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Genetic algorithm optimized node 
deployment in IEEE 802.15.4 
potato and wheat crop monitoring 
infrastructure
Pankaj Pal*, Rashmi Priya Sharma, Sachin Tripathi, Chiranjeev Kumar & Dharavath Ramesh

This proposal investigates the effect of vegetation height and density on received signal strength 
between two sensor nodes communicating under IEEE 802.15.4 wireless standard. With the aim of 
investigating the path loss coefficient of 2.4 GHz radio signal in an IEEE 802.15.4 precision agriculture 
monitoring infrastructure, measurement campaigns were carried out in different growing stages 
of potato and wheat crops. Experimental observations indicate that initial node deployment in the 
wheat crop experiences network dis-connectivity due to increased signal attenuation, which is due to 
the growth of wheat vegetation height and density in the grain-filling and physical-maturity periods. 
An empirical measurement-based path loss model is formulated to identify the received signal 
strength in different crop growth stages. Further, a NSGA-II multi-objective evolutionary computation 
is performed to generate initial node deployment and is optimized over increased coverage, reduced 
over-coverage, and received signal strength. The results show the development of a reliable wireless 
sensor network infrastructure for wheat crop monitoring.

IoT enabled Wireless Sensor Network (WSN) monitoring infrastructure is a sustainable, eco-friendly, and eco-
nomical way of data collection approach that enable high quality and self-sustainable crop production with opti-
mum utilization of  resources1,2. Sensing coverage and connectivity optimization is a fundamental design problem 
in WSN and is an implication of the initial Node Deployment Strategy (NDS)3. The K-Coverage strategy, where 
each location is at least within the k node communication range, provides a measure of WSN deployment Qual-
ity of Service (QoS). Increasing the coverage of WSNs increases the success rate in performing specific sensing 
operations. The selection of k comes down to a trade-off between coverage and node-count. The two factors have 
a negative correlation, and their choice impacts the overall effectiveness of WSN  deployment4. The coverage is 
also closely related to network connectivity. In the literature, proposals are made to realize K-connectivity (k ≥ 1) . 
This means that there are at least k disjoint paths between a pair of  sensors5. Connectivity is critical to ensure 
that the data acquired by the sensor can be routed to the Base-station. Overall, an NDS influences the coverage, 
connectivity, and cost of a WSN deployment. In a deterministic NDS, nodes are placed with careful planning of 
separation distances, elevations, and node orientations, to achieve a deployment where all nodes fall within each 
other’s communication  range6. The NDS in arable land before sowing should envisage crop height and density at 
the maturity stage to estimate potential signal attenuation, which has been ignored in recent  developments7–10. In 
the literature, NDSs assume that nodes are in a direct line-of-sight, overlooking the fact that when deployed for 
crop monitoring, the network cannot withstand increased signal attenuation as vegetation increases. The 2.4 GHz 
Radio Frequency has theoretically higher propagation losses, which makes radio coverage management more chal-
lenging compared to 868 and 920 MHz low-frequency bands applied by WSN; however, it can provide higher data 
transmission. For that reason, when the approaches by Wu et al.11 and, Guo and  Jafarkhani12 were implemented 
to monitor the MP-3713 wheat crop using the IEEE 802.15.4 communication standard, the network faced dis-
connectivity due to increased signal attenuation in the stages of grain-filling and maturity. IoT-based agricultural 
farm monitoring infrastructure has been proposed in by Ramli et al.13, Heble et al.14, Yim et al.15, Davcev et al.16 
and Farooq et al.17. Ongoing studies have investigated the radio propagation in the forest  environment18,19. The 
In-depth radio propagation investigations such as the small-scale fading and shadowing loss of the narrowband 
channel and the characteristics of the ultra-wideband (UWB) channel were modeled  empirically20,21. These empiri-
cal models in the forest environment provide beneficial information for radio propagation in agricultural  areas22. 
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Specific parameters of the developed propagation channel can be applied to orchards due to similarity in trunk 
pattern. However, their implementation in the food grass environment can be challenging. For Instance, the 
authors in Dhanavanthan et al.23 empirically fitted the measurement results for a corn field at 2.4 GHz by using 
the model’s parameters recommended for the forest scenario. They reported depreciation in estimated path loss 
over measured value, especially during the crop maturity stage. Recently, measurements have been made at dif-
ferent frequencies and antenna heights in agricultural  fields18,19. For example, in Ndzi et al.24, the authors compare 
the path loss in the 2.45 GHz band at antennas height 0.15 m and 1 m in cashew, cornfield and herb field. They 
concluded that the path loss difference in scenarios with 0.15 m antenna height in 10 m of vegetation depth is 
≈ 37 higher than in scenarios with 1 m antenna. They claimed that the difference in path loss between the two 
antennas in herb is large (≈ 20 dB) , due to the fact that the height of the herbs being less than 1 m . However, none 
of these approaches discuss the effect of vegetation height and density on NDSz.

