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A B S T R A C T

The agriculture sector is confronted with numerous challenges in the quest for accurate crop yield
estimation, which is essential for efficient resource management and mitigating food scarcity in a
rapidly growing global population. This research paper delves into the application of advanced
Artificial Intelligence (AI) techniques to enhance crop yield estimation in the context of diverse
agricultural challenges. Through a systematic literature review and analysis of relevant studies,
this paper explores the role of AI methods, such as Machine Learning (ML) and Deep Learning
(DL), in addressing the complexities posed by geographical variations, crop diversity, and culti-
vation areas. The review identifies a wealth of AI-powered solutions employed in crop yield
prediction, emphasizing the importance of precise environmental and agricultural data. Key
factors contributing to accurate estimation include temperature, rainfall, soil type, humidity, and
various vegetation indices, such as NDVI, EVI, LAI, and NDWI. The research paper also examines
the algorithms frequently utilized in the machine learning domain, including Random Forest
(RF), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). In the realm of deep
learning, Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM), and Deep
Neural Networks (DNN) emerge as promising candidates. The findings of this study shed light on
the transformative potential of advanced AI techniques in improving crop yield estimation ac-
curacy, ultimately enhancing agricultural planning and resource management. By addressing the
challenges posed by geographical diversity, crop heterogeneity, and changing environmental
conditions, AI-driven models offer new avenues for sustainable agriculture in an ever-evolving
world. This research paper provides valuable insights and directions for future studies, high-
lighting the critical role of AI in ensuring food security and sustainability in agriculture.

1. Introduction

Agriculture, a focus of scientific and technological innovation, has seen significant transformations due to technology (Montero
et al., 2020). Crop yield estimation is a critical aspect, depending on various factors, including agrometeorological variables like soil
properties, climate, and irrigation [1]. Potential and actual yields, as well as the yield gap, are essential concepts in this context [1].

Traditionally, crop performance assessments relied on observations by experts, influencing decision-making and livelihoods [2].
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However, errors in these predictions can lead to food shortages. Modern precision agriculture faces challenges in predicting crop
production, with many effective models proposed [3]. Addressing these challenges requires extensive datasets [4] and a continuous
drive for improved accuracy [5].

Machine learning techniques are being widely adopted in agriculture to monitor and predict environmental factors [6,7]. These
techniques build prediction models using data and have applications across various domains (Udousoro, 2020). However, developing
accurate and interpretable models in crop production prediction remains challenging due to multifaceted influences [8]. Various
methods, including field surveys, statistical models, crop growth models, and remote sensing, have been employed in crop yield
prediction [9].

Accurate crop yield prediction is essential at national and regional levels, enabling informed decisions by farmers [4,10]. Multiple
methods exist for forecasting agricultural yields, necessitating extensive datasets due to the complex nature of agricultural production
influenced by climate and soil factors [4]. The choice between predictive and descriptive machine learning models depends on the
research context [3,11].

This study conducted a systematic literature review (SLR) to explore the use of machine learning and deep learning in predicting
crop yields. The SLR aims to identify research gaps and provide guidance to practitioners and academics interested in this field [3].
Relevant papers were retrieved from electronic databases and synthesized following established SLR methodology to address the
research questions. The organization of this study is as follows: Section II delves into the background, Section III offers an overview of
crop yield prediction, Section IV presents the results and discussion, Section V introduces practical applications, section VI focuses on
recommendations for future research, and Section VII serves as the conclusion of the paper.

2. Section II. Related work

In this section, we summarize the existing review articles on yield estimation. Prioritizing crop production enhancement is vital for
efficient decision-making at national and regional levels. Various methods exist for forecasting agricultural yields, and it is a chal-
lenging task in precision agriculture, with several effective models introduced [4]. A comprehensive understanding of crop production
growth patterns is essential for farmers. This review article delves into the research on crop production prediction utilizing machine
learning and deep learning techniques found in the literature.

Chlingaryan et al. [12] reviewed nitrogen status estimation in agriculture using machine learning to improve crop yield pre-
dictions. They anticipate the development of cost-effective agricultural solutions through advances in sensing technologies and ma-
chine learning, with the emergence of hybrid systems based on machine learning approaches.

Liakos et al. [13] examined a review of the application of machine learning in agriculture, analyzing publications related to water
resources, livestock, crop, and land management. Their study highlights the potential benefits of machine learning technologies for the
agricultural sector.

Young [14] examined essential methods in official statistics, remote sensing, and surveys for crop yield forecasting, highlighting
prediction uncertainties and research gaps. However, it lacks coverage of prevalent machine learning techniques and specific crop
yield models for different crops, potentially limiting its relevance to some readers.

Elavarasan et al. [15] conducted a review of papers focusing on machine learning models for forecasting agricultural production
using meteorological factors. The research indicates the need for further investigation into additional factors influencing crop
productivity.

Kamilaris & Prenafeta-Boldú [16] surveyed 40 research initiatives using deep learning in agriculture and food production. They
found that deep learning is highly effective, outperforming traditional image processing methods, and can address diverse agricultural
challenges with high accuracy.

Beulah [17] assessed various data mining approaches used in crop production prediction and concluded that data mining tech-
niques can be applied to address this issue.

Koirala et al. [18] focused on deep learning for fruit identification and localization in agriculture, advocating for standardized
metrics in model comparison. They highlighted the efficacy of deep learning methods and recommended CNN detectors, deep
regression, and LSTM for fruit load assessment.

van Klompenburg et al. [3] conducted a systematic review of crop yield prediction techniques, focusing on information extraction
without in-depth analysis or recommendations. They identified common deep learning algorithms used in the field, with CNN, LSTM,
and DNN being the most preferred methods for crop yield prediction.

Häni et al. [19] presented a system for apple yield estimation through deep learning-based fruit detection and counting. Their study
compared semi-supervised and deep learning methods, revealing that Gaussian mixture models outperformed deep learning methods
like U-NET, Fast R-CNN, and CNN in most datasets for yield detection.

Zhang et al. [20] explored Deep Learning (DL) for agricultural tasks in dense scenes, showing its efficiency and accuracy in ac-
tivities like recognition and yield estimation. DL, particularly Convolutional Neural Networks (CNNs), outperformed alternative
methods in dense agricultural scenes, emphasizing its importance in computer vision tasks.

Dharani et al. [21] explore the use of deep learning methods, emphasizing their role in crop yield prediction for agriculture. They
propose that artificial intelligence can improve crop management and yield forecasting, with recurrent neural networks and hybrid
networks like RNN-LSTM showing superior accuracy in predictions compared to other networks.

Darwin et al. [22] review deep learning and computer vision in smart agriculture for crop yield estimation, highlighting automation
benefits in image analysis and remote sensing. They conclude that using deep learning with machine vision improves the accuracy of
automated agricultural systems.
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Maheswari et al. [23] investigate deep learning-based semantic segmentation for fruit yield estimation in orchards, emphasizing its
advantages over traditional methods. They address challenges in fruit yield estimation and suggest that DL-based techniques
outperform traditional approaches by incorporating human cognition into the architecture.

Monteiro et al. [24] provide a brief overview of scientific and technological tools in precision agriculture and their applications in
crop and livestock farming. They emphasize resource optimization and how precision agriculture can meet food demand while
ensuring sustainability.

Rashid et al. [25] conducted a comprehensive review on machine learning-based palm oil yield prediction, highlighting the need
for diverse features and prediction techniques in future research. They note the common use of ML algorithms like LR, RF, and NN, as
well as some DL models in crop yield forecasting.

Benos et al. [26] assess current scholarly literature on machine learning in agriculture, providing insights for stakeholders inter-
ested in its potential advantages. The study highlights the use of various sensors on satellites, ground vehicles, and aerial vehicles for
gathering reliable input data for machine learning in agriculture.

