) continue to specify the functions ¢; and ¢,. The two dimensionless
parameters in the foregoing equation are Ay, the average number of vaccinated people per
case-patient, and &y or the vaccination efficacy (encompassing both the administration and
in vivo performance of the vaccine). Also, the new time intervals are the elapsed time before
the beginning of a targeted vaccination program, fvpp, the average time to identify and vaccinate
susceptible people who are at risk of becoming infected, ¢y, and the average post-vaccination per-
iod of observation, fq.

A SARS vaccine may be effective in preventing SARS infections yet ineffective in mitigating
SARS cases. For this reason, new therapeutic drugs for SARS are as desirable as a SARS vaccine.
Specific potential advantages of SARS chemotherapy include shorter contagious periods, reduced
recovery times and fewer SARS-related deaths. In principle, the basic epidemic model can accom-
modate these attributes of chemotherapy through alterations of the relevant parameter values in
Tables 1 and 2; namely, w», 02, ta, 04, lis, 05, 01 and 0. Interestingly, > and o, are the only che-
motherapy-related parameters affecting disease transmission in the epidemic models at hand and
the efficacy of chemotherapy need not be specified explicitly. But until there is accessible data on a
specific therapeutic drug, establishing values of chemotherapy-related epidemic modeling param-
eters is largely a matter of guesswork.

3. Network-based epidemic model for a structured population

Embedding a scale-free contact network in our basic epidemic model is a reasonably efficient
way to explore disease transmission patterns in a structured population. That is, major functions
of the desired network-based epidemic model include reconstructing historical outbreak dynamics
with some fidelity and capturing disease transmission patterns at the sub-population level. These
network-based modeling capabilities ought to facilitate the development of effective contact trac-
ing, quarantine and/or vaccination plans.

Krapivsky and Redner [39,40] have carefully analyzed a fundamental model of network
growth. In that model, the growth process for a network includes (a) an initial condition, (b)
the addition of one node or vertex at each time step and (c) the attachment of a new node to a
single pre-existing (or ancestral) network node. The initial condition of interest is a ‘dimer,’
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involving a primordial node that is linked to the first network node.* Most importantly, when the
probability of a new node attaching to a pre-existing network node is proportional to the degree
of the latter node, a scale-free network emerges in the manner of Barabasi and Albert [41].
As the number of nodes in a scale-free network becomes infinite, the discrete PDF for nodes of
degree j is
P (j) =4/1jG+ 1) +2)], (21)
wherein j runs from 1 to infinity. With regard to correlating the degrees of linked nodes in an infi-

nite scale-free network, researchers have obtained the following relative number of nodes of de-
gree j that are linked (attached) to ancestral nodes of degree i:

ny =4 = 1)/[jG+D0G+D0+i+ D0 +i+2)]+12( = 1)/[j(i+i-1)(+1)
X(G+i+1)(j+i+2)] (22)
with values of j as before and i running from 2 to infinity. The relative number of nodes of degree j
with links to ancestral nodes of degree 1 is undefined.
Of particular interest in this paper is a finite scale-free network with Ny nodes and Ny links. The

Krapivsky—Redner PDF for a finite scale-free network deviates from Eq. (21), especially at higher
node degrees:

P) = P (i) erfe(€,/2) +[(2¢,+ &) /Vam|exp(~& /4) | (23)
where erfc stands for the complementary error function and
& =J/Ny/*. (24)

If Ny = 10° nodes, Eqgs. (23) and (24) tell us that virtually no nodes are in degree classes above
j = 1482.° In passing, this author is unaware of a published counterpart to Eq. (22) that delineates
node degree correlation in a finite scale-free network.

