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Introduction
Cancers are responsible for approximately 600 000 deaths per 
year in the United States, with approximately 1.7 million new 
cases diagnosed annually.1 In 2016, 21.8% of deaths in the 
United States were attributed to cancer, making this the sec-
ond-leading cause of death.2 Despite a relatively low overall 
recurrence rate (~15%) of cancers in the United States,3 some 
cancer types exhibit much higher rates of recurrence (eg, 30% 
of kidney cancers recur4). These challenges have prompted 
researchers to seek new models, using bioinformatics 
approaches,5 that more accurately predict clinical response to 
drug therapy. Using these approaches, researchers can leverage 
publicly available data and translate it into clinically actionable 
knowledge5-7 to be used as decision-making tools for clinicians 
in determining treatment course for individual patients.

In this study, we developed a pan-cancer model that predicts 
chemosensitivity using gene expression data derived from can-
cer cell lines. Here, we present 11 gene expression–based pre-
diction models, 1 for each chemotherapy drug, that can be 
applied to multiple cancer types with a high degree of certainty. 

We selected these 11 chemotherapy drugs as representative 
members of 5 classes of chemotherapy agents (alkylating 
agents, anthracyclines, topoisomerase inhibitors, and antime-
tabolites). The choice of nontargeted agents allows us to pre-
dict the sensitivity of each chemotherapy drug across all 
relevant cancer types, lending to our pan-cancer model design.

There is a large body of research describing models that pre-
dict response to chemotherapy based on gene expression.5-9 
However, this research landscape is limited to models predict-
ing sensitivity to single- or few-agent chemotherapy drugs in a 
single cancer type.5-9 For example, a recent study reported a 
gene expression–based model that predicted response to treat-
ment with taxane, cisplatin, and 5-fluorouracil in hypopharyn-
geal carcinoma.6 Similarly, multigene expression predictors of 
platinum resistance in ovarian carcinoma have been reported.8

The novelty of this research is the pan-cancer approach we 
took to building predictive models for sensitivity to 11 chemo-
therapy drugs. To our knowledge, this is the first pan-cancer 
predictive model for chemosensitivity. Using data from all 16 
cancer types available in the Genomics of Drug Sensitivity in 
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Cancer (GDSC) database, we were able to capture heterogene-
ity across tumor types, build gene expression–based prediction 
models for each chemotherapy drug, and apply the models to 
multiple cancer types with a high degree of certainty. Herein, 
we define “chemotherapies” as small molecules not targeted to 
an oncoprotein or prescribed due to a specific genetic aberra-
tion or cancer cell lineage phenotype. Developing a generaliz-
able pan-cancer model that predicts sensitivity and/or resistance 
to multiple chemotherapy drugs provides clinicians with a 
data-driven decision-making toolkit for choosing chemothera-
pies based on clinical outcome predicted from tumor gene 
expression profiles of individual patients.

Methods
Datasets

We obtained publicly available data on gene expression and 
drug sensitivity profiles for 962 cancer cell lines, among which 
676 to 766 cell lines reported sensitivity measures for the 11 
chemotherapy drugs of interest.

Cell line data, which include both gene expression and drug 
sensitivity profiles, were obtained from the GDSC database.10 
Clinical data and human tumor gene expression profiles origi-
nally compiled in The Cancer Genome Atlas (TCGA) were 
obtained from the University of California, Santa Cruz XENA 
database.11