Hasan et al. [27] provide an overview of deep learning-based algorithms for weed identification and classification in agriculture,
covering data collection, dataset preparation, deep learning techniques, and assessment metrics approaches.

Modi et al. [1] conduct a comprehensive investigation into non-destructive techniques for yield prediction, focusing on data
collection, pre-processing, properties, techniques, and outcomes, while identifying commonly usedmethods and recommendingmodel
integration for improved accuracy.

Muruganantham et al. [28] highlight the benefits of using deep learning in crop yield forecasting and recommend remote sensing
technologies based on data requirements and influencing factors. The study acknowledges challenges like enhancing model accuracy,
practical application, and addressing the opacity of deep learning models.

Oikonomidis et al. [29] conduct a systematic review on deep learning applications in crop yield prediction, analyzing motivations,
target crops, methods, features, and data sources in the identified papers.

Bouguettaya et al. [30] review the use of deep learning techniques for crop and plant classification from UAV-based remote sensing
imagery, emphasizing the importance of robust tools like Convolutional Neural Networks (CNN) and the potential of combining UAV
data and deep learning for accurate crop classification.

Ojo & Zahid [31] explore the recent developments, challenges, and future prospects of using deep learning in controlled envi-
ronment agriculture (CEA). They highlight DL applications in CEA, challenges, research directions, and commonly used models,
focusing on CNNs and RNN-LSTM for time series forecasting in CEA.

The purpose of this systematic literature review is to analyze the influence of environmental factors on crop growth and identify
research gaps in machine learning and deep learning technology. It explores the benefits of using machine learning and deep learning
for crop yield prediction, identifies appropriate remote sensing technologies, and considers factors affecting crop yield, offering fresh
insights into current research.

3. Section III. Methodology

3.1. Review protocol

This study conducts a systematic literature review (SLR) on crop yield estimation, focusing solely on journal articles. Its purpose is
to identify research gaps in the machine learning and deep learning methods within this specific field [28]. The review not only
encompasses all journal research but also aligns with our study’s research questions. Such comprehensive literature reviews are vital
for evaluating theories and data accuracy within a field [32]. Article selection adheres to PRISMA guidelines [33], using databases like
Scopus, Google Scholar, Science Direct, PubMed, Web of Science, Mendeley Research Networks, and Wiley. Pertinent research is
screened and evaluated based on inclusion and quality standards [3]. All pertinent data is collected from these studies and synthesized
to address our research questions.

3.2. Research questions

The following research questions are developed to guide the systematic review:

1. What machine learning and deep learning techniques are employed for crop yield prediction?
2. What features or variables are utilized for crop yield prediction through machine learning and deep learning methods?
3. What criteria and methodologies are applied to evaluate crop yield prediction?
4. What obstacles exist in crop yield prediction using machine learning and deep learning techniques?

Q1 helps us assess both the benefits and drawbacks of employing machine learning and deep learning techniques for crop yield
prediction. Q2 assists us in gaining insight into the diverse factors that impact the utilization of machine learning and deep learning
methods in crop yield prediction. Q3 provides valuable insights into the assessment criteria and methods applied in the context of crop
yield prediction. Q4 facilitates our comprehension of the constraints and difficulties associated with existing approaches.
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3.3. Technique for article searches

The systematic literature review’s objective forms the foundation for the article search methodology. The search is carried out with
a specific emphasis on the key concepts relevant to this review’s parameters. The primary focus of this review is shaped by the terms
"machine learning or deep learning" and "crop yield prediction." The scope is restricted to publications from January 2018 to April
2023. Upon identifying a pertinent study, an examination of its references was conducted to identify any additional studies missed in
the initial search. This iterative process continued until no more relevant studies were uncovered.

The exclusion criteria employed during the analysis of retrieved publications included the determination of whether they were
survey papers or general review articles. The subsequent section addresses the topics associated with the excluded publications.

Exclusion Criteria The studies underwent a comprehensive assessment and were systematically categorized according to pre-
defined exclusion criteria. These criteria were set to delineate the boundaries of the systematic review and to eliminate studies that did
not meet the relevant criteria. The subsequent list outlines the exclusion criteria (EC):

First criterion Articles pertaining to agriculture but not specifically focused on crop yield prediction.
Second criterion Publications that have been previously acquired or are duplicates.
Third criterion Studies without full-text accessibility.
Fourth criterion Articles authored in languages other than English, conference papers, book chapters, reviews, surveys, Master’s

theses, or PhD dissertations.
Fifth criterion Publications published before the year 2018.
Following the application of the exclusion criteria, a total of 176 articles were ultimately chosen. Subsequently, the removal of

duplicate entries from the selected databases led to the evaluation of 115 unique articles. It is worth emphasizing that only journal
articles met the inclusion criteria for this review. The methodology employed in this review adheres to the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, as illustrated in Fig. 1 (PRISMA, accessed on February 1, 2021).

Table 1 displays the initial tally of retrieved papers, the quantity that met the selection criteria, and the total number of articles
remaining after the removal of duplicates. Notably, a substantial portion of the papers originated from the Scopus, Science Direct, and
Google Scholar databases. The primary focus of data analysis revolved around assessing adherence to the exclusion criteria. In the data
synthesis stage, all accumulated information was compiled and integrated.

3.4. Approaches used in literature discussion

We have identified and highlighted a total of 115 research papers published in various journals from 2018 to April 2023, all of
which are relevant to our study. These papers have been meticulously compiled into a comprehensive Literature Review Table. This
table encompasses essential details, including the databases utilized, author names, publication years, data sources, features employed,
methodologies applied, measured attributes, research objectives, findings, and any limitations noted in these articles.

Furthermore, we have dedicated an Appendix section that presents a detailed analysis of the 20most closely related papers from the
aforementioned selection. These papers offer a more in-depth exploration of the subject matter for reference and further examination.

The Appendix (Literature Review Table) offers an overview of the various approaches employed for predicting crop yields,
encompassing machine learning, deep learning, and hybrid methods. Unique approaches like Extreme Learning Machine (ELM),
Stochastic Gradient Descent (SGD), Sequential Minimal Optimization Regression (SMOreg), Elastic Net (EN), Interaction Regression
(IR), Deep Recurrent Q-Network (DRQN), Cubist, and YieldNet are discussed. Frequently used machine learning algorithms include
Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN). K-Nearest Neighbors (K-NN), Decision
Trees (DT), and Multi Linear Regression (MLR) are also common choices.

In the realm of deep learning, CNN, DNN, and LSTM are frequently employed for crop yield prediction. Deep learning falls under
the broader umbrella of machine learning and is gaining significant attention for addressing crop yield prediction challenges. Addi-
tionally, these deep learning approaches are often combined, such as in CNN-LSTM, RNN-LSTM, and CNN-RNN multilevel deep
learning systems with multiple layers, along with multimodal fusion techniques. Transfer learning (TL) is another method by which
pre-trained deep learning models can be adapted for accurate crop yield prediction across various agricultural settings.

Fig. 1. Flowchart displaying search results.
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Notably, when remote sensing data is incorporated, simple neural networks are less commonly used for agricultural yield fore-
casting. Data pre-processing is a prevalent component integrated into the majority of these methodologies.

3.4.1. Machine learning approach
In contrast to rule-based methods, machine learning utilizes statistical analysis to detect data patterns. Traditional machine

learning approaches like SVM, LR, RF, K-NN, and DT are trained on labeled datasets for predicting new labels. RF, SVM, and ANN have
shown excellent performance in crop yield prediction [34]. RF is an efficient method widely used in agricultural studies [35–40]. SVM
is suitable for yield prediction using weather and MODIS-based vegetation indices [41]. ANNs are often used for crop production
prediction models [42]. Machine learning predictors for classification include PSO-SVM, KNN, and RF [43].