By and large, the basic epidemic model in the previous section is easy to disaggregate. Egs. (2)—
(4) and (8)—(10) can be restated for nodes (or individuals) in the jth node degree class (or jth con-
nectivity class): viz.,

Nj = 8;(1) + E;(1) + 1;(t) + R;(1) + X;(t) = NoP()),
Xj(t) = Xs(1) + Xe (1) + X1,(0),

(25)
(26)
= —p,(1) = Xs,(0), (27)
(28)
(29)

[NO RN\
A W

)
1;(0) = R;(0) = X,(0) = 0,

and

o= [ () du = ,(0) — (1) — Xs,(0). (30)

4 No links between new network nodes and the primordial node are allowed in this model.

> A maximum node degree of 1482 implies that 1482 sets of IDEs must be solved numerically. Several hours are
required for a 3-GHz Pentium PC and the Mathematica software to obtain numerical solutions for one set of parameter
values; consequently, a parallel processing capability is desirable for a population much larger than 1 million.
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Invoking the standard incidence and employing the preferred mixing concept, the new infection
rate for the jth connectivity class, p(), and corresponding transmission matrix elements, f;(t)/N,
can be written as

p;(t) :Sj(f)Zﬁ_/k(t)lk(f)/Nk (31)

and

+ e, ()3, /Ny (32)

Bu(0)/Ni = (1 = &), (1) /[Zam

Summation indices in Egs. (31) and (32) range from 1 up to 1482, ¢ is the combinative mixing
parameter, aff) is the average number of disease-causing contacts per unit time per individual
in the jth connectivity class, and ¢, is the Kronecker delta [42]. When ¢ = 0, members of different
connectivity classes mix proportionately (randomly) and, when & = 1, there is no mixing between
members of different connectivity classes. Furthermore, since each individual in the jth connectiv-
ity class is linked to j other individuals, a{t) becomes

a;(t) = w(1)j, (33)

where (7) is the average time-varying rate of disease transmission.
The transmission matrix elements can now be restated as

Bu(0)/Ni = [(6)j/NA[(1 — e)kP(k) [ (k) + 0] = [(2)j/N]P(K|j) (34)

where

ky =" kP(k)

and

> P(klj) = 1.

k

Given an individual in the jth connectivity class, P(k|j) is the conditional probability that he or she
is linked to an individual in the kth connectivity class [43]. Utilizing Egs. (32) and (33) to replace
the transmission matrix elements in Eq. (31), the average disease transmission rate and the new
infection rate for the jth connectivity class then become

/[ZJS P(k|j)1i( )/Nk]. (35)

and

p,(0) = p(0) [js,mﬁkj W/ / [ZJS PRI /N, (36)
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Simply indexing Eqgs. (14)—(16) is problematic, essentially because this action would quarantine
the same number of susceptible individuals from any connectivity class containing a newly iden-
tified case-patient, regardless of that group’s size.® Over 150000 susceptible people were quaran-
tined during the 2003 SARS outbreak in Taiwan and equating connectivity class PDFs for the
quarantined susceptible population and the overall susceptible population is a reasonable approx-
imation. Thus, in the jth connectivity class, the approximate number of quarantined susceptible
individuals per unit time is

Xs() = Ag,(t —tp — t1) + q5(t — tp — t1) — q,(t — tp — t1 — 1) — q,(t — tp — t1 — 1Q)|P(}).
(37)

Egs. (15) and (16) still define the respective aggregate numbers of diagnosed initial and follow-on
cases per unit time, ¢; and ¢». Of course, summing over the index j in Eq. (37) yields Eq. (14).

Indexed versions of Egs. (11)~(13) and (17)—~(19) entail nothing more than substituting E£40) for
E(0) and y{u) for y(u). Such straightforward substitutions obviate the need for a full listing of
every indexed equation in the network-based epidemic model. In summary, the model for a struc-
tured population encompasses Eqgs. (23)—(30) and (35)—(37) as well as the indexed versions of Egs.
(11)—«(13) and (17)—(19).

The last item of business with respect to the network-based model is a relationship between the
combinative mixing parameter, ¢, and the Pearson correlation coefficient, r. Consider two linked
individuals in a heterogeneous network, one of which is in the jth connectivity class. Pastor-Sator-
ras and Vespignani [44] have shown that the average connectivity class (K,,) for the remaining
individual (nearest neighbor) is

Kun()) = S kP(KL), (38)
and, in this paper,

Kan(j) = () /{k) + (j — (&) / (k). (39)
In addition, Ramasco, Dorogovtsev and Pastor-Satorras [45] defined r as