In Bayrakdar et al.25 authors, minimize node deployment in agricultural farms through the deterministic 
placement of nodes using a node separation aware fuzzy logic approach. In Soman et al.26, A Genetic Algorithm 
(GA)-based optimization strategy was proposed to identify the minimum number of nodes to implement a 
Guided Wave-Based Damage Detection system for structural health monitoring. In a similar GA based approach 
in ZainEldin et al.27, authors maximized the area coverage with the lowest number of nodes and minimized 
overlapping areas between neighboring nodes. In Phoemphon et al.28, the authors proposed a particle swarm 
optimization (NS-IPSO) node segmentation approach that divides nodes into segments to improve the accu-
racy of the estimated distances between pairs of anchor nodes and unknown nodes. All these implementations 
consider the application scenario as a static environment, and the effect of changing density due to increasing 
vegetation height on RSSI has been overlooked. Compared to the work presented in the literature, the NSGA-II 
based node placement optimization in this work ensures the convergence toward global optimum solutions. The 
NSGA-II is widely used in many application scenarios due to the diversity in solutions, and ideal convergence to 
the Pareto optimum  solutions29. The NSGA-II has several reference points, which usually are widely distributed 
in standardized hyperplanes to maintain diversity. For these reference points, the algorithm can find a solution 
close to the Pareto optimal. This work’s novelty is two-fold, first, capturing the effect of increasing vegetation 
density on RSSI of IEEE 802.15.4 WSN infrastructure through path loss coefficient formulation of log-normal 
path loss shadowing model. Second, RSS based NSGA-II optimized node deployment strategy.

In this work, we have developed an IEEE 802.15.4 based real-time monitoring infrastructure in potato and 
wheat crops to capture the effect of vegetative growth on Received Signal Strength (RSS) and network con-
nectivity. Further, we have employed the derived RSS measurements to optimize NDS in wheat (MP-3173) and 
potato (Kufri Jawahar) crop over coverage, connectivity, and cost using NSGA-II multi-objective evolutionary 
computation. Contributions of the proposal are as follow:

• Design and deployment of a real-time IEEE 802.15.4 standard WSN crop monitoring infrastructure for RSS 
analysis in wheat (MP-3173) and potato (Kufri Jawahar) crop.

• Identification of the path loss coefficient η for 2.4 GHz radio signal in different growing stages of target crops.
• Design of RSS based NSGA-II optimized Node Deployment Strategy (NSGAII-NDS).

The paper is organized as follow. Section 2 presents the problem formulation and related work. In Section 3, 
the proposed NSGA-II optimized node deployment strategy is presented. Section 4, validate the effectiveness of 
proposed approach and finally, in Section 5, conclusions are drawn.

Problem definition
This section presents real-time WSN deployment setup details in wheat and potato crops, i.e., Experiment-1 and 
Experiment-2. Further, the problem has been analyzed to develop an effective NDS by discussing experimental 
observations.

Experimentation setup. The number of sensor nodes |N|, in Experimentation-1 and Experimentation-2 
are, 
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Here (nx
i
lat , n

x

i
lon ) is the location of node positioned in the first cell, i.e. Hx[0][0] . To model coverage and over-

coverage issue, a counter Cx
[

y
]

[z] is assigned to each cell Hx
[

y
]

[z] in Tx , representing the number of time a point 
covered by underlying sensor infrastructure. The outcome of this counter implementation will be a counter map 

of dimension Cx[DT
x

L ][DT
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B ] , where each counter value Cx
[
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[z] is associated to a grid cell Hx
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[

y
]

[z] is set to 0 and is incremented if Hx
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[z] is in the communication range of nxi  . For example, if Hx
[

y1
]

[z1] 
and Hx

[

y2
]

[z2] are in the communication range of two and three sensor nodes, then respective counter values 
will be Cx

[

y1
]

[z1] = 2 and Cx
[

y2
]

[z2] = 3 . In experimentation-1 target farmland Twheat has composite symmetry 
(lat − 26.312131◦, lon− 78.220099◦) , with an area of ≈ 8.04× 104 m2 . The period of observation started from 
23 November 2019 with the sowing of MP-3173 Wheat, and ended on 4March 2020 . In experimentation-2 Target 
farmland Tpotato has rectangular symmetry (lat − 26.313247◦, lon− 78.223374◦) , with an area of ≈ 7.53× 104 m2 . 
The period of observation started on 28 June 2019 , with sowing of kufri-jawahar potato and ended on 
30 October 2019 . The soil composition, and adopted potato and wheat plantation strategy is presented in reports 
by Panigrahi et al.31 and Devi et al.32, respectively.

Sensor architecture. The devised sensor node ni prototype is shown in Fig.  1. The ni control-unit is 
designed using CC2538 wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4 and is powered 
by two parallel-connected Panasonic CR1632− 3V  lithium coin  cells33. The CC2538 transceiver output power, 
which has a receiving sensitivity −97 dBm in low-gain mode, is programmed to 7 dBm and is connected to a 
3 dB gain planer inverted F-antenna34. The alignment of the XY-plane of the antenna in deployed nxi  is orthogo-
nal to the XY-plane of Tx | x ∈ {wheat, potato} . A node is equipped with a resistive soil moisture sensor, pho-
toresistor, and TMP36 temperature sensor. To protect the nodes from environmental hazards, they are enclosed 
in a PVC enclosure and installed on top of a hollow aluminum tube, which, upon deployment in Tx , gives the nxi  
antenna an elevation of 32 cm from ground.

Path-loss model and RSSI evaluation. The CC2538 has built-in RSSI functionality, which calculates an 
8-bit signed digital value and can be automatically read from the received frame or incoming packet. The RSS 
value captured by RSSI is a 2s-complement signed number on a logarithmic scale with 1-dB steps. An offset is 
added to RSSI value to find actual signal power P accurately, i.e, P = RSSI − offset(dB) . The RSSI offset value in 
contiki for CC2538 is set to 73 dB . The measured RSSI readings for wheat crop in sowing and flowering stages 
are shown in Fig. 2. The Discrete Cosine Transform (DCT) interpolation technique has been used to develop 
the RF map from the RSS-sample  dataset35. The employed path-loss model is the Log-Normal Shadowing and 
is represented by Eq. 2.
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Figure 1.  Sensor node prototype and deployment in Twheat and Tpotato.
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where PL
(

d(ni ,no)
)

 is the reference path loss between node ni and no at distance d(ni ,no) , η is the path loss exponent 
and χσ is a Gaussian distributed random variable with zero mean and σ standard deviation. For the calculation 
of η , the collected empirical measurements of RSS are analyzed using Eq. 4.
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)

 presented in Eq. 4. 
The RSS samples are taken from database acquired through continuous and periodic measurements. Continuous 
measurements were collected using sensor nodes deployed in Experiments 1 and 2 with a 30 minutes sampling 
rate. The periodic measurements were collected at intervals of 4 days using the HSA2030 Spectrum analyzer, 
operating in zero-span mode. The data sets are classified based on the distance d(ni ,nref ) from a reference node 
nref  in different growing stages of the target crop. The selected nref  is placed at the nucleus of Tx |

{

wheat, potato
}

 , 
and the remaining nxi  is positioned around nref  using approach by Wu et al.11. To obtain η , the RSS data is analyzed 
by evaluating a total of 1500 and 1600 samples in Eq. 4. The η calculated for two crops in different growing stages 
is presented in Table 1. The range Prlim
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d(ni ,nj)

)

 attained by CC2538 sensor node with −97 dBm sensitivity in 
the free space environment, after incorporating the losses incurred by the enclosure, is measured to be ≈ 63 m . 
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Figure 2.  Latitude,longitude representation and RSS measurement in Twheat . MATLAB 2016a. https:// in. mathw 
orks. com/.

Table 1.  The calculated η for two crops in different growing stages.

Potato Wheat

Stage Period Days η Stage Period Days η

Establishment 28/06/2019–20/07/2019 23 1.83 Floral Initiation 24/11/2019–13/12/2019 19 1.85

Stolon Initiation 21/07/2019–09/08/2019 20 2.47 T–Spikelet Initiation 14/12/2019–07/01/2020 24 2.75

Tuber Initiation 10/08/2019–29/08/2019 19 2.71 Heading 08/01/2020–28/01/2020 20 3.94

Tuber filling 30/08/2019–12/10/2019 43 2.83 Grain FillingPeriod 29/01/2020–28/02/2020 30 6.21

Maturity 13/10/2019–29/10/2019 16 2.76 physiological Maturity 29/02/2020–20/03/2020 20 5.93

https://in.mathworks.com/
https://in.mathworks.com/
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The Outage probability Prob
(

Pr
(

d(ni ,nj)

)

< Prlim

(

d(ni ,nj)

))

 of 93% at −75 dBm with margin 
P
r
(

d(ni ,nj)

)

− Prlim

(

d(ni ,nj)

)

 of 8 dBm is employed and is identified using formulation presented in Eq. 5.

With a sensitivity of −75 dBm in the free-space environment, the measured transmission range of node ni 
is identified to be ≈ 48 m.

Software tool: The prepossessing of collected RSSI measurement is done using Hadoop and Spark environ-
ment. The environment is setup on an Intel Xeon Processor E5 Family workstation which is running an Ubantu 
18.4 operating system. The path loss model is implemented using Python programming language and the results 
are generated using MATLAB numeric computing environment.

Experiment observations. In both the experiments, nodes were deployed before the crop sowing stages 
using the strategy presented by Wang et al.36. The key observation in Experiment-2 over wheat crop was the 
reduced RSSI measurement over time, eventually leading to link drop and network dis-connectivity. This phe-
nomenon has been observed to occur in three stages of wheat growth, namely terminal-spikelet initiation, head-
ing, and physiological maturity. The network dis-connectivity caused by link drop was due to an increase in 
signal attenuation from growth in vegetation density. Since the initial deployment was done on the fact that 
η = 1.85 , the receiving sensitivity of −75 dBm between ni and nj was estimated to be at a distance of ≈ 48 m . 
However, factors such as vegetation height, density, and plating strategy have affected η . When measured using 
Eq. 4 in maturity stage, it is found to be η = 5.93 , which is ≈ 8 m at −75 dBm receiving sensitivity for uninter-
rupted link communication. On the contrary, the RSSI measurement for potato crop through out the season was 
consistent.The measured η in the sowing and maturity stage was found to be, 1.83 and 2.76. The Kufri Jawahar 
potato plant, which can attain elevation up to 34 cm at maturity, has little effect on the transmitted signal of 
nwheati  , as it is located at the height of 32 cm from the ground and is out of the vegetation canopy.

Summary: Two conclusions were drawn based on the observation made in Experiment 1 and 2 and are as 
follows:

• An NDS developed for crop X with ηx , if used in crop Y with ηy , may cause network over-coverage in the 
case of ηx < ηy and network dis-connectivity if ηx > ηy.

• The path loss coefficient ηz in target crop Tz should be identified before the NDSz formulation.

In addition to the work done in Ndzi et al.24, Ding et al.18 and Olasupo et al.19 we have collected RSS samples for a 
crop cycle in a multi-hop communication scenario for better path loss modeling in potato and wheat crop. Next 
to this, we have developed an optimal node placement strategy to deploy a practical real-time crop monitoring 
infrastructure by integrating derived PLC to NSGAII-NDS.

NSGA-II based NDS optimization (NSGAII-NDS)
In this section, a multi-objective crop dependent node deployment strategy NDSz is proposed. The flow-chart 
of proposed model is presented in Fig. 3. The outcome is a set of 
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optimized using elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) on coverage, over-coverage, and 
RSS. The NSGA-II is widely used in many application scenarios due to diversity in solution and more desired 
convergence near the true Pareto optimal  set37.

Chromosome representation. Genetic Algorithm (GA)based optimization is comprised of chromosome 
Chrx representing a possible solution NDSz and Population PouTx , which is a collection of these chromosomes. 
The Chrx in GA is derived from the phenotype, a single design factor composed of a domain of values. In the 
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where E is conversion precision factor, i.e., if E = 0.02 then 4.02 = 3.98 = 4 . For NDSpotato , we have a total 
of eleven design factors, 10 for npotatoi | npotatoi ∈ Npotato,

∣

∣Npotato
∣

∣ = 10 , and one for T potato . For NDSwheat , we 
have a total of 26 design factors, 25 for nwheati | nwheati ∈ Nwheat ,

∣

∣Nwheat
∣

∣ = 25 , and one for Twheat , Table 2. The 

binary equivalent of real value is the binary representation of X PHE

i  and is derived as follows:
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 design variables, 
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max  , is derived from Table 2. 

The initial values of the design variables are randomly generated within the predefined range and then optimized 
over coverage, over-coverage and RSS in sorting, mutation and crossover phases of the NSGA-II.

Multi-objective functions . The non-dominated sorting to obtain NDSz arranges the chromosome chrx[i] 
in each generation based on the fitness toward objectives O total =
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 . The NDSz befitting 
requires maximum coverage O Cov , minimum over-coverage O Ocov and improved signal strength O RSS . The 
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Figure 3.  Proposed NSGA-II optimized node deployment strategy flow-diagram.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8231  | https://doi.org/10.1038/s41598-021-86462-1

www.nature.com/scientificreports/

Ta
bl

e 
2.

  Th
e 

ra
ng

e 
of

 T
x
 a

nd
 (

n
x il
a
t
,n

x il
o
n

)

 d
es

ig
n 

va
ria

bl
es

 a
nd

 P
he

no
ty

pe
-G

en
ot

yp
e 

re
pr

es
en

ta
tio

n.

D
es

ig
n 

va
ri

ab
le

n
p
o
ta
to

il
a
t

n
p
o
ta
to

il
o
n

T
p
o
ta
to

n
w
h
ea
t

il
a
t

n
w
h
ea
t

il
a
t

T
w
h
ea
t

Va
ria

bl
eM

ax
i-

m
um

 X
P
H
E

m
in

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

−
9
9
d
B
m

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

−
9
9
d
B
m

M
in

im
um

 
X

P
H
E

m
a
x

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

−
9
9
d
B
m

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

2
6
.2
8
0
4
3
2
◦

−
9
9
d
B
m

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

 P
H

EN
O

T
Y

PE

n
w
h
ea
t

1
n
w
h
ea
t

2
n
w
h
ea
t

3
n
w
h
ea
t

4
·
·
·

·
·
·

n
w
h
ea
t

2
5

n
w
h
ea
t

1
la
t

n
w
h
ea
t

1
lo
n

n
w
h
ea
t

2
la
t

n
w
h
ea
t

2
lo
n

n
w
h
ea
t

3
la
t

n
w
h
ea
t

3
lo
n

n
w
h
ea
t

4
la
t

n
w
h
ea
t

4
lo
n

·
·
·

·
·
·

n
w
h
ea
t

2
5
la
t

n
w
h
ea
t

2
5
lo
n

26
.2

81
88

5r
̆

78
.2

23
80

2r
̆

26
.2

81
00

7r
̆

78
.2

23
07

2r
̆

26
.2

81
87

2r
̆

78
.2

23
53

2r
̆

26
.2

81
11

7r
̆

78
.2

23
19

2r
̆

··
·

··
·

26
.2

80
12

4r
̆

78
.2

20
25

4r
̆

B
w
h
e
a
t

i(
la
t
,l
o
n
)

18
4

22
4

16
6

20
9

15
7

18
3

20
1

21
5

··
·

··
·

14
7

15
1

B
to
ta
l

8
8

8
8

8
8

8
8

··
·

··
·

8
8

In
de

x
[0

-7
]

[8
-1

5]
[1

6-
23

]
[2

4-
31

]
[3

2-
39

]
[4

0-
47

]
[4

8-
55

]
[5

6-
63

]
··
·

··
·

[3
84

-3
91

]
[3

92
-3

99
]

C
h
r
X
[i]

10
11

10
00

11
10

00
00

10
10

01
10

11
01

00
01

10
01

11
01

10
11

01
11

11
00

10
01

11
01

01
11

··
·

··
·

10
01

00
11

10
01

01
11

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

   
   

    
G

EN
O

T
Y

PE



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8231  | https://doi.org/10.1038/s41598-021-86462-1

www.nature.com/scientificreports/

Third objective O RSS , Eq. 10, aims to increase the received signal strength between two sensor nodes. The O RSS 
ensures the connectivity by  identifying the distance at which the RSSI remain consistent throughout the lifetime 
of network. The PL

(

d(ni ,nj)

)

 is the path loss between node nxi  and nxj  , and is formulated in Eq. 2.

Initial population generation. The Initial Population Generation (IPG) initiates the NSGA-II operation 
by seeding a set of possible solutions from a universe of solutions in between the lower and upper bound of the 
design variables. The minimum and maximum range of design variables required for IPG operations were iden-
tified and are presented in Table