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Abstract: We report fast-scanning chip-calorimetry measurement of isothermal crystallization kinetics
of poly(glycolic acid) (PGA) in a broad temperature range. We observed that PGA crystallization
could be suppressed by cooling rates beyond −100 K s−1 and, after fast cooling, by heating rates
beyond 50 K s−1. In addition, the parabolic curve of crystallization half-time versus crystallization
temperature shows that PGA crystallizes the fastest at 130 ◦C with the minimum crystallization
half-time of 4.28 s. We compared our results to those of poly(L-lactic acid) (PLLA) with nearby
molecular weights previously reported by Androsch et al. We found that PGA crystallizes generally
more quickly than PLLA. In comparison to PLLA, PGA has a much smaller hydrogen side group
than the methyl side group in PLLA; therefore, crystal nucleation is favored by the higher molecular
mobility of PGA in the low temperature region as well as by the denser molecular packing of PGA in
the high temperature region, and the two factors together decide the higher crystallization rates of
PGA in the whole temperature range.

Keywords: polymer crystallization; crystallization kinetics; thermal analysis; poly(glycolic acid);
poly(L-lactic acid)

1. Introduction

Benefitting from its high crystallinity (45–55%), poly(glycolic acid) (PGA) is one of the
most extensively applied biodegradable polymers, in particular for bio-medical applica-
tions such as sutures and orthopedic parts due to its superior biodegradable, mechanical
and gas barrier properties [1,2]. PGA is the simplest aliphatic polyester with a glass
transition temperature Tg of about 35–40 ◦C and a relatively high melting point Tm of
about 220–230 ◦C compared with its analogs, for example poly(lactic acid) (PLA) [3]. The
crystalline morphology of PGA was reported by Chatani et al., who determined an or-
thorhombic space group of Pcm n-D16

2h system with the lattice dimensions of a = 5.22 Å,
b = 6.19 Å and c = 7.02 Å and two molecular chains with the planar zigzag conformation
passing through the unit cell forming a sheet structure parallel to the ac plane [4]. Montes
de Oca et al. proposed that dipolar intermolecular interactions occur between adjacent
chains in the crystal unit cell, which may explain the high density (1.69 g/cm3) in the crystal
of PGA [5]. Moreover, it has been suggested that a weak hydrogen bonding of the C–H···O
(ether) exists in PGA microcrystals, which may affect the crystallization behavior and give
rise to the unique physical properties of PGA compared to other aliphatic polyesters [6].

Polymer crystallization kinetics mainly determines the crystallinity within a limited
time period of industrial processing. It is well-known that the overall crystallization
kinetics of polymer is dominated by primary crystal nucleation. According to the classical
nucleation theory, the nucleation rate I is controlled separately by the activation barrier for

Polymers 2021, 13, 891. https://doi.org/10.3390/polym13060891 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-7795-9004
https://doi.org/10.3390/polym13060891
https://doi.org/10.3390/polym13060891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13060891
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13060891?type=check_update&version=2


Polymers 2021, 13, 891 2 of 10

short-range diffusion in the low temperature region and the free energy barrier for crystal
nucleation in the high temperature region [7], as shown in Equation (1):

I = I0exp(−∆Ea/kTc)exp(−∆Ec/kTc) (1)

where ∆Ea/kTc = A/(Tc – TV) denotes the activation barrier for polymer diffusion in which
the Vogel temperature TV is about 50 ◦C below the glass transition temperature Tg; A
is a constant; Tc is the crystallization temperature; and k is the Boltzmann’s constant.
∆Ec= 8πσ2σe

[
T0

m/∆Hc/
(
T0

m−Tc
)]2 represents the free energy barrier for primary crystal

nucleation supposed in a cylindrical bundle, with σ and σe the surface free energy densities
separately on the lateral and folding-end surfaces of lamellar polymer crystals, T0

m the
equilibrium melting point, and ∆Hc the heat of fusion for 100% crystalline phase. The
activation barrier for short-range diffusion becomes higher at lower temperatures, while the
free energy barrier for primary crystal nucleation becomes higher at higher temperatures,
leading to a parabolic curvature of overall crystallization rate (or crystallization half-time)
versus crystallization temperature with its maximum (or minimum in the case of half-
time) in the middle temperature between Tg and T0

m. Many studies have considered the
isothermal crystallization behaviors of PGA based on techniques such as conventional
DSC [8,9] and IR [10]. However, PGA exhibits a rather quick crystallization, thus traditional
techniques cannot avoid crystallization during cooling to low temperatures, resulting in the
study of isothermal crystallization kinetics of PGA mainly in the high temperature region.