= [0/ - 1] [ PRmiP) ~ 7. (40)

so that Eq. (38) then allows us to write

e =r+ () (1= 1/()/(() = () / (k). (41)
The preferred mixing concept is related to the assortivity [46] of a contact network in that the
combinative mixing parameter depends linearly on the Pearson correlation coefficient. A positive
value of r (an assortative network) implies that individuals in higher connectivity classes tend to
be linked to other individuals in high connectivity classes, while a negative value of r (a disassor-
tative network) indicates individuals in lower connectivity classes are often linked to highly

® Explicit algorithms for contact tracing activities in a network could improve our understanding of X > but such
algorithms would undoubtedly increase (perhaps substantially) the complexity of our network-based model.
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connected individuals. For our scale-free network with N, individuals and N, links, the second
term on the right-hand side of Eq. (41) is 0.047. A null value of the combinative mixing parameter
means that r is negative and, therefore, purely proportionate mixing is slightly disassortative.
Values of r for certain real-world collaboration networks range from about 0.1 up to 0.4.

4. Discussion of results

Wallinga and Teunis developed a likelihood-based algorithm that relies upon symptom onset
data to determine the mean effective reproduction number, R., over time [47]. Denoting L;; as
the relative likelihood that case j was the source of infection for case i, the Wallinga—-Teunis
algorithm for SARS outbreaks is comprised of

Ly=WEB4384t—1)/ > W(B4384—1) (42)
ki

and
R.(j) = ZL,,-. (43)

In Eq. (42), W(8.4, 3.8; x) is a Weibull PDF describing the random SARS generation interval (x)
with a respective mean and standard deviation of 8.4 and 3.8 days. The generation interval is the
onset-to-onset time for an infector and a corresponding ‘infectee.” When this interval is negative in
Eq. (42), Wallinga and Teunis require that the Weibull PDF be zero. Additionally, the specified
mean (8.4 days) and standard deviation (3.8 days) are sample statistics from the 2003 SARS
outbreak in Singapore.

Mean effective reproduction numbers in Fig. 2 are from Egs. (42) and (43), with the symptom
onset data in Fig. 1 as input. (“D” in Fig. 2 represents February 20, 2003 and, for example,
D + 22 corresponds to March 14, 2003.). Our R, results for the 2003 Taiwan outbreak are similar
to the Wallinga—Teunis mean reproduction numbers for the 2003 Hong Kong outbreak, although
the latter outbreak was somewhat longer. Outbreaks within two Taiwan hospitals appear to have
been responsible for the largest reproduction numbers in Fig. 2.

The mean basic reproduction number, R, for the 2003 Taiwan outbreak is related to (a) the
total number (670) of follow-on infections, (b) reported daily onsets of illness in Fig. 1 and (c)
mean effective reproduction numbers in Fig. 2. If O(n) symbolizes the reported number of illness
onsets on day number #, the defining relationship for Ry becomes

114
670 = RyO(n =4) + Y _Re(n)O(n),
n=14
where n =4, 14 and 114 are the respective day numbers for the onset of the index case, the imme-
diately following onsets and the final onset. The resulting value of Ry is 2.23, which conforms to
comparable findings of Lipsitch and co-authors.
Since DEs (versus IDEs) represent a more conventional approach to the reconstruction of out-
break dynamics, a system of parallel or analogous DEs can serve as a baseline for assessing the
merits of the basic and network models put forward here. The desired DEs encompass many
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Fig. 2. Effective reproduction number for the 2003 SARS outbreak in Taiwan with pertinent events and periods.

of the parameters in Tables 1 and 2 and the principal free parameter is still the SARS transmission
rate. This rate is assumed to be a fixed non-zero constant within a time interval corresponding to
the duration of SARS transmission (in Fig. 2) and its numerical value assures a total of 670 fol-
low-on infections. Employing lower-case labels for populated compartments and sub-compart-
ments, the initial conditions for the DEs are

5(0) = Ny — ¢(0),
e(0) > 1,

he(py + 13 + 1) = €(0)

and

x%5(0) = ¢(0) = ciso(0) = r(0) = h(0) = he(0) = 0.
Note that s, x;, e, ¢, ¢is0, I, i and Ay are, respectively, analogs of S, Xs, E, I, X1, R, Hgr and HE.
A system of eight DEs is mathematically defined below:
$(t) = —p(t) — x4(1),
X(t) = A(1 — @y)p(t — tp — py — p3 — t1) — x5(2) /1q,
e(r) = p(t) — e(t)/