Data processing

All computational work was done in the R statistical environ-
ment.12 To enable model building and validation between data-
sets consisting of RNA-seq as well as microarray data, data were 
normalized using feature-specific quantile normalization.13 Data 

were then scaled to provide equal weight for all available genes to 
be included in the models. Sensitivity data in the GDSC data-
base is reported in the form of ln(IC50), which is a continuous 
variable. As we are developing models capable of predicting sen-
sitivity or resistance to a given drug in human tumor samples, we 
must convert the continuous outcome variable reported by 
GDSC into a binary outcome variable that can be used for pre-
dictive model building. To accomplish this, cell lines were labeled 
sensitive or resistant based on the ln(IC50) sensitivity threshold 
for each drug determined by GDSC. The resulting classes 
showed an imbalance in data, with a greater number of resistant 
cell lines compared with sensitive (Table 1). This level of imbal-
ance in classes can lead to classifiers that simply always predict 
the larger class, resulting in deceivingly high levels of accuracy, 
despite ignoring the smaller class.14,15 To correct for this class 
imbalance, synthetic-balanced datasets were generated using the 
“ROSE” R package,16 a bootstrap-based technique that over-
samples the underrepresented class (sensitive) which incorpo-
rates the oversampling algorithm developed by Menardi and 
Torelli.17 Menardi and Torelli17 algorithm uses Gaussian kernel 
density estimates to generate clones of the underrepresented 
class that fall within a reasonable neighborhood of the observa-
tions. We chose this method to correct for class imbalance 
instead of simply replicating the underrepresented samples. This 
allows the classifier to learn more about the minority class, 
whereas replicating underrepresented samples limits the knowl-
edge of the classifier, leading to overfitting of the model regard-
ing the minority class.18

Pan-cancer models were built using the synthetic (training) 
dataset for each chemotherapy drug separately and tested using 
the original imbalanced dataset from GDSC. To limit sources 
of bias, no a priori feature selection was performed to remove 

Table 1.  Number of sensitive and resistant cancer cell lines per chemotherapy drug.

Drug Sensitivity threshold ln(IC50) Number of sensitive lines Number of resistant lines

Bleomycin −1.4805 4 37

Camptothecin −6.584 18 258

Cisplatin 1.3801 51 505

Cytarabine −1.9516 6 73

Doxorubicin −3.9565 25 320

Etoposide −1.2198 18 435

Gemcitabine −5.9903 30 469

Methotrexate −2.4743 19 285

Mitomycin −2.9647 5 33

SN38 −6.559 23 328

Temozolomide 4.6032 22 299

Abbreviation: GDSC, Genomics of Drug Sensitivity in Cancer.
The number of cancer cell lines labelled as “sensitive” or “resistant” according to thresholds set for each chemotherapy drug by GDSC.
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any genes from the training data. For TCGA samples, overall 
survival (OS) was observed by the “days_to_death.diagnoses” 
variable in the clinical data, and recurrence-free survival (RFS) 
was observed by the “days_to_new_tumor_event_after_initial_
treatment” variable; if the RFS variable was not available, OS 
was used as the outcome variable.

Model building and testing

We used gene expression data derived from solid tumor cancer 
cell lines to build pan-cancer models that predict tumor sensi-
tivity or resistance to chemotherapies (alkylating agents, 
anthracyclines, topoisomerase inhibitors, and antimetabolites) 
in patients, with the ultimate goal of creating gene expression–
based predictive models for each drug that can be applied to 
multiple cancer types with a high degree of certainty. The pro-
ject workflow is shown in Figure 1. To build clinically relevant 
models, only cell lines from cancer types where the drug in 
question is a standard therapy regimen according to the 
National Comprehensive Cancer Network (NCCN) were 
included in the training and testing data. For each chemo-
therapy drug, 10-fold cross-validated generalized linear mod-
els (GLM) were generated using the “glmnet” package. An 
elastic net penalization scheme, which incorporates the penal-
ization schemes of both LASSO and ridge regression, was 
used to limit the number of genes included in the models.19 
This is the ideal penalization scheme for this study because 
LASSO regression will only choose, at most, as many genes as 
samples (cell lines) included in the training data, and ridge 
regression will include all genes in the model.20 In addition, 
the “family=‘binomial’” argument was used because the out-
come of interest is binomial in the sense that each cell line or 
tumor will be predicted to respond or not to any given chemo-
therapy drug. Tuning of the models was done by alteration of 
the α hyperparameter. The optimal value of α was determined 

using an iterative generation of GLM models with values of α 
ranging from 0.01 to 0.99, in increments of 0.01, to find the 
best predictive model based on maximization of model accu-
racy. This allows for finding the optimal α value between 0, 
which is used for ridge regression, and 1, which is used for 
LASSO regression. Pan-cancer models were then tested for 
accuracy on the testing set overall, as well as on individual can-
cer types to determine how well pan-cancer models predicted 
chemosensitivity/chemoresistance, with the number of cell 
lines with reported sensitivity measures per cancer type shown 
in Table S1.