Recently, fast-scanning chip-calorimetry (FSC and its commercial version, Flash DSC1)
measurement allows for high heating rates up to 105 K s−1, and it has been proven as
a powerful tool to characterize the crystallization kinetics down to the low tempera-
ture region [11–14] for a large variety of polymers such as polyethylene [15,16], isotactic
polypropylene [17,18] and polyamide [19–21]. The non-isothermal and isothermal crystal-
lization behavior of poly(L-lactic acid) (PLLA) homopolymer with a mass-average molar
mass 120 kDa characterized via Flash DSC was reported by Androsch et al. [22,23], sug-
gesting that −0.5 and −50 K s−1 are separately the critical cooling rates to suppress
crystallization and nuclei formation upon cooling. Furthermore, the maximum crystal-
lization rate of PLLA is around 110 ◦C, with the minimum crystallization half-time of
150–200 s.

Derived from renewable sources, PLA is one of the most commercially successful
bioplastics, mainly used in packaging, commodity materials and biomedical sectors owing
to its superb processability, biodegradability and optical and mechanical properties [24–26].
In fact, PLA represents a complex polymer ascribed to two optically active forms of lactic
acids: L-lactic acid and D-lactic acid. Poly(L-lactic acid) (PLLA) is a commercially acceptable
product with L-lactic acid as the primary yield in the fermentation process. PLLA exhibits
a glass transition temperature Tg of about 55–60 ◦C [27] and a melting point Tm of about
175–180 ◦C [28]. Depending on the crystallization conditions, three different crystalline
modifications of PLLA have been formed. PLLA forms the most common α-crystals with
103 helical chain conformation [29,30] upon crystallization above 120 ◦C, while dominant
α’-crystal with a crystal structure similar with α-crystal occurs upon crystallization below
100 ◦C [31–33]. β-crystal and γ-crystal with 31 helical chain conformation can be sepa-
rately obtained via hot-drawing of melt- or solution-spun fibers [34,35] or via epitaxial
crystallization on hexamethylbenzene [36].

PGA and PLLA share similar molecular structures, as shown in Figure 1, but they
exhibit distinctly different crystallization behaviors. PGA does not have the methyl side
group, which is replaced with a much smaller hydrogen side group. This fact reduces its
internal rotation barrier of side groups around the backbone chain and thus offers a high
molecular mobility of polymer chains. On the one hand, this fact enhances the density
of molecular packing in the crystalline phase and thus brings a strong thermodynamic
driving force for crystallization. Therefore, compared to PLLA, PGA holds a relatively low
glass transition temperature due to its low steric barrier for internal rotation. On the other
hand, PGA has a relatively high melting point and large fusion enthalpy due to its compact
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molecular packing in the crystals. Both factors imply that PGA crystallizes more quickly
than PLLA in the entire temperature range from the glass transition temperature to the
melting point.
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Figure 1. Schematic illustration of the chemical structures of poly(glycolic acid) (PGA) and poly(lactic
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In this work, by means of Flash DSC measurement, we characterized the isothermal
crystallization kinetics of PGA in the proper temperature range. We compared our results
for PGA to those of PLLA with a similar molar mass to investigate the effect of their
molecular structures on the crystallization kinetics. The results confirm that PGA exhibits
faster crystallization than PLLA in the entire temperature range.

2. Materials and Methods
2.1. Materials

PGA granules (molecular weights around 169 kDa, index of polydispersity 16, Tm≈ 228 ◦C)
were kindly supplied by Shanghai Pujing Chemical Industry Co. Ltd, China, with the batch
number 190119. The equilibrium melting point of PGA was reported as 231.4 ◦C and the
heat of fusion for 100% crystalline of PGA was 183.2 J g−1 [37].

2.2. Fast-Scanning Chip-Calorimetry Measurement

Flash DSC1 (Mettler-Toledo AG, Switzerland) installed with Huber TC-100 intracooler
was employed to perform experiments in the temperature range from −100 to 240 ◦C with
maximum heating and cooling rates of 3000 K s−1. The raw materials were first cut into
a thin film section with smooth top and bottom surfaces using a scalpel, and then, under
the equipped optical microscope, they were cut into 20 µm × 20 µm squares with smooth
lateral surfaces. Finally, specimens with a typical mass of about 100 ng were prepared.
Note that the apparent heat capacity of PGA sample at 250 K was measured by Flash
DSC1 at a typical rate of 1000 K s−1 as 1.2 × 10−7 J K−1, while the specific heat capacity
of PGA at 250 K (ca. −23 ◦C) was reported by Wunderlich et al. as 60 J mol−1 K−1 [38];
thus, our PGA sample mass was estimated as 116 ng from their ratio [39]. By utilizing
a string of hair, the specimen was then transferred to the center area of the chip sensor.
Before that, the chip sensor had already been conditioned and corrected in accordance
with the standard protocol and casted with thin oil film for a good contact between sample
and sensor. Afterward, under a constant nitrogen flow at the rate of 50 mL min−1, the
positioned specimen was slowly heated to a temperature above its equilibrium melting
point, ensuring a good thermal contact between the sample and the chip sensor.