(47)
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(1) = (1= @y)e(t)/uy — c(t)/us, (51)

Ciso(t) = @re(t) /1y +c(t) /1y — (1/ 1y + 1/ (12 — p13))ciso (1), (52)

i(t) = =3(t) —x,(1) — e(t) — ¢(1) — Ciso(t) = (1/ 1y + 1/ (1t — 113))ciso (0), (53)

he(t) = (1 = O)p(t — py — p3 — o) (54)
and

jlf(t) = Oxp(t — py — is). (55)

Although Eq. (20) still defines the functional form of the new infection rate in the above equa-
tions, an epidemic curve no longer constrains the time history of p(¢) or, for that matter, (7).
Of particular interest is the following specification of the disease transmission rate:

B(#) = Brix(1 = U(t — torr)), (56)

where the adjusted value of fgrx is 0.4899, U stands for the Heaviside step function and 7, equals
110 days. Lastly, since definitions of all parameters in Eqs. (46)—(55) are already at hand, the rea-
soning behind compartmental entry and exit rates (as well as delays) is evident.

Fig. 3 contains two sets of numerical results from the basic epidemic model (Egs. (2)—(4) and
(9)-(19)) and one set of numerical results from the system of parallel DEs (Egs. (44)—(595)).
Regarding the basic epidemic model, red curves signify that both the backtracking Monte Carlo
algorithm and the IDEs relied upon Gamma PDFs, while green curves are connected with an in-
put of Exponential PDFs. Differences between red and green curves for the same compartment or
sub-compartment are generally quite small; the exceptions are results for Xj(n) and Hg(n). But
even small differences between red and green curves for either p(n) or I(n) can lead to more notice-
able differences between red and green curves for f(n). This is to say that f(n) tends to follow the
ratio of p(n) over I(n), assuming a small outbreak in a large population.

Black curves in Fig. 3 describe numerical results from the system of parallel DEs. The three
curves for p(n) yield the same total number of follow-on infections, but the black curve is in stark
contrast to the companion red and green curves. Of course, the slow rise and sharp decline of the
black curve for p(n) are due to the assumed rectangular shape of the transmission rate. Slow rise
times are likewise distinguishing aspects of the other black curves in Fig. 3.

Since the basic epidemic model and Gamma PDFs may have yielded the most realistic results in
Fig. 3, some detailed aspects of the red curves are worth mentioning. As many as 3000 people were
quarantined in a single day (~D + 95) and the maximum number of people in quarantine (on any
given day) was found to be 50000 (~D + 115). Similarly, the calculations show that nearly 175
(50) SARS case-patients were (were not) in hospital isolation on or about D + 85. And after
D + 24 or so (20 days after onset of the index case), the calculated waveform of the time-varying
transmission rate is close to the waveform in Fig. 2. In passing, note that red curves in Fig. 3 and
Eq. (20) gave rise to the points (vice solid curve) in the upper graph of Fig. 1.

Focusing on the network-based model, the total number of new infections in the jth connectiv-
ity class is the subject of Fig. 4. The contents of this figure originate in Eq. (36), where the new
infection rate, p/(f), is summed over all time steps (1 = nAt and Az =1 day). With regard to the
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Fig. 3. Calculated new infection rates, compartmental populations and transmission rates for the 2003 SARS outbreak
in Taiwan using the basic epidemic model (red and green curves) and a parallel system of DEs (black curves).

upper graph of Fig. 4, the combinative mixing parameter is fixed at a value of 0.147 and the initial
infection is either distributed across all connectivity classes (jsgep = PDF’) or localized within a
single class (jsggp = 3, 10, 30 or 100). In our network-based reconstruction of the Taiwan SARS

7 The PDF for a distributed seed is P(j). See Eq. (23).
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Fig. 4. Numerical results that describe total follow-on infections per connectivity class for: ¢ = 0.147 with several
locations of the initial infection (upper graph) and jsggp = 3 with several values of the combinative mixing parameter
(lower graph).

outbreak, the disposition of the initial infection seldom influenced allocations of new (follow-on)
infections to connectivity classes. But placing the initial infection in a higher connectivity class
(specifically, jsgep = 100) did significantly increase the number of new infections in that class®
(leading to the small blue spike in the upper graph of Fig. 4).