External validation

Pan-cancer models were validated on human primary tumor 
data from TCGA. Pan-cancer models were tested against all 
combinations of solid tumor type and chemotherapy drug 
combination where n ⩾ 4 patients. After predicting sensitiv-
ity and resistance using pan-cancer models, survival curves 
were generated using the “survival” package,21 showing RFS 
of TCGA patients stratified by predicted labels, and log-
rank P values were calculated using a Cox proportional haz-
ards model22 adjusted for age, stage, and sex when these 
variables were available and appropriate, and with the null 
hypothesis that there will be no difference in RFS times 
between groups of patients with tumors predicted to be sen-
sitive or resistant.

Model gene sets

To determine whether the genes included in the pan-cancer 
models were enriched for cancer hallmark gene sets in the 
Molecular Signatures Database (MSigDB),23 gene sets from 
the final models were analyzed for enrichment using Gene Set 
Enrichment Analysis (GSEA).24 The beta coefficient deter-
mined by the penalized regression model was reported for each 
gene included in each model (Table S3).

Results
Building models to predict chemosensitivity and 
chemoresistance

We used gene expression data derived from solid tumor cancer 
cell lines to build pan-cancer models that predict tumor sensi-
tivity or resistance to chemotherapies (alkylating agents, 
anthracyclines, topoisomerase inhibitors, and antimetabolites) 
in patients, with the ultimate goal of creating gene expression–
based prediction models for each drug that can be applied to 
multiple cancer types with a high degree of certainty. We 
obtained publicly available data on gene expression and drug 
sensitivity profiles for 962 cancer cell lines. According to the 
NCCN database of drugs standardly used to treat individual 
cancer types, the number of relevant cell lines ranged from 38 
for mitomycin to 556 for cisplatin. We then built pan-cancer 

Figure 1.  Project overview.
GDSC indicates Genomics of Drug Sensitivity in Cancer; GLM, generalized 
linear models; TCGA, The Cancer Genome Atlas.
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models based on gene expression profiles to predict sensitivity 
and resistance to individual chemotherapy drugs.

Applying pan-cancer models to testing datasets

To initially verify the predictive accuracy of our models, we 
applied the pan-cancer models for each chemotherapy agent to 
predict sensitivity or resistance of the samples in the testing 
dataset of cell lines. Figure 2 shows the resulting sensitivity, 
specificity (A), accuracy with 95% confidence interval (CI) (B), 
and accuracy for each relevant cancer type (C) of the pan-can-
cer models being applied to predict sensitivity or resistance in 
the testing set. Overall, these models exhibited high levels of 
sensitivity and specificity (Figure 2A), which reflect the ability 
of the models to detect drug-sensitive and drug-resistant cell 
lines, respectively. Comparing models across drugs, results 
indicated a high level of predictive accuracy overall, with the 
SN-38 model being the least accurate (0.81, 95% CI [0.77, 
0.985]) and the most accurate models being for bleomycin 
(0.93, 95% CI [0.85, 1.0]), temozolomide (0.88, 95% CI [0.84, 
0.92]), and camptothecin (0.88, 95% CI [0.84, 0.92]) (Figure 
2B). Pan-cancer models applied to relevant individual cancer 

types resulted in accuracies ranging from 0.61 in bone cancer 
cell lines treated with cisplatin to 0.98 in skin cancer cell lines 
treated with temozolomide (Figure 2C). Within individual 
cancer types, predictions were consistently strong across all 
drugs tested apart from bone cancers generally being weakly 
predicted.