After the above preparation of samples, three crystallization experiments were con-
ducted: (1) cooling experiment; (2) heating experiment; and (3) isothermal experiment. The
first cooling experiment aimed at determining the critical cooling rate for prohibiting melt
crystallization on cooling. The subsequent heating experiment was intended to obtain the
critical heating rate for suppressing the cold crystallization on heating. The isothermal
experiment was performed upon fast cooling and heating with rates far beyond the critical
conditions determined in the first two steps. Completing these three steps, we obtained the
temperature dependence of the crystallization half-times of PGA sample to compare the
crystallization kinetics with that of PLLA. Since the equilibrium melting point of PGA is
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231.4 ◦C, we chose a hold at 240 ◦C with the residence time of 0.2 s to remove the thermal
history as well as avoid thermal degradation in the sample. As is usual, the heat flow rates
were normalized by the heating or cooling rates into the apparent heat capacity in our
presentation of results.

3. Results
3.1. Cooling Experiment

Prior determination of the critical cooling rate is absolutely necessary for isothermal
crystallization experiments, which require a rapid cooling process before the target temper-
ature is reached to avoid melt crystallization and even primary crystal nucleation. To obtain
the critical cooling rate for suppressing crystallization and primary nucleation on cooling,
the sample was first heated to 240 ◦C and held for 0.2 s to obtain a melt without any thermal
history. Afterwards, the sample was cooled to−100 ◦C at various rates ranging from−20 to
−3000 K s−1, as illustrated in the temperature program of Figure 2a. Since the sample mass
was small, we did not see significant crystallization peaks on the cooling curves. Therefore,
heating runs were performed at an extremely high heating rate of 3000 K s−1 to avoid
cold crystallization on heating, making it possible to measure the crystallinity harvested
on cooling based on the integration of melting peaks on the subsequent heating curves.
Figure 2b summarizes the heating curves after cooling with various cooling rates. One can
see clearly that both glass transition at around 50 ◦C and melting peaks at around 175 ◦C
occurred. In contrast to the 35–40 ◦C in conventional DSC, PGA exhibits a rather high
glass transition temperature around 50 ◦C, which is attributed to the specific kinetics of the
transition process, namely an increase in Tg with increasing heating rates. Conversely, the
lower melting temperature of around 175 ◦C, in comparison to 228 ◦C in conventional DSC,
reflects the less stable crystals formed at higher cooling rates since the time available for
crystal perfection is greatly reduced. With the increase of cooling rates, the corresponding
melting peaks on subsequent heating curves vanishes and the heating curves exhibit an ex-
cellent repeatability once the previous cooling rates exceed −100 K s−1. Hence, −100 K s−1

is the critical cooling rate to prohibit melt crystallization and crystal nucleation on cooling
for PGA. The critical cooling rate to suppress melt crystallization of PGA (−100 K s−1) is
significantly higher than that reported for PLLA (−0.5 K s−1) [22], suggesting PGA has a
better crystallization capability than PLLA during the cooling process.

3.2. Heating Experiment

To determine the critical heating rate for preventing cold crystallization on heating,
the heating experiment was performed according to the temperature profile illustrated in
Figure 3a. First, the sample was heated to 240 ◦C and held for 0.2 s to erase the thermal
history, followed by a cooling scan at −3000 K s−1. Afterwards, the sample was heated to
240 ◦C at various rates ranging from 8 to 1000 K s−1. As shown by the heating curves in
Figure 3b, above the glass transition temperature of around 50 ◦C, the cold crystallization
peaks around 140 ◦C and the melting peaks around 180 ◦C disappear when the heating rate
exceeds 50 K s−1, which implies it is the critical heating rate to prohibit cold crystallization
of PGA on heating. This critical heating rate (50 K s−1) for PGA is much higher than the
one reported for PLLA (1 K s−1) [33].
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Figure 3. (a) Illustration of the temperature program for determining the critical heating rate of PGA to prohibit cold
crystallization during the heating process; and (b) the apparent heat capacity of PGA as a function of temperature on
heating at the various heating rates from 8 to 1000 K s−1 after cooling from a hold of 0.2 s at 240 ◦C at the cooling rate of
−3000 K s−1 depicted in (a).