The location of the initial infection is fixed (jsgep = 3) and the combinative mixing parameter
takes on different values (e = 0.147, 0.247, 0.347 and 0.447) in the lower graph of Fig. 4. As the
value of ¢ increases in this graph, ‘shoulder’ regions (between j = 30 and j =2 400) of the curves
become more pronounced; also, as j decreases from about 10 down to 1, smaller values of ¢ give
rise to slightly larger numbers of new infections.

8 For our scale-free network with 1000000 nodes, sizes of 5 connectivity classes appear within parentheses in the
following list: j =3 (66,666.7), 10 (3,030.3), 30 (134.41), 100 (3.88) and 300 (0.15). Obviously, the vast majority of
connectivity classes are too small to accommodate even a single initial or follow-on infection.
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To better illustrate how the combinative mixing parameter affects the distribution of new infec-
tions within our contact network, consider the following definitions:

py(n) = (n)[jS;(n)P(k|j)Li(n)/N] (57)

and
=Y pun). (58)

The function p;(n) is the time-dependent new infection rate in the jth connectivity class due to
infectors in the kth connectivity class, while 1 is the resultant number of new infections.
Density plots in Fig. 5 are associated with jsggp = 3 and selected values of ¢, and each of these
plots shows variations of 1y for j and k ranging from 1 to 50. The lower-right density plot con-
tains the color legend for the entire figure; e.g., a dark blue pixel indicates 1, < 1 and a pure red
pixel means 1 > 3. A ‘pool’ of red pixels (k < 2 and j < 12) and a few more red pixels along the

njk FOR €= 0.147 7jk FOR €= 0.247

0 10 20 30 40 50 0 10 20 30 40 50
j j

njk FOR €= 0.347

0 10 20 30 40 50 )
i i
Fig. 5. Density plots, corresponding to jsgep = 3 and several values of the combinative mixing parameter, that define
total follow-on infections in the jth connectivity class due to contacts with infectors in the kth connectivity class.
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diagonal (j = k) are key features of the upper-left density plot for ¢ = 0.147. On the contrary,
nearly all red and reddish orange pixels lie on the diagonal in the lower-right density plot
(¢ = 0.447). Net effects of raising the value of ¢ are: (a) reduced disease-causing contacts involving
infectors in the lowest connectivity classes and (b) enhanced disease transmission within individ-
ual connectivity classes. To be sure, the latter effect is discernable from Eq. (34).

Time histories of new infection rates in the 3rd, 10th, 30th and 100th connectivity classes are in
Fig. 6. The value of ¢ is fixed at 0.147 in the upper four graphs and early (n < 25) spikes in new
infection rates are associable with locations of the initial infection. If the size of the seeded
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Fig. 6. Time-varying new infection rates in selected connectivity classes: four upper graphs related to ¢ = 0.147 and

several locations of the initial infection and four lower graphs related to jsgrp = 3 and several values of the combinative
mixing parameter.
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connectivity class is relatively small, then the magnitude of the early spike is relatively large.
Regarding the lower four graphs and a fixed location (jsggp = 3) of the initial infection, previ-
ously-considered values of ¢ engender four time histories of the new infection rate in each connec-
tivity class. In the 3rd (100th) connectivity class, lower (higher) values of the combinative mixing
parameter produce higher (lower) peak values of the new infection rate. These influences of the
combinative mixing parameter are consistent with curves in the lower graph of Fig. 4.

Fig. 6 does not reveal a cascade of infection affecting lower and lower connectivity classes over
time. However, Fig. 7 displays new infection rates in very high connectivity classes (j = 300, 500
and 700) that are compatible with the concept of an infection cascade. More specifically, the max-
imum new infection rate in the 700th (500th) connectivity class precedes the peak rate in the 500th
(300th) connectivity class. Perhaps it’s worth noting again that sizes of very high connectivity
classes are minuscule in our network-based model.