External validation of models on patient data

Pan-cancer models were validated by assessing their ability to 
predict tumor sensitivity or resistance in clinical datasets and 
evaluating RFS. Because this study focused on generating 
models for conventional chemotherapies, therapeutic agents 
that target mutant proteins were excluded from these analyses 
(eg, BRAF inhibitors used for the treatment of BRAF-mutant 
melanoma,25,26 or epidermal growth factor receptor [EGFR] 
inhibitors used to treat EGFR-mutant lung cancer27,28). Pan-
cancer models for each chemotherapeutic were applied to 
TCGA cancer types with RFS data for patients treated with 
the same drugs in a monotherapy setting. For any chemother-
apy drug and TCGA cancer type combination resulting in 
n ⩾ 4 patients, each patient was predicted as “sensitive” or 

Figure 2.  Testing results. Performance measures from application of pan-cancer models to testing data are shown for all drug models, including 

sensitivity and specificity (A), overall accuracy with 95% CI (B), and accuracy when pan-cancer model is applied to each relevant cancer type in the 

testing dataset (C), where accuracy results are colored from dark blue (0.50) to deep red (1.00).
CI indicates confidence interval; NSCLC, non-small cell lung cancer.
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“resistant” to the chemotherapeutic using the previously built 
cell line–based predictive models and the adjusted log-rank P 
value was calculated to assess the difference in RFS between 
predicted groups. Recurrence-free survival curves separated by 
predicted labels with 95% CIs were plotted (Figure 3).

The majority of the subsets that fit our criteria for analysis 
included patients treated with cisplatin or gemcitabine. With a 
significance threshold of P = .05, survival analysis predicted 
response in patient subsets treated with cisplatin and gemcit-
abine, but not doxorubicin or temozolomide (Figure 3). The 
cisplatin pan-cancer models performed well in distinguishing 
patients with sensitive vs resistant tumors based on RFS in 
bladder cancer (P = .048), showing a majority of the resistant 
tumors recurring before 5 years (Figure 3A). In cervical cancer 
(P = .070), all the samples predicted as “resistant” have recurred 
by the 5-year mark (Figure 3B). The gemcitabine pan-cancer 

model performed well in distinguishing patients with sensitive 
vs resistant tumors based on RFS in pancreatic adenocarcinoma 
(P = .038), showing all the resistant tumors recurring before 
5 years (Figure 3D). The log-rank P values for all other patient 
subsets tested are shown in Table S2.

Enrichment analysis of model gene sets

To determine whether the genes included in the pan-cancer 
models were enriched for traditional cancer hallmarks, genes for 
each model were analyzed via GSEA and the hallmark gene sets 
in MSigDB. Of the 50 hallmark gene sets, 15 were significantly 
enriched (false discovery rate q < 0.05) in the genes of at least 1 
model (Figure S1). The most commonly represented gene sets 
were “p53 Pathway and ‘Xenobiotic Metabolism’,” followed by 
“TNFa Signaling via NFKb” and “MTORC1 Signaling.” This 

Figure 3.  Recurrence-free survival and RFS distributions based on predicted chemosensitivity or chemoresistance. Patients were predictively labeled as 

sensitive or resistant by pan-cancer models according to gene expression. Recurrence-free survival curves were generated and statistically measured by 

the log-rank test with risk tables displayed below. The Cancer Genome Atlas cohorts depicted are patients with bladder cancer (TCGA-BLCA) treated with 

cisplatin (n = 47) (A), patients with cervical cancer (TCGA-CESC) treated with cisplatin (n = 99) (B), patients with breast cancer (TCGA-BRCA) treated with 

doxorubicin (n = 46) (C), patients with pancreatic adenocarcinoma (TCGA-PAAD) treated with gemcitabine (n = 72) (D), patients with glioblastoma 

(TCGA-GBM) treated with temozolomide (n = 72) (E). Patients predicted to have sensitive tumors are shown in green, and those predicted to be resistant 

are shown in purple.
RFS indicates recurrence-free survival; TCGA, The Cancer Genome Atlas.
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may denote that these pathways play a larger role in the response 
to these chemotherapies than other pathways.

The genes included in each model were ranked according to 
their corresponding beta coefficient (Table S3), effectively rank-
ing the genes in order of how great their level of expression 
affects the decision of the model to predict a sample as “sensi-
tive.” The number of genes included in each model varied greatly 
(n = 24 for cisplatin to n = 175 for cytarabine) (Table S3).

Discussion
This research describes the first pan-cancer predictive model for 
chemosensitivity using gene expression data as a predictor for 
RFS. We validated 11 predictive models, 1 for each chemother-
apy drug, that are published on Github and can be accessed by 
researchers to predict patient outcome based on a gene expres-
sion profile from an individual’s tumor. For our bioinformatic 
approach, we leveraged established methodology, including 
GLMs, with matching performance in predicting clinical mod-
els to machine learning algorithms.29 The resulting pan-cancer 
model accurately predicted drug sensitivity and/or resistance for 
several cancer type/drug combinations (Figure 2).

When considering the models developed from synthetic 
training data and the resulting accuracy when predicting sensi-
tivity/resistance to drugs using GDSC cell line testing data, 
certain cancer type/drug combinations that reflect standard 
treatments showed above-average predictive performance. For 
example, the accuracy of the temozolomide pan-cancer model 
applied to skin cancer cell lines was 0.98 (Figure 2C); recent 
studies have shown methotrexate to be an effective treatment 
for skin cancers in humans.30-32 Results such as these suggest 
that pan-cancer models can be relied on to provide meaningful 
insights that are applicable to specific cancer types regarding 
identifying treatments that are known to be clinically relevant.

The results of the pan-cancer models being validated on 
human tumor data from TCGA show that pan-cancer models 
based on cell lines can predict not only sensitivity of human 
tumors but also sensitivity to standard (ie, approved) therapies 
for certain cancer types. The cisplatin pan-cancer model sig-
nificantly (P = .014) predicted sensitivity vs resistance when 
RFS was considered for human ovarian cancers (TCGA-OV). 
This model outperforms some single-therapy, single-cancer 
studies recently reported that predict sensitivity to cisplatin in 
ovarian cancer: a model reported by Murakami et al33 signifi-
cantly (P = .02) predicted cisplatin sensitivity in the same 
cohort of patients with TCGA-OV.

When validating the doxorubicin pan-cancer model, only the 
TCGA breast cancer (TCGA-BRCA) cohort met our require-
ments for analysis, which contained 46 patients treated with 
doxorubicin. Our model did not significantly (P = .093) predict 
doxorubicin sensitivity (Figure 3C), which has been shown to be 
possible in some studies34 and difficult in others.35 Among the 
successful attempts is the study by Chen et al,34 where they were 
able to significantly (P = .018) predict doxorubicin sensitivity in 
171 patients with estrogen receptor–negative breast cancer using 

a cell line–derived model to predict sensitivity of human tumors. 
Among the less successful attempts is the study by Lee et al,35 
who attempted to predict sensitivity of breast cancer tumors 
treated with doxorubicin by using a cell line–derived model, 
which resulted in an area under the curve value 0.5. While our 
doxorubicin pan-cancer model did not significantly predict sen-
sitivity based on RFS in breast cancer patients with doxorubicin, 
it did perform better than some previously published studies.

One of the limitations of our study was that, due to the 
imbalance of sensitive and resistant cell lines based on thresh-
olds determined by GDSC, we used synthetic datasets to build 
our pan-cancer models. Although this approach may superfi-
cially seem ill-advised for building clinical models, the use of 
synthetic datasets has been shown to improve accuracy in set-
tings of building predictive models for means of medical diag-
nosis.36 In addition, because our synthetic training data 
included oversampling of the sensitive cell lines, this may have 
slightly inflated the sensitivity of the pan-cancer models when 
applied to the testing data reported in Figure 2A.