Conventional machine learning methods require pre-processing stages, including data pre-processing, feature extraction, and
feature selection, to effectively train algorithms [44]. A study [45] combined six algorithms to enhance crop identification based on
soil type. ML models demonstrate strong performance using 10-fold cross-validation [46].

3.4.2. Deep learning-based crop yield prediction
Deep learning (DL), a subset of machine learning, excels at analyzing labeled and unstructured data [47,48]. It’s widely applied in

agriculture due to its ability to handle large datasets, discover variable correlations, and employ nonlinear functions [49,50]. Deep
learning outperforms traditional methods in feature extraction, crucial for agricultural yield prediction [48].

Notably, Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM) and Deep Neural Network (DNN) are the most
widely used deep learning methods in crop yield prediction. LSTM, a variant of Recurrent Neural Networks (RNN), is particularly
valuable for capturing time-dependent information [51]. Deep neural networks consist of multiple nonlinear layers, extracting in-
formation at each level [52]. Discovering nonlinear associations between input and response variables is a key role of deep neural
networks, often with various hidden layers [52].

Enhancing deep learning algorithms’ performance involves using techniques like stochastic gradient descent (SGD), batch
normalization, and dropout. Some of these deep learning methods are briefly outlined below:

Deep Neural Networks (DNN) DNN methods, apart from the number of hidden layers, closely resemble traditional ANN algo-
rithms [53]. Both DNN and ANN networks typically feature multiple fully connected hidden layers [54]. In contrast, other deep
learning algorithms like CNN incorporate various types of layers, including convolutional and pooling layers [3].

Convolutional Neural Networks (CNN) CNN comprises fundamental units arranged between input and output layers, including
convolutional, pooling, and activation layers [30,55]. In the convolution layer, local filters perform convolution operations on input
data, while the pooling layer generates reduced-dimensional data through operations like max-pooling and average-pooling. The
activation layer’s nonlinear operations enhance CNN’s ability for nonlinear fitting [55]. CNN updates weights using Backpropagation
(BP), similar to the Backpropagation Neural Network (BPNN) approach.

Long-Short Term Memory (LSTM) LSTM is a type of Recurrent Neural Network (RNN) that uses gradient-based algorithms to
learn time-dependent data. LSTM consists of a chain structure consisting of an input layer, one or more LSTM layers, and an output
layer [25,28].

Recurrent Neural Networks (RNN) Recurrent Neural Networks (RNNs) are a type of neural network that processes data in se-
quences [56]. It is a sort of artificial neural network in which the temporal dependencies of nodes are represented by a directed graph
[57]. RNN is useful for sequence modeling; This approach makes RNN more efficient because the sequence data used is better un-
derstood [50].

Transfer Learning (TL) Transfer learning is a machine learning technique where a model trained on one task is repurposed on a
second related task. It is particularly useful when working with limited labeled data because it allows us to leverage knowledge from
one domain and apply it to another [58]. In deep learning, transfer learning involves taking a pre-trained model (trained on a large
dataset) and fine-tuning it on a new dataset or task [58,59]. This process can significantly speed up training and improve the per-
formance of the model, especially when the new task has limited available data [59].

3.4.3. Miscellaneous approaches in crop yield prediction
Various classification and regression techniques have proven successful in agricultural production prediction, including Linear

Table-1
Distribution of articles is based on the databases.

Database Number of articles that were first
retrieved

Number of papers remaining after
exclusion criteria

Number of articles after removing the
repeated articles

Science Direct 87 38 26
Web of Science 68 12 8
Scopus 255 72 53
Google Scholar 294 33 20
PubMed 36 9 5
Mendeley Research

Networks
20 5 1

Wiley 35 7 2
Total 795 176 115
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Regression (LR) [60], Naive Bayes (NB) [61], Extreme Gradient Boosting (XGBoost) [62–65], Gradient boosting (GB) (Anbananthen
et al., 2022), Interaction Regression [8], AdaBoost [66], Logistic Regression (LR) [61], Levenberg–Marquardt (LM) [67], Extreme
Learning Machine (ELM) [68], Deep Learning Multi-Layer Perceptron (DLMLP) [69], Deep recurrent Q-learning (DRQN) [70], General
Regression Neural Networks (GRNN) (S. V. [71]; V. [72]), Deep Convolutional Regression Network (DCRN) [73], Light Gradient
Boosting Machine (LightGBM) [74], Linear Discriminant Analysis (LDA) (Mupangwa et al., 2020), Multi-parametric Deep Neural
Network (MDNN) (Kalaiarasi and Anbarasi, 2021), Special-Spectral-Temporal Neural Network (SSTNN) [75], YieldNet [76], Ensemble
methods [36,45,77–81], Stochastic Gradient Descent (SGD) [82], and Cubist [83], all of which have been effectively used in crop yield
prediction.

3.4.4. Hybrid approach to crop yield prediction
Combining the strengths of various machine learning and deep learning algorithms is a common practice. Anbananthen et al. [36]

integrated gradient boosting, random forest, and LASSO regression for localized crop yield forecasting. Raja et al. [80] integrated RF,
Bagging, K-NN, SVM, DT, and NB to improve prediction accuracy for cereals, potatoes, and energy crops. Sajid et al. [84] combined LR,
Lasso Regression, RF, XG Boost, and Light GBM for maize yield prediction. Srivastava et al. [85] integrated CNNs and FCNNs for winter
wheat yield prediction. Oikonomidis et al. [65] combined CNN-LSTM, CNN-DNN, CNN-XGBoost, and CNN-RNN for soybean yield
prediction. Khaki et al. [57] integrated CNN-RNN for corn and soybean yield prediction. Olofintuyi et al. [50] used CNN-RNN with
LSTM for cocoa yield prediction. Bali & Singla [49] combined RNN-LSTM for wheat yield prediction. Shook et al. [86] integrated
SVR-RBF for soybean yield prediction. Jui et al. [87] used DRS-RF for tea yield prediction. Neural network-based crop yield prediction
models have shown promising accuracy ([47,65,81,88,89]; Wang et al., 2018). However, their black-box nature hinders interpret-
ability [90]. To address the interpretability problem in the future, deep learning-based techniques can be utilized to solve fractional
models [91,92] and differential equations [93] in the field of crop yield prediction.

3.5. Performance evaluation metrics used in crop yield prediction analysis

The evaluation of model outputs against actual data is a crucial step in estimation. This section discusses the commonly used
evaluation metrics and techniques.

Performance Evaluation Metrics Evaluation metrics are essential for assessing model performance, distinguishing between
different learning models [70]. Key performance metrics for regression models include the mean absolute error (MAE), mean squared
error (MSE), root mean square error (RMSE), determination coefficient (R-squared), and mean absolute percentage error (MAPE). The
average importance of errors with a given array of forecasts is calculated using the MAE, which is defined as an arithmetic mean of the
absolute deviations between the predicted observations and the actual observations [94]. MSE measures how closely the regressor line
resembles the dataset points, which is used to assess the estimator’s performance [70]. The RMSE measures how well the data are
focused on the best fit line and used to calculate the standard deviation of the residuals or projected error [95]. The superiority of the
generated framework over the baseline framework is demonstrated by the coefficient of determination (R-Squared), which is used to
assess how well the regression framework fits the data [96]. The average of the percentage errors, or how far the model’s prediction
deviates from the related results, is calculated using MAPE [70].

For machine learning-based classification algorithms in crop yield prediction, evaluation includes accuracy [40,80], precision (Li
et al., 2018; Sivanantham et al., 2022), recall [59,97], sensitivity [34,43], specificity [80,97], and F1 Score (Kalaiarasi and Anbarasi,
2021; Mupangwa et al., 2020). Classification accuracy remains the most widely used and informative metric for classification
problems.

4. Section IV results and discussion

The papers chosen for the review are evaluated and condensed.
Fig. 2 exhibits the number of articles published spanning from 2018 to April 2023. Evidently, there has been notable advancement

in research related to predicting crop yields.

Fig. 2. Distribution of articles.
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4.1. Q1: approaches used in literature discussion

For the first research question (Q1) Previous studies have employed a range of classification and regression algorithms for crop
yield prediction. Among the selected 115 articles, various machine learning and deep learning methods have been summarized.
Unique methods include Interaction Regression (IR), Elastic Net (EN), Extreme Learning Machine (ELM), Cubist, and YieldNet.
Commonly used machine learning algorithms are Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network
(ANN), while Extreme Gradient Boosting (XGBoost), Decision Trees (DT), and Multi Linear Regression (MLR) are also prevalent, as
depicted in Fig. 3. In contrast, deep learning algorithms like Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),
and Deep Neural Network (DNN) are frequently utilized for crop yield prediction. Deep learning falls under the umbrella of machine
learning and is increasingly promising in this field. These methods are often combined, such as CNN-LSTM and multilevel deep
learning systems, particularly when utilizing remote sensing data. Notably, simple neural networks are less commonly used for crop
production prediction. Many of these approaches incorporate data pre-processing. Fig. 3 illustrates the distribution of crop yield
prediction publications based on machine learning and deep learning methods.

4.1.1. Approaches discussion
Fig. 3 presents the most commonly employed methods as identified from the selected articles.
Random forest (RF) is one of the most popular machine learning techniques for predicting crop yields, as seen in Fig. 3. Because of

its unique capacity to locate the crucial details inside the data, it is widely used. The advantages of adopting the RF technique include
the ability to resolve the variable collinearity problem, which is typically addressed by using conventional LR models. According to
Fig. 3, the second most used algorithm is the Artificial Neuron Network (ANN). Artificial Neurons allows them to process huge volumes
of data, identify a pattern from it, and draw conclusions. ANN was utilized extensively in agricultural yield prediction. The third most
used algorithm is support vector machine (SVM). SVR performed significantly better than K-NN, BNN, and LR in research [98].

Additionally, depicted in Fig. 3 is the convolutional neural network (CNN), which stands as one of the most widely used deep
learning techniques for forecasting agricultural productivity. It has a unique ability to locate the crucial details in the data, which
makes it quite popular. Nevavuori et al. [89] investigated crop yield prediction using a distinctive profile of temperature and
photoperiod, creating a region-specific deep learning model. For agricultural production modeling, Oikonomidis et al. [65] created
CNN-DNN, CNN-RNN, CNN-LSTM, and CNN-XGBoost. The CNN-DNN model outperformed the others in terms of performance.

Results from prior crop yield prediction by Z. Zhang et al. [99] showed that the ML and DL approaches definitely outperformed LR,
mainly because LASSO was able to extract the dynamic correlations between the variables and the target predictor [100,101].The
ability of LSTM to learn time-dependent information distinguishes it from other deep learning techniques, which were also employed
extensively in crop production prediction. X. Wang et al. [102] studied the model performance accuracy employed various combi-
nations of soil, meteorological, and remote sensing data. It is not always true that the most popular algorithm is also the best one. Both
classifiers and clustering methods are employed in the chosen papers. In those publications, images are utilized for clustering; hence
the publication is related to machine vision rather than ML utilizing a numerical dataset.

ML and DL techniques such as RF, SVM, DT, ANN, XGBoost, Classification, LSTM, CNN and DNN have been applied for yield
estimation. These approaches are based on statistical analysis and regression. It is quite clear that regression-based methods are mainly
used for yield estimation [1].

Strengths and Weaknesses of Some Popular Algorithms Agricultural data often contain noisy features and outliers, which
regularization can help mitigate. Regularized classifiers like linear SVM outperform non-regularized methods like LDA, and SVM’s
decision rule is a reliable and low-variance linear function in kernel space [103–105]. Low variability is crucial for minimizing
classification errors in the inherently unstable agricultural data over time [53]. SVM performs well with small training sets and
high-dimensional feature vectors [12,106]. Random Forest (RF) offers high-speed operation, generalization performance, and an

Fig. 3. Most Used Machine Learning and Deep Learning approaches.
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ensemble of tree-structured classifiers, making it ideal for finding non-linear patterns [107]. RF requires minimal data preprocessing
and excels in feature selection for superior yield results. Convolutional Neural Networks (CNNs) are essential in computer vision and
remote sensing, capable of handling various retrieval tasks, including soil moisture retrieval (T. [55,108]). Unlike conventional neural
networks, CNNs have a fully connected layer with local connectivity, making them highly effective for processing spatial data.

Algorithm’s ability to Cope with Specific Problems High-dimensional feature vectors in agricultural data can be effectively
classified using techniques like Support Vector Machines (SVM). To handle sequences of high-dimensional data, dynamic classifiers
can be beneficial, particularly when dealing with multiple time segments. Other methods like Random Forest (RF), Principal
Component Analysis (PCA), and correlation coefficients can also manage high-dimensional datasets. For improved performance,
combining classifiers, especially when dealing with non-stationary datasets, can reduce variance. Combining Linear Discriminant
Analysis (LDA) and SVM often leads to better results. Additionally, Artificial Neural Networks (ANN) are frequently used in agri-
cultural production and vegetation prediction due to their ability to extract complex, dynamic, and non-linear patterns, particularly
with remote sensing data [12]. Convolutional Neural Networks (CNN) are ideal for image data with substantial training samples,
enabling tasks like nutrient level estimation, crop yield mapping, and disease identification. For object recognition applications,
advanced CNN architectures such as Faster R-CNN, R-FCN, and SSD are highly effective. Regression-based algorithms like RF, ANN,
and Support Vector Regression (SVR) are successful for crop yield prediction, and model predictability can be enhanced by ensembling
multiple algorithms [84].

4.2. Q2: features used in crop yield prediction

Regarding research question two (Q2), an exploration and synthesis of the features integrated into the machine learning and deep
learning algorithms showcased in the papers was executed. Table 2 provides an overview of the features that have been examined for
predicting crop yield. Since crop yield data is a crucial component of crop yield prediction, it is used exclusively in all publications.

Among the features considered, soil type, maximum and minimum temperature, humidity, and rainfall are consistently observed in
the majority of studies, highlighting their prevalence. Nevertheless, it’s important to recognize that certain studies introduce unique
features tailored to their specific contexts. Included in these variables are precipitation forecasts, normalized difference vegetation
index (NDVI), humidity, fertilizer, soil pH, enhanced vegetation index (EVI), normalized difference water index (NDWI), irrigation,
photoperiod, gamma radiation, MODIS-EVI, leaf area index (LAI), and crop data. In addition, some studies have included extra nu-
trients like calcium, magnesium, potassium, sulfur, nitrogen, and boron as part of their feature selection. It is worth highlighting that
the frequently employed features may not always rely on the same types of information. For instance, when examining temperature,
researchers may consider factors such as average temperature, maximum temperature, and minimum temperature, as illustrated in the
work of van Klompenburg et al. [3]. These studies primarily aim to predict the specific type of crop.

In Table 3, we have structured feature groups to represent essential attributes, providing a more organized view of the independent
variables. These attributes span multiple domains, covering moisture, nutrients, field management, soil characteristics, and crop-
related details. Notably, the most frequently utilized feature categories revolve around soil properties, meteorological data,

Table 2
Features used for crop yield prediction.

Feature No. of times used Feature No. of times used

Rainfall 50 Soil fertility 1
Temperature (max-min) 69 Snow water equivalent 3
Humidity 27 Yield 22
Soil Moisture 5 APAR 1
NDVI 40 GNDVI 3
EVI 24 GCVI 2
LAI 12 LSWI 2
FPAR 3 SAVI 6
Solar radiation 10 Irrigation 11
NIR 2 Number of tanks 1
DVI 1 number of tube wells and open wells 2
Average temperature 4 Wind Speed 6
Precipitation 19 SPI/GDO/LST 1
Soil type 34 Soil pH 11
Season 4 RGB 7
Area 10 Cultivation practices 1
TPI 1 Wind direction 2
Vapor pressure 5 Crop 8
Wet day frequency 1 Sample ration (SR) 2
Sentinel-2/2Y-102D/GRD/SAR (Remote sensing) 1 WDRVI/GPP/GRVI/ARD 1
Evapotranspiration 10 Satellite images 1
Seed variety 3 CI 1
Fertilizers (Nitrogen, Phosphorus, Potash) 23 Crop Phonology 1
Pesticides 1 NDWI 11
DESIS 1 SWIR-1, SWIR-2 3
SIF 2  
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weather conditions, and crop yield information.
Within the ’Soil Information’ attribute group, you’ll come across elements like soil moisture, soil type, pH value, and production

area. The ’Humidity’ category includes various aspects related to precipitation, humidity levels, expected precipitation, and precip-
itation forecasts. ’Field management’ deals with the decisions made by farmers regarding field modifications and encompasses nutrient
management, including elements such as irrigation and fertilizer management. Additionally, data from solar sources can be used to
derive parameters related to irradiance or temperature.

Environmental factors play a crucial role in crop yield prediction as they directly influence plant growth, development, and
productivity. Understanding the complex interactions between environmental variables and crop yields is essential for developing
accurate prediction models. Several key environmental factors include weather variables such as temperature, precipitation, humidity,
and solar radiation, which significantly impact crop growth and development. Soil properties like texture, nutrient content, pH, and
water-holding capacity also affect crop growth by influencing root development, nutrient uptake, and water availability. Additionally,
topography, including geographical features such as elevation, slope, and aspect, can influence microclimates and water drainage,
thereby affecting local growing conditions and crop yields.

Data Collection using Remote Sensing Crop production is influenced by environmental factors, weather patterns, diseases and
other parameters [28]. Ground observation, remote sensing, global positioning system, and on-site surveys serve as methods for
monitoring environmental conditions, additional parameters, and crop growth. Obtaining data over a large area through ground
observation or traditional methods poses challenges, resulting in less precise and variable outcomes [12]. To overcome this constraint,
remote sensing is increasingly being used for crop monitoring. Remote sensing technology comprises the process of collecting and
analyzing information about the Earth and its components via instruments placed in the atmosphere or on satellites, eliminating the
necessity for physical engagement [57]. Compared to approaches like field surveys, remote sensing can generate a substantial quantity
of data [109]. Computation of vegetation index (VI) is one of the most important reasons for using optical remote sensing to acquire
agricultural data [28]. Normalized difference vegetation index (NDVI), normalized difference water index (NDWI), enhanced vege-
tation index (EVI), green normalized difference vegetation index (GNDVI), fraction of photosynthetically active radiation (FPAR), soil
adjusted vegetation index (SAVI) and various other indices are instances of vegetation indices (VI).

4.2.1. Effect of vegetation indices and environmental factors
Vegetation indices are designed to enhance sensitivity to vegetation characteristics while minimizing interference from factors like

soil reflectance and atmospheric conditions. Zhao et al. [110] established a function linking vegetation indices to crop coefficients (Kc)
for efficient irrigation management and water conservation. Vegetation indices find extensive use in crop yield estimation, protein
analysis, biomass assessment, weed control, and fertilizer management (X. [102]). Normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), leaf area index (LAI), green normalized difference vegetation index (GNDVI), normalized difference
water index (NDWI) and soil adjusted vegetation index (SAVI) are frequently employed vegetation indices. Research has explored how
the relationship between remotely sensed data and crop yield changes over the growing season, with varying associations at different
growth stages (Shiu and Chuang, 2019; Lin et al., 2019). Earlier studies often concentrated on specific crops and years, with some
vegetation indices showing high accuracy in predicting crop yields, particularly for corn [94,111–113]. Crop yield prediction com-
bines vegetation indices with environmental variables like canopy temperature, water stress, humidity, nutrients, and soil data (X.
[102]). The complexity of crop yield prediction is noted, with limited research on individual features that significantly impact
predictions.

In order to calculate the corn yield, X. Wang et al. [102] combined vegetation indices like the normalized difference vegetation
index (NDVI) and the absorbed photosynthetically active radiation (APAR) with environmental variables included canopy surface
temperature and the water stress index. In addition, additional characteristics like humidity, nutrients, and soil data are also utilized to

Table 3
Grouped features.

Group Name of the features No. of times used
(GroupWise)

Soil Data Soil Moisture (5), Soil type (34), Area (10), Soil pH (11), Soil fertility (1) 61
Meteorological Data/Weather

Conditions
Rainfall (50),Temperature (max-min) (69), Humidity (27),Average temperature (4), Precipitation
(19), Wet day frequency (1), Evapotranspiration (10), Vapor pressure (5), Wind speed (6), Wind
direction (2), Solar radiation (10), Snow water equivalent (3)

206

Crop yield Information Pesticides (1), Crop (8), Yield data (22), Crop Phonology (1),Season (4) 36
Images RGB (7), Satellite images (1) 8
Vegetation Indices NDVI—normalized difference vegetation index (40), EVI—enhanced vegetation index (24), LA I – leaf

area index (12), FPAR – fraction of photosynthetically active radiation (3), Sentinel-2 generated VIs
and topographic data (1), NIR – near-infrared (2),DVI – difference vegetation index (1), TPI –
Topographic Position Index (1),FPAR – fraction of photosynthetically active radiation (3) APAR –
absorbed photosynthetically active radiation(1), GNDVI – Green Normalized Difference Vegetation
Index (3), GCVI – green chlorophyll vegetation index (2), LSWI – Land Surface Water Index (2), SAVI –
Soil Adjusted Vegetation Index (6), DESIS – DLR Earth Sensing Imaging Spectrometer (1), SIF - Stress
intensification factor (2), CI - Composite Index (1), SPI/GDO/LST (1), WDRVI/GPP/GRVI/ARD (1),
NDWI (11), SWIR-1, SWIR-2 (3)

121

Farm Management Fertilizers (Nitrogen, Phosphorus, Potash) (Kg) (23), Seed variety (3), Number of tanks (1), number of
tube wells and open wells (2), Cultivation practices (1), Irrigation (11)

41
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forecast crop yields. There has been little research done to identify individual features that have a significant impact on crop yield
prediction because so many features are already used in agricultural yield prediction. In light of this, a comprehensive exploration is
required to gain a deeper insight into the variables and factors influencing crop production predictions.

4.3. Q3: third research question

In previous studies on crop yield prediction, a wide array of performance evaluation metrics has been employed, as depicted in
Fig. 4. Remarkably, RMSE stands out as the most frequently utilized metric in crop yield prediction algorithms. Specifically, RMSE, R-
squared, MAE, and classification accuracy were utilized as performance evaluation metrics in the papers by Joshua et al. [71], Pham
et al. [114], Sajid et al. [84], and Shahhosseini et al. [81] respectively. However, the diverse use of evaluation metrics across these
studies has posed challenges in comparing similar crop yield prediction models. As noted by Rashid et al. [25], this diversity com-
plicates direct model comparisons. To address this issue, it is recommended that a consistent and systematic approach or a single
standardized metric be adopted to quantify specific crop production prediction models. This would enable more straightforward and
meaningful comparisons between different crop yield prediction algorithms.

4.4. Q4: challenges discussion

This summary discusses the challenges and findings related to crop yield prediction based on a review of 115 articles, including 68
using machine learning (ML) methods and 47 using deep learning (DL) methods. Key points include:

Challenges in Crop Yield Prediction The primary challenge identified is the complexity of creating a functional model. Model
accuracy tends to improve with larger and more diverse datasets. Implementing these models in farm management systems poses
another difficulty, and accuracy increases when local parameters are incorporated.

Data Insufficiency Several studies mentioned the problem of insufficient data availability. Despite limited data, somemethods still
showed promise, but further testing with more diverse data is recommended. Integrating data from various sources is also suggested
for improvement.

Variability in Features and Scope The selected publications vary in the features they use, which depends on the depth and
quantity of investigation, study scope, region, and crop. The choice of attributes is influenced by dataset availability and research
objectives. Notably, more features do not always lead to better yield prediction performance.

Algorithm Diversity Various studies employed a range of algorithms, making it challenging to determine an optimal model.
However, some machine learning models were more commonly used than others.

Data Integration and Environmental Factors The consensus among studies is that incorporating appropriate data, especially
environmental factors, is crucial for accuracy. Most articles used data from limited sources, and few considered environmental factors,
which raised questions about their accuracy.

5. Section V: Practical applications

Crop yield prediction models have numerous practical applications in agriculture. Farmers can utilize these models to optimize the
allocation of resources such as water, fertilizer, and pesticides, thereby maximizing yields and minimizing input costs. Additionally, by
anticipating potential yield fluctuations due to environmental factors, farmers can implement risk management strategies to mitigate
the impact of adverse weather conditions or other environmental stressors. Accurate yield predictions also enable stakeholders to make
informed decisions regarding market planning, trade policies, and commodity pricing, contributing to more efficient and resilient
agricultural markets. Furthermore, policymakers can use crop yield prediction models to develop evidence-based policies and pro-
grams aimed at promoting food security, sustainable agriculture, and rural development.

Fig. 4. Metrics for assessing performance.
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6. Section VI: recommendations for future research

The need for further research is emphasized, particularly in identifying the most accurate approaches or methods for crop yield
prediction by considering environmental factors. Selecting suitable datasets, thorough pre-processing, and efficient regression model
training are crucial for obtaining the best results, especially given the continuously changing environmental conditions in different
districts. Transfer learning and domain adaptation techniques can help overcome the challenge of limited labeled data by transferring
knowledge from related domains or pre-trained models [58,59]. Fine-tuning pre-trained models on agricultural datasets can signifi-
cantly improve model performance, especially in cases where labeled data is scarce [115]. Developing techniques to improve the
interpretability and explainability of DL models is crucial for gaining trust and acceptance among farmers and stakeholders. Inte-
grating data from multiple sources, including remote sensing, IoT devices, satellite imagery, and weather data, can provide a more
comprehensive understanding of agricultural systems. Multimodal data fusion techniques can help extract valuable insights and
improve the performance of ML and DL models. Collaboration among researchers, farmers, agricultural extension services, and pol-
icymakers is essential for advancing the field of agricultural ML and DL. Open data sharing initiatives can help address the challenge of
data scarcity by making agricultural datasets more accessible to the research community. Developing robust ML and DL models that
can generalize well across different environmental conditions, cropping systems, and geographic regions is crucial for their widespread
adoption. Robustness can be improved through techniques such as data augmentation, ensemble learning, and model regularization.
Designing ML and DL models with the end-user in mind is essential for their adoption and impact. Engaging with farmers and
stakeholders throughout the model development process can help ensure that the models address real-world challenges and provide
actionable insights.

Overall, the summary highlights the challenges and areas for improvement in crop yield prediction, emphasizing the importance of
data quality, feature selection, and environmental factors in enhancing prediction accuracy. Furthermore, ML and DL have the po-
tential to revolutionize agriculture, enabling more sustainable and efficient farming practices while ensuring food security and
environmental operation.

7. Section VII: Conclusion

To address the global challenge of feeding a growing population, adopting advanced agricultural technology is crucial. Agricultural
practitioners require timely and accurate guidance for crop yield prediction. Our review reveals that selected articles emphasize
different features, particularly data accessibility and research coverage extent in yield prediction using machine learning and deep
learning techniques. Models with more attributes do not consistently perform better, and feature selection depends on dataset
availability and research objectives. Different algorithms have been used across studies, with variations in usage. Crop type,
geographical location, and intensity levels vary among conducted studies. To determine the most effective model, specific feature
selection algorithms should be tested with high-performing models, with significant differences in machine learning model usage.
Traditional machine learning frameworks like random forest (RF), support vector machine (SVM), and neural network (NN) show
promise.

The review explores 47 articles on deep learning algorithms. Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM), and Deep Neural Networks (DNN) are commonly adopted. These techniques, along with pixel categorization and remote
sensing data, show promise in crop yield prediction.

Combining quantitative and qualitative data sources, such as temperature, soil type, and remote sensing indices like NDVI, en-
hances prediction accuracy. Integrating remote sensing data, image processing, and deep learning can improve accuracy in predicting
crop yields over large regions.

Various models, including crop models, machine learning, and remote sensing models, employ weight-dependent yield estimation.
Count-based assessments using image processing and remote sensing modeling face challenges like object clutter. Common perfor-
mance metrics include RMSE, R2, MAE, MSE, and MAPE, which measure prediction accuracy. The study sets the foundation for future
advancements in crop yield prediction, with a focus on developing deep learning-based models. It emphasizes the need for testing
specific feature selection algorithms with high-performing models and addressing the challenges of dynamic variables in crop
prediction.

Overall, the review highlights the importance of advanced technology, data integration, and machine learning and deep learning
techniques in improving crop yield prediction accuracy, contributing to addressing global food security challenges.

CRediT authorship contribution statement

Md. Abu Jabed: Writing – review & editing, Writing – original draft. Masrah Azrifah Azmi Murad:Writing – review & editing,
Supervision.

Data availability statement

Data will be made available on request.

Md.A. Jabed and M.A. Azmi Murad Heliyon 10 (2024) e40836 

11 



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

APPENDIX. Literature Review Table (Selected Publications)

Databases Authors Data Source Features Methods Measure
attributes

Objectives Findings Limitations

Web of Science [85] 271 counties in
Germany from 1999
to 2019

Weather, soil,
and crop
phenology, yield
value

CNN, CNN-
FCNN, RF,
KNN, LASSO
and Ridge
Regression,
SVR, XGBoost,
DNN,
Regression
tree.

MAE, RMSE
and correlation
coefficient
matrices (r)

To benchmark
winter wheat
yield prediction in
Germany with
advanced
machine learning
techniques.
To introduce a 1-
D convolutional
neural network
(CNN) for
enhanced
accuracy.

CNN model
outperformed
all other
baseline models
used for winter
wheat yield
prediction

Sophisticated
models are
required.
Black box
nature;

PubMed. [65] 9 states of the
United States of
America (USA)
Khaki and Wang
[88], and Khaki,
Wang, and
Archontoulis [57]

weather, soil,
and farm
management
data

XGBoost, CNN-
XGBoost, CNN-
DNN, CNN-
RNN, and CNN-
LSTM

Efficiency
(Features
Selection)
R2, RMSE, MSE

To leverage the
strengths of each
approach within a
hybrid model to
optimize the
effectiveness of
crop yield
prediction.

The hybrid
CNN-DNN
model performs
exceptionally
well with an R2
of 0.87, RMSE of
0.266, MSE of
0.071, and MAE
of 0.199,
surpassing all
other models.
XGBoost
achieved the
second-highest
performance
while executing
faster than deep
learning models.

The Corn Belt
soybean crop
dataset in the U.
S. is a commonly
used resource in
various studies.
Results may
differ with other
datasets when
applying the
proposed
models.

Scopus [116] Google Earth Engine
(GEE) cloud, and
spectral matching
techniques (SMTs).

Landsat-8 30 m
and MODIS 250
m data, (ARD for
Landsat 30 m
data, ARD for
MODIS 250 m
data, SWIR 1 &
2, Thermal
Infrared (TIR),
RGB, NDVI,
NDVIMVCi, EVI,
NDWI)

RF Accuracy
R2, RMSE

To develop
cropland products
in South Asia
using Landsat-8
30 m, MODIS 250,
and Google Earth
Engine (GEE)
with machine
learning and
spectral matching
techniques
(SMTs) for food
and water
security.

The irrigated vs.
rainfed 30m
product showed
79.8 % overall
accuracy, with
79 % for
irrigated and 74
% for rainfed
cropland. The
cropping
intensity
product had an
85.3 % overall
accuracy, with
88 % for single
cropping, 85 %
for double
cropping, and
67 % for triple
cropping. Crop
type mapping
ranged from 72
% to 97 %
accuracy,
explaining
63–98 %
variability when
compared to

Absence of
reference data
for specific
croplands
Complex
mapping over
vast areas

(continued on next page)
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(continued )

Databases Authors Data Source Features Methods Measure
attributes

Objectives Findings Limitations

national
statistics.

Science Direct [69] Sentinel-1 satellite,
Sentinel-2 satellite
of the European
Space Agency (ESA)

SAR, optical and
field data.

Ordinary Least
Squares
Regression
(OLS), RF, DT,
KNN, Ridge
regressor, SVM
and DLMLP
model

Accuracy and
performance
evaluation (R2,
MAE and
RMSE)

To predict soil
moisture, EC
(salinity), and
SOC (organic
carbon) levels
through diverse
machine learning
methods and
subsequently
assessing their
respective
accuracies for
comparison.

Significant
correlations
exist between
soil health
parameters and
crop yield (R2
values: 0.79 for
soil moisture,
0.88 for EC, and
0.51 for SOC).
The DLMLP
model achieved
good accuracy,
even without
the need to
validate soil
health
parameters.

Limited to soil
data only.

Web of Science [86] GitHub link
(https://github.
com/
tryambakganguly/
Yield-Prediction-
Temporal-
Attention).

Weather data Stacked LSTM
and Temporal
Attention
model, Support
Vector
Regression
with Radial
Basis Function
kernel (SVR-
RBF) and least
absolute
shrinkage and
selection
operator
(LASSO)
regression

RMSE, MAE,
and coefficient
of
determination
or R-squared
(R2)

To enhance the
interpretability of
prediction results
in multivariate
time-series
forecasting
without
compromising
accuracy.

The deep
learning model
demonstrated
significantly
superior
performance
when contrasted
with the USDA
model, which
relies on domain
knowledge.

Less factors used
Limited data

Scopus [87] POWER Data Access
Viewer v2.0.0
MERRA-2 database,
https://power.larc.
nasa.gov/data-
access-viewer/
(accessed on 1
January 2022).

satellite-derived
hydro-
meteorological
data between
1981 and 2020

DRS–RF hybrid
model and SVM
as feature
selection
approach

Prediction
Performance
Correlation
coefficient (C),
RRMSE, MAPE

To design an
innovative hybrid
machine learning
model that
combines
Random Forest
(RF) with
Dragonfly
Optimization
(DR) and Support
Vector Regression
(SVR) to predict
tea yield in
Bangladesh.

The DRS–RF
hybrid model
outperformed
standalone
machine
learning
methods,
yielding the
lowest relative
error rate of 11
% in tea yield
forecasting.

Advanced model
can be applied
for better
prediction.

Scopus [79] Orchard, Google
Earth Engine
[Sentinel 2 and
Landsat satellite
images, including
the normalized
difference
vegetation index
(NDVI) and
normalized
difference water
index (NDWI)]

Field Data
Collection:
irrigation,
fertilization,
phytosanitary
treatment,
daily data on
temperature,
precipitation,
humidity, wind
speed, and solar
radiation,
Spectral data
acquisition:
NDVI, NDWI
(2015–2019)

linear
algorithms
such as linear
regression,
lasso
regression,
ridge
regression.
Ensemble
learning
techniques
such as
CatBoost
Regressor,
Light Gradient
Boosting
Machine,
Random Forest
Regressor,

Accuracy
MAE, MSE

To develop a
state-of-the-art
solution for
forecasting citrus
fruit crop yields
prior to harvest,
integrating
machine learning
algorithms
trained on
historical
agricultural data
with spectral data
obtained from
satellite imagery.

The
orthonormal
automatic
pursuit
algorithm
achieved
favorable
prediction
scores with MAE
of 0.2489 and
MSE of 0.0843.

Field data
collection in
precision
agriculture is
challenging,
requiring
specialized
sensors and
technical teams
for data quality
control.
Historical and
open-source
databases are
scarce.

(continued on next page)
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(continued )

Databases Authors Data Source Features Methods Measure
attributes

Objectives Findings Limitations

Extreme
Gradient
Boosting, etc

Scopus [40] Paprika smart farm
(greenhouse paprika
data in the year
October to
December 2019 and
January to July
2020) in South
Korea

Environmental
and solar energy
factors

RF, SVM, and
gradient
boosting
machine
(GBM),

Accuracy
precision,
recall,
f1-score
kappa

To assess and
contrast linear
classification
methods and
various machine
learning models
in terms of their
predictive
accuracy for
paprika growth,
taking into
account
environmental
factors and solar
energy data
across two beds.

RF can
effectively
predict paprika
growth with an
accuracy of
0.88.

Limited data
Small area

Scopus [88] Syngenta and the
Analytics Society of
INFORMS, United
States and Canada

Crop genotype,
yield
performance,
and
environment
(weather and
soil)

DNN, Lasso,
shallow neural
networks
(SNN), and
regression tree
(RT)

Accuracy
RMSE
(Reduced to 11
% of the
average yield
and 46 % of the
standard)

To conduct
feature selection
using the trained
DNN model,
effectively
reducing the input
space dimension
without a
substantial
decrease in
prediction
accuracy.

DNN(W) and
DNN(S)
exhibited
comparable
strong
performance,
surpassing DNN
(G),
underscoring
the greater
influence of
environmental
factors (weather
and soil) on crop
yield variability
than genotype.

Advanced model
s (Hybrid)
needed with
explanations

Scopus [57] Corn Belt in the
United States.,
National
Agricultural
Statistics
Service of the
United States
(USDA-NASS,
2019), Daymet
(Thornton et al.,
2018) and Gridded
Soil Survey
Geographic
Database for the
United States
(gSSURGO, 2019).

Yield
performance,
management,
weather, and soil

CNN, RNN, RF,
deep fully
connected
neural
networks
(DFNN) and the
least absolute
shrinkage and
selection
operator
(LASSO)

Performance
RMSE

To introduce a
deep learning
framework that
employs
Convolutional
Neural Networks
(CNNs) and
Recurrent Neural
Networks (RNNs)
to predict crop
yields using
environmental
data and
agricultural
management
practices.

The proposed
method (CNN-
RNN)
outperformed
than other
Methods.
The new model
(CNN-RNN)
achieved a root-
mean-square-
error (RMSE) 9
% and 8 % of
their respective
average yields.

More accurate
weather
prediction
models need to
be considered

Scopus [117] Sentinel-1 satellites. Nitrogen rate
applied,
precipitation,
slope, elevation,
topographic
position index
(TPI), aspect,
and two radar
backscatter
coefficients

AdaBoost
stacked
autoencoder
(SAE), three-
dimensional
CNN (3D-
CNN), CNN-
Late Fusion
(CNN-LF), RF,
Bayesian
multiple linear
regression
(BMLR), and
multiple linear
regression
(MLR).

Accuracy
RMSE,
RMedSE,
Pearson
correlation
coefficient (r)
and structural
similarity
(SSIM)

To propose a new
method for
predicting crop
yield using
Convolutional
Neural Networks
(CNNs) and multi-
channel input
raster.

The proposed
approach yields
superior
predictions
when compared
to five other
methods.

Data collected
during early
winter wheat
season.
Proposed
method may
demand
substantial
computational
resources.
No permission to
share farmers’
data.

(continued on next page)
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(continued )

Databases Authors Data Source Features Methods Measure
attributes

Objectives Findings Limitations

Scopus [95] SRDI, BARC, BBS,
and BMD (Aus,
Aman, Boro, jute,
wheat, and potato)

rainfall, max-
min
temperatures,
and humidity,
TSP,
diammonium
phosphate
(DAP), and
MOP, HL, MHL,
MLL, LL, and
VLL. soil types,
soil moisture,
texture,
consistency, and
reaction

Logistic
regression (LR),
SVM, RF, DNN

Accuracy
(MSE)

To identify the
optimal approach
for selecting crop
yield effectively.

The Neural
Network excels
over other
methods,
maintaining an
average
prediction
accuracy of
96.06 % across
six different
crops.

Extend the
model in
different region

Science Direct [118]
(2)

Google Earth Engine
platform,
Agricultural
Yearbook of the
provinces and
county level
statistics bureaus
(http://www.stats.
gov. cn)

Crop planting
areas, county-
level and field
-level yield,
climate,
satellite, soil
properties, and
spatial
information

RF, DNN, ID-
CNN, LSTM

Accuracy
RMSE, R2

To showcase a
scalable,
straightforward,
and cost-effective
method for
accurately
estimating crop
yields across
different scales.

DNN and RF
models had
relatively good
performance at
the field level,
with mean R2
values of 0.71,
0.66 and RMSE
values of 1127
kg/ha and 956
kg/ha,
respectively

Applicable only
to winter wheat
in China.
Google Earth
Engine data may
lack key
variables.
Limited to four
models.
Short time frame
analyzed.

Scopus [119] European Space
Agency’s (ESA’s)

Wheat yield data
and auxiliary
data, Sentinel-2
and ZY-1 02D
remote sensing
imagery

LSTM, RF,
GBDT, and SVR

Accuracy
RMSE, R2

To predict winter
wheat crop yields
using remote
sensing data and
machine learning
methods.

The LSTM
model
outperformed
SVR, RF, and
GBDT, with an
R2 of 0.93,
capturing the
temporal link
between
satellite data
and winter
wheat yield.

Utilized
Sentinel-2 and
ZY-1 02D data
exclusively,
without
exploring other
data types.
Did not account
for weather and
environmental
factors in yield
estimation.

Science Direct [120] Moderate
Resolution Imaging
Spectroradiometer
(MODIS) Version 6
(Terra/MOD09A1)
8-day composite
surface reflectance
product with a
spatial resolution of
0.5 km.

Time-series
intervals (data
shapes) of the SIs
(S-inputs) at an
8-day temporal
resolution,
meteorological
data (M-inputs)
and four
geospatial
information data
(G-inputs) (LSWI
and the VIs
(NDVI or EVI)

LSTM and one-
dimensional
convolutional
neural network
(1D-CNN)

Accuracy
MSE, RMSE,
R2, NSE

To propose an
approach for
forecasting rice
yields with pixel-
level precision,
achieved by
combining crop
and deep learning
models with
satellite data in
both South and
North Korea.

The proposed
model exhibited
strong
performance
[R2 = 0.859,
Nash-Sutcliffe
model
efficiency =

0.858, root
mean squared
error = 0.605
Mg ha− 1],
highlighting
distinct spatial
patterns in rice
yields across
South and North
Korea.

Depends on
satellite data,
and prediction
accuracy can be
influenced by
data quality and
availability.

Science Direct [118]
(1)

GEE (Google Earth
Engine) platform,
Agricultural
Yearbook of each
county (http://
www.stats.gov.cn)
from 2001 to 2015
(unit: kg/ha).

Satellite
vegetation
indexes,
meteorological
indexes, and soil
properties,
Google Earth
Engine (GEE)
platform

Least Absolute
Shrinkage and
Selection
Operator
(LASSO)
regression, RF,
LSTM networks

Accuracy
R2, RMSE

To investigate the
timely prediction
of rice yield across
a vast area using
publicly
accessible multi-
source data.

LSTM (with R2
ranging from
0.77 to 0.87,
RMSE from
298.11 to 724
kg/ha)
performed
better than
others.

Combining crop
models, more
detailed farming
management
data, and higher
spatiotemporal
resolution of
input variables,
such as daily
weather and 10
m resolution

(continued on next page)
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(continued )

Databases Authors Data Source Features Methods Measure
attributes

Objectives Findings Limitations

data of Sentinel
2.

Scopus [80] Farming
Community, India

soil and
environmental
characteristics
including Avg.
soil temperature,
avg. air
temperature,
minimum and
maximum air
temperature,
rainfall, and air
humidity

RF, Bagging, K-
NN, SVM, DT,
NB
Feature
Selection
MRFE, RFE,
Boruta

accuracy
(ACC),
specificity (S),
recall (R),
precision (P),
F1 score, MAE,
log loss (LL),
and area under
the curve
(AUC).

To predict crop
yield by
leveraging feature
selection
techniques and
classifiers that
consider the
agricultural
environment’s
attributes.

The Ensemble
technique
(MRFE, with RF)
outperforms the
current
classification
method in terms
of prediction
accuracy.

The data was
collected
manually and is
not accessible
publicly.
The proposed
model’s
scalability was
not addressed or
discussed.

Science Direct. [39] Fergana valley,
Central Asia, soil
grids (https://
soilgrids.org/)

Sentinel-2
generated VIs,
environmental
data, soil data,
field data, and
topographic data

LR, DT and RF
regression
models with
scikit-learn

Accuracy
R2

To create a
machine learning-
based yield
estimation and
prediction model.
To evaluate and
compare the
efficacy of
different
regression
techniques, such
as Decision Trees
(DT), Linear
Regression (LR),
and Random
Forest (RF).

Overall
accuracy of 93
%, RF has the
highest yield
prediction
accuracy when
compared to LR
and DT.

More spectral
features, data,
and algorithms
needed to
improve the
prediction
accuracy.

Science Direct [11] State of
Maharashtra

previous years’
climate, soil, and
yield, (District-
wise parameters
like
temperature,
precipitation,
humidity, soil
type, crop type,
season, area of
the field)

Multiple Linear
Regression,
DTR, GBR,
Elastic Net,
Lasso, Ridge,
Partial Least
Squares
Regression, and
feature
engineering-
based LSTM

Accuracy
R2, MAE, RMSE

To propose a
machine learning
model that can
make predictions
based on various
soil and
environmental
variables.

The feature-
engineered
LSTM model
outperforms
other models,
achieving an
accuracy of
86.3 % and
demonstrating
the lowest mean
absolute error
and root mean
square error.

Higher error rate
is attributed to
the dynamic
environmental
changes in the
districts
Less favorable
features.

PubMed [49] meteorological
department of
Punjab, statistical
abstract of Punjab
issued by Economic
advisor to
Government, Punjab

Climatic factors
like minimum
and maximum
temperature,
minimum and
maximum
relative
humidity,
rainfall,
evaporation,
wind direction
and speed and
solar radiation

RNN-LSTM,
ANN, RF and
Multivariate
Linear
Regression
(MVLR)

Efficacy
RMSE MAE
MSE

To discover an
effective deep
learning method
for predicting
wheat crop yields.

RNN-LSTM
model proving
efficiency

Study conducted
in a small area
Using solely
statistical
models for crop
yield prediction.
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