Numerical results for the time-varying rate of SARS transmission, w(n), are in Fig. 8. Trans-
mission rates for different values of jsggp span two time frames (n < 25 and 25 <n < 120) in
the two upper graphs, and additional transmission rates for different values of ¢ are displayed sim-
ilarly in the two lower graphs. The fixed value of ¢ for the upper graphs is 0.147 and the fixed value
of jseep for the lower graphs is 3. The seeding assumption shapes the early transmission rate,
whereas the combinative mixing parameter is most influential at later times. And because all com-
plete time histories in Fig. 8 produce the same number (670) of new infections, the lower graphs
show that smaller ¢ values entail higher late-time transmission rates. As ¢ approaches a value of
0.047, the Pearson correlation coefficient vanishes and the connectivity classes of linked individ-
uals become uncorrelated.

A network-based SARS modeling investigation by Meyers, Pourbohloul, Newman, Skowron-
ski and Burnham [48] warrants some discussion before considering further variations of the
present author’s modeling parameters. Meyers and co-authors constructed a detailed contact
network by focusing on households, schools, workplaces and hospitals and by drawing upon
available data for 1000 households (~2600 people) in the city of Vancouver, British Columbia.
Percolation theory and the node degree distribution for this contact network (with node degree

€=0.147 & joppn =3
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Fig. 7. Time-varying new infection rates in very high connectivity classes for ¢ = 0.147 and jsggp = 3.
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Fig. 8. Time-varying disease transmission rates: two upper graphs associated with ¢ = 0.147 and several locations of the
initial infection and two lower graphs associated with jsggp =3 and several values of the combinative mixing
parameter.

correlation) enabled the investigators to theoretically and numerically predict outcomes of out-
breaks for various fixed values of the transmissibility (transmission rate). Similarly, they obtained
contrasting results for Poisson and scale-free contact networks (without node degree correlation).
It is also worth noting that the modeling approach of these investigators yielded no information
about outbreak dynamics.

Revisiting the upper-left graph in Fig. 8, it’s apparent that the connectivity class of the seed can
strongly influence the early (< day number 13 or so) transmission rate for the selected historical
outbreak; i.e., to attain the same basic reproduction number, the early transmission rate for a seed
in the 3rd connectivity class generally dominates the accompanying early rate for a seed in the
100th connectivity class. The clear implication is that the basic reproduction number for an
unconstrained outbreak in a contact network depends on the connectivity class of the initial infec-
tion. In this vein, Fig. 8 complements and partially supports the impact of initial conditions as
described by Meyers and co-authors.

Summing over connectivity classes in the network-based model generates aggregate populated
compartments and sub-compartments that are identical to counterparts in the basic epidemic
model. This confluence of epidemic models for structured and unstructured populations is due
to a common modeling framework, common parameters and linked time-varying transmission
rates (deriving from the same epidemic curve). Most importantly, under certain constraints,
dynamical impacts of parameter variations in the basic epidemic model will also be aggregate
dynamical impacts of the same parameter variations in the network-based model. The main
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constraint calls for maintaining the correspondence of transmission rates in the two models. A
variation of parameters in Table 1, for example, may significantly alter the dynamics of the Tai-
wan outbreak through changes in the disease transmission rate, which could be derived anew
using the basic or network-based model. Alternatively, variations of parameters in Table 2 could
be explored by utilizing either model with the appropriate previously-derived rate of disease trans-
mission. In bringing this section of the paper to a close, quantitative results from the basic epi-
demic model elucidate changes in outbreak dynamics due to variations of selected parameters
in Tables 1 and 2.

The onset-to-diagnosis PDF (G5) governs the random time interval extending from the onset of
illness up to a clinical diagnosis. In the models under consideration, this time interval is funda-
mentally the amount of time that a contagious individual is free to infect other people before
he or she enters hospital isolation. It’s noteworthy that onset-to-diagnosis periods (u3; =4.75
and o3 = 3.45) for the Hong Kong SARS outbreak of 2003 are substantially longer than those
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for either the Taiwan or Singapore (y3 = 3.09 and g3 = 2.50) outbreak. This information leads to
the following question: How would longer (Hong Kong or Singapore) onset-to-diagnosis periods
have affected the dynamics of the Taiwan outbreak?