3.3. Isothermal Experiment

After determining the critical cooling rate to suppress melt crystallization and the
critical heating rate to prohibit cold crystallization, we chose high enough cooling and
heating rates to carry out an isothermal crystallization experiment. The sample was heated
to 240 ◦C and held for 0.2 s to eliminate the thermal history. Then, the melt was cooled to
various crystallization temperatures (80, 90, 100, 110, 120, 130, 140, 150, 160 and 170 ◦C) that
were higher than Tg but lower than Tm. After staying at the crystallization temperature
Tc for different time periods for isothermal crystallization, the samples were cooled to
−100 ◦C and heated back to 240 ◦C. It is worth noting that, in this experiment, all the
absolute heating and cooling rates were 3000 K s−1, well beyond the critical heating and
cooling rates of PGA in order to effectively suppress the crystallization process. The
detailed temperature protocol of the isothermal experiment is illustrated in Figure 4a.
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between Tg and Tm; and (b) the apparent heat capacity of PGA as a function of temperature on heating at the heating rate
of 3000 K s−1 after isothermal crystallization at 130 ◦C for the various crystallization times from 0.05 to 400 s depicted in (a).

Weakly double melting endotherms occur when Tc is lower than 130 ◦C (see the
Supplementary Materials). One can observe that at 100 ◦C the low-temperature peaks
gradually shift to higher temperatures upon the increase of isothermal crystallization
periods, implying the formation of more uniform and thicker crystals. Meanwhile, the
high-temperature peaks remain constant with the increase of isothermal crystallization
periods, suggesting a melt–recrystallization mechanism for the occurrence of double-
melting peaks [9]. We took the total melting enthalpy of double-melting peaks into account.

We take Tc = 130 ◦C as an example to explain the kinetic analysis of PGA isothermal
crystallization. According to the cooling and heating experiments, the cooling rate of
−3000 K s−1 and the heating rate of 3000 K s−1 are fast enough for PGA to prohibit
the crystallization during the cooling and heating processes. The melting enthalpy ∆Hm
obtained by integrating the melting peak in the heating scan represents the enthalpy
change of isothermal crystallization ∆Hc. By evaluating the melting enthalpy from the
melting peaks in Figure 4b, we obtain the enthalpy of isothermal crystallization at 130 ◦C
as a function of the crystallization time, as shown in Figure 5a. The curve in Figure 5a
exhibits the typical shape of a crystallinity curve for isothermal crystallization. The starting
and ending crystallinity during the isothermal crystallization are defined as A and B to
obtain the crystallization half-time at 1⁄2 ∆Hc [19,20], namely 4.28 s for PGA on isothermal
crystallization at 130 ◦C. In the Supplementary Materials, we present all the data treatment
of PGA at various crystallization temperatures, e.g. Tc = 130 ◦C.

Figure 5b summarizes the crystallization half-times of PGA at various crystallization
temperatures from 80 to 170 ◦C as well as those previously reported for PLLA for the same
temperature scales [23]. The parabolic curve of PGA indicates the valid application of the
classical nucleation theory on the crystallization kinetics, where the activation barrier for
short-distance diffusion and the free energy barrier for crystal nucleation dominate the
primary nucleation rate separately in the low- and high-temperature regions. Furthermore,
the maximum crystallization rate of PGA occurs at around 130 ◦C with the minimum
crystallization half-time of 4.28 s. In contrast, PLLA crystallizes the fastest around 110 ◦C
and the corresponding crystallization half-time is within 150–200 s. In comparison, the
crystallization half-times of PGA are between 4 and 90 s, while those of PLLA range
90–3000 s. Hence, the crystallization of PGA appears distinctly faster than that of PLLA
at the same temperatures in the entire temperature range, which confirms our theoretical
expectation according to their chain-unit difference.
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Figure 5. (a) The time evolution of crystallization enthalpy on isothermal crystallization of PGA at 130 ◦C. The crystallization
half-time is read as the vertical dashed line. (b) The temperature dependence of crystallization half-time of PGA and
PLLA [23] during isothermal crystallization process at various temperatures.

4. Discussion

According to the classical nucleation theory of PGA, the crystallization rate is predom-
inantly controlled by supercooling away from the equilibrium melting point in the high
temperature region. The T0

m of PGA is reported as 231.4 ◦C [37], which is higher than that
of PLLA (207.0 ◦C) [40,41] due to the tight chain packing of PGA crystals. Therefore, PGA
crystallizes more quickly than PLLA in the high temperature region owing to its higher
supercooling from the equilibrium melting point. Conversely, the crystallization rate is
primarily dominated by the temperature deviation from the glass transition temperature
in the low-temperature region. As discussed above, PGA has a relatively lower glass
transition temperature than PLLA, due to the lower steric hinderance upon the internal
rotation of the side groups around the backbone chain of PGA. Thus, PGA crystallizes more
quickly than PLLA in the low-temperature region as a result of a higher crystallization
temperature deviation from the glass transition temperature.