Our pan-cancer gene expression and drug sensitivity analy-
sis confirm known biomarkers for chemosensitivity that have 
been reported in the literature for individual cancer types. For 
example, we report a negative association between O-6-
methylguanine-DNA methyltransferase (MGMT) expression 
and temozolomide sensitivity (Table S3), consistent with 
reports of elevated MGMT activity conferring resistance to 
temozolomide in glioblastoma.37 In addition, we report 
SLFN11 as the top predictor gene for chemosensitivity to 
camptothecin, gemcitabine, cisplatin, etoposide, and SN38 
(Table S3). These findings are consistent with SLFN11 as a 
well-known predictor of chemosensitivity38 to camptothecin in 
Ewing sarcoma39 and a strong predictor of sensitivity to cispl-
atin in ovarian cancer,40,41 etoposide in small cell lung cancer,42 
and gemcitabine in breast, lung, and ovarian cancers.43 These 
consistencies speak to the accuracy of our model, lending con-
fidence in the application of pan-cancer approaches to model 
building when including relevant cancer types to expand the 
scope of clinical applicability beyond 1 or few cancer types.

Another method currently used to predict sensitivity to 
platinum-based agents (eg, cisplatin) is homologous recombi-
nation deficiency (HRD) scoring,44,45 which entails examining 
the prevalence of germline mutations in genes involved in 
homologous combination DNA damage repair,45 namely 
BRCA, ATM, PALB2, and RAD50 among others. The list of 
genes included in the model created to predict sensitivity to 
cisplatin does not include any of these genes, which is not alto-
gether surprising as traditional HRD scoring involves DNA 
sequencing and looking at mutations whereas our approach 
involved RNA sequencing and looking at expression levels.

One of the major strengths of our study is that we used the 
actual sensitivity thresholds determined by GDSC to label 
cell lines as sensitive or resistant. Several recent studies that 
used publicly available cell line data to build models labeled 
their training data by using the median of the reported drug 
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sensitivity outcome measure.5,7,46,47 This practice creates a 
balanced training dataset, yet the labels being used already 
induce error, particularly when cell lines are being labeled as 
“sensitive” when in reality they are not sensitive to the drug in 
question, which ultimately can lead to further labeling tumors 
in any validation data as “sensitive” when in fact they are not. 
This could have serious consequences if the decisions of the 
model in question were ever put into clinical practice, as 
patients with tumors thought to be drug sensitive would in 
fact be receiving chemotherapy treatment to which their 
tumors would actually be resistant.

Chemotherapy drugs are often administered to patients in 
combination, but our pan-cancer models focus on single 
agents. There are little publicly available data that integrate 
gene expression profiles and response to combination chem-
otherapies. In addition, the main source of publicly available 
human tumor data, TCGA, has little information regarding 
drug responses in patients with gene expression data availa-
ble. For example, in the TCGA-BRCA dataset, there are 
1217 patients with gene expression data, of which only 820 
also have accompanying clinical data with 117 of those list-
ing drug or drug combination treatments. The limited num-
ber of patients with treatment records in some instances can 
make it difficult to find enough samples to create and/or 
validate predictive models for a given cancer type/drug com-
bination. Increases in the numbers of patients with both gene 
expression and drug response data would allow predictive 
models to be built and validated exclusively on patient data 
and remove the need to transition between cell line and 
human tumor datasets.

The clinical significance of the outcome of this work is its 
potential for clinical utility to aid the decision-making process 
when choosing efficacious treatments for individual patients. 
In this age of precision medicine, patient RNA sequence 
data—obtained from a tumor biopsied at the time of diagno-
sis—can be directly input into any 1 of our 11 chemosensitivity 
models to predict clinical outcome for an individual patient.
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