The upper graph in Fig. 9 shows onset-to-diagnosis PDFs and CDFs for Taiwan, Hong Kong
and Singapore and the lower graph displays the resultant SARS transmission rates for the Taiwan
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outbreak. Furthermore, these transmission rates are connected with the new infection rates, pop-
ulated compartments and sub-compartments in Fig. 10. If longer onset-to-diagnosis periods like
those in the Hong Kong outbreak had been present in the Taiwan outbreak, there would have
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been a substantially lower rate of SARS transmission and a concomitant increase (decrease) in the
maximum number of contagious individuals who were not (were) in hospital isolation.

One parameter that accounts for the effectiveness of both contact tracing activities and medical
surveillance is the proportion (¢,) of follow-on infections entering hospital isolation upon
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symptom onset. A reasonable estimate of ¢, for the Taiwan outbreak is 45/670, which appears in
Table 2 and comes from published information on probable cases and quarantine. To assess how
the Taiwan outbreak would have been altered by larger values of ¢,, the basic epidemic model is
implemented with a single ‘underlying’ transmission rate. (See the red curve in the lower graph of
Fig. 9.) Calculated time histories of new infection rates and compartmental populations appear in
Fig. 11 for four values of ¢, (45/670, 90/670, 135/670 and 180/670). Unsurprisingly, more effective
contact tracing and medical surveillance could have substantially reduced the total number of
infections and the total number of deaths.

The proportion (¢;) of multiple initial infections entering hospital isolation upon symptom on-
set is another parameter dealing with contact tracing and medical surveillance. In the event of a
single initial infection and a new emerging infectious disease, the prompt isolation of the index
case-patient is unlikely and a null value of ¢; is appropriate. But multiple individuals who are
simultaneously infected with a familiar pathogen would have different incubation periods and suf-
ficient information may be at hand to promptly identify and isolate some of the index case-pa-
tients. The basic epidemic model with one underlying transmission rate is readily implemented
for multiple initial infections and non-zero values of ¢;. Fig. 12 contains time histories of new
infection rates and compartmental populations for 10 initial infections and three non-zero ¢, val-
ues (0.2, 0.4 and 0.6). In terms of the total number of infections and the total number of deaths,
the potential benefits of quickly finding initially infected individuals are also large.

5. Concluding observations

The 2003 SARS outbreaks have yielded much epidemiological data covering both the course of
the disease and modern implementations of traditional outbreak controls. The amount and qual-
ity of this data is unusual, spawning many simple and complex SARS outbreak models. Since few
of those models were designed to exploit currently available data in a systematic manner, an epi-
demic modeling approach of moderate complexity has been described here that accommodates
either an unstructured or a structured population.

A key thrust of this study is to describe the dynamics of an outbreak in new informative ways,
especially when traditional outbreak controls are the only viable countermeasures. The epidemic
models incorporate PDFs for a number of random time intervals that define the progression of
initial and follow-on SARS infections as well as the implementation of traditional outbreak con-
trols. Another significant dynamical aspect of these models is the semi-empirical time-varying rate
of disease transmission. Using probabilistic reasoning to account for important random time
intervals and deriving time-varying disease transmission rates from epidemic curves augment
the realism and explanatory power of outbreak analyses.

Simpler SARS outbreak models in the literature often rely on a system of ordinary DEs with
constant coefficients and models of this type have produced many important results concerning
basic reproduction numbers and other dominant features of SARS outbreaks. To highlight the
utility or value of the basic epidemic model, the present author formulated and evaluated a par-
allel simple system of DEs. The basic epidemic model and the parallel system of DEs generated (a)
disparate new infection rates for the 2003 Taiwan outbreak (even though the total numbers of new
infections were identical) and (b) very different time histories for each compartmental population.
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When disease progression and outbreak controls are well-characterized, the basic epidemic model
seems better suited to the task of reconstructing the overall dynamics of a historical outbreak.

The mathematical theory of scale-free networks is a work in progress and the full epidemiolog-
ical utility of these networks remains to be seen. To date, ideal scale-free networks (infinite num-
ber of nodes and/or continuous node degree distribution) have been incorporated into relatively
simple epidemic models (SI, SIS and SIR). The present author chose a finite and discrete scale-free
network (with a rigorous mathematical foundation), developed a network-based deterministic
model (with a realistic progression of infections) and implemented the preferred mixing concept
to account for correlated connectivity classes of linked individuals.

The matter of cascading infections within a scale-free contact network warrants further discus-
sion. Even though the initial infection is in the 3rd connectivity class, Fig. 7 displays new infection
rates peaking at times that decrease (from ~D + 75 down to ~D + 53) as the number of links per
infected individual increases (from 300 up to 700). Fig. 7 thus implies that individuals in very high
connectivity classes can become infected well before those individuals in somewhat lower connec-
tivity classes. But the upper four graphs in Fig. 6 suggest that the first generation of follow-on
infections emerges by D + 25. (As the degree of the initial infection gets smaller and drops below
30 or so, the total number of infections in that connectivity class gets large and the first generation
of follow-on infections becomes harder to identify.) After the first generation of follow-on infec-
tions, the upper half of Fig. 6 reveals remarkably similar exponential phases and general wave
shapes for all four locations of the initial infection. And lastly, keeping the initial infection in
the 3rd connectivity class, the lower half of Fig. 6 shows that different values of the combinative
mixing parameter primarily affect magnitudes (rather than exponential phases) of new infection
rates. In summary, our network-based analytical reconstruction of an actual outbreak exhibits
no signs of cascading infections in connectivity classes containing more than about one individual.

Basic and network-based epidemic models under consideration here allow outbreak analyses at
two levels of resolution, respectively, aggregate compartmental populations and connectivity clas-
ses. The common analytical framework for these two models assures congruence at the level of
aggregate compartmental populations. Whereas the basic epidemic model is efficient in assessing
the general dynamical impacts of disease progression and outbreak control parameter variations,
the network-based model provides insights into disease transmission within and between connec-
tivity classes. Both models were designed to support the development and/or evaluation of biode-
fense scenarios, requirements and investment alternatives. It’s also worth emphasizing that
biodefense investment decisions must often be made years before the formulation and implemen-
tation of new outbreak control strategies.

Coherent analyses of historical outbreak dynamics at multiple levels of resolution can broaden
our knowledge of both disease transmission and the effectiveness of outbreak control measures.
Perhaps more importantly, in establishing biodefense requirements and making biodefense invest-
ment decisions, retrospective questions (‘what would have happened if. . .”) deserve as much atten-
tion as questions about possible future events (‘what will happen if. ..”). Historical outbreaks are
obviously tied to particular settings and epidemiological circumstances that may or may not ap-
pear again in future outbreaks. Nevertheless, sound analyses and interpretations of historical out-
break dynamics could play a stronger supporting role in the biodefense planning process.

The epidemic modeling framework in this paper is somewhat flexible and adaptations of the
SARS models for other diseases and/or other control measures (including prophylaxis and
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chemotherapy) are feasible. In reconstructing a primary pneumonic plague outbreak, for instance,
log normal PDFs should be good choices for characterizing the progression of primary pneu-
monic plague infections and the insertion of these PDFs in the above models is an easy first step.
On the other hand, determining a suitable scale-free contact network for primary pneumonic pla-
gue and getting enough data to evaluate the key parameters (Tables 1 and 2) could be more chal-
lenging tasks. It is interesting to note that the projection of respiratory droplets within a radius of
2m or so is the main mechanism for transmitting both SARS and primary pneumonic plague
from person to person. If the scale-free network in this paper is a reasonable vehicle for analyzing
SARS transmission, then this same network might also be helpful in understanding primary pneu-
monic plague transmission.

The Corporate Research Program at the Institute for Defense Analyses funded this work and
the author thanks Dr. Victor Utgoff (Institute for Defense Analyses) for his interest and encour-
agement. Opinions and findings of the author are not necessarily endorsed by the Institute for De-
fense Analyses or the US Department of Defense.
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