To further investigate the effect of molecular structures on the crystallization kinetics,
the crystallization temperatures in Figure 5b were rescaled according to the relative values
between the glass transition temperatures and the melting points of PGA and PLLA,
respectively. The rescaled crystallization kinetic curves are shown in Figure 6. One can see
more convergence between PGA and PLLA curves at the lower end of the temperature
range after rescaling, but it is not significant at the higher end.

At high temperatures, the crystallization kinetics is dominated by the relatively high
free energy barrier for crystal nucleation, which is connected with the surface free energy
σ and σe, equilibrium melting point T0

m and the heat of fusion ∆Hc according to the
rationale of Equation (1). It is reported that the ∆Hc of PGA and PLLA are 183.2 [37] and
143 J g−1 [42], respectively. Therefore, the heat of fusion of PGA is larger than that of PLLA,
which contributes to a lower free energy barrier for crystal nucleation of PGA as well. In
the low-temperature region, the primary nucleation rate I is dominated by the relatively
high activation barrier for short-range diffusion, which is correlated with glass transition
temperature Tg and the diffusion constant A according to Equation (1). In particular, the
temperature dependence of PGA appears relatively stronger than that of PLLA at low
temperatures, implying a higher diffusion constant A for PGA.

Overall, in the whole temperature range, PGA apparently crystallizes more quickly
than PLLA. This comparison between PGA and PLLA is a good example illustrating the ef-
fect of molecular structures on the crystallization kinetics over an entire temperature range.
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Figure 6. Temperature dependence of crystallization half-time of PGA and PLLA in the relative
temperature scales between the glass transition temperatures and the equilibrium melting points,
where the Tg of PGA and PLLA were chosen as 40 and 60 ◦C, respectively, while the T0

m were
231.4 [37] and 207.0 ◦C [40,41], respectively.

5. Conclusions

Fast-scanning chip-calorimetry has the advantage of tracing the fast crystallization of
PGA, in particular at low temperatures. Although fast scanning of temperatures brings
thermal lag in the sample, which slightly shifts the crystallization/melting temperatures, it
has little influence on their enthalpies for our judgment of critical cooling/heating rates and
crystallization half-time. We performed fast-scanning chip-calorimetry measurement on
the isothermal crystallization kinetics of PGA in a broad temperature range and compared
the results to those of PLLA reported in the literature. The results demonstrate that
PGA has the fastest crystallization rate around 130 ◦C with the minimum crystallization
half-time of 4.28 s. The parabolic curve of crystallization half-time versus crystallization
temperature of PGA reveals that its crystallization kinetics complies with the classical
nucleation theory. The comparison of the crystallization kinetics between PGA and PLLA
shows that PGA crystallizes more quickly than PLLA in the whole temperature range,
exposing the dominant kinetic factors of their chemical differences in the repeating units.
PGA has a much smaller hydrogen side group than the methyl side group of PLLA, thus it
has a higher molecular mobility, resulting in a lower glass transition temperature for faster
crystallization at low temperatures, as well as a denser molecular packing for a higher
melting point and a larger heat of fusion for faster crystallization at high temperatures.
This comparison helps us to better understand the basic structure–property relationship in
polymer crystallization.

Supplementary Materials: The following figures are available online at https://www.mdpi.com/20
73-4360/13/6/891/s1, Figures S1–S9: (a) The temperature dependence of apparent heat capacity of
PGA during heating process after isothermal crystallization at (Figure S1) 80 ◦C for various periods
from 1 to 500 s; (Figure S2) 90 ◦C for various periods from 1 to 300 s; (Figure S3) 100 ◦C for various
periods from 0.01 to 600 s; (Figure S4) 110 ◦C for various periods from 0.05 to 500 s; (Figure S5)
120 ◦C for various periods from 0.05 to 600 s; (Figure S6) 140 ◦C for various periods from 0.01 to
200 s; (Figure S7) 150 ◦C for various periods from 0.05 to 200 s; (Figure S8) 160 ◦C for various periods
from 1 to 400 s; and (Figure S9) 170 ◦C for various periods from 1 to 500 s. (b) The melting enthalpy
evolution curve of PGA after crystallization at the corresponding temperature, obtained from the
integration of the melting peaks shown in (a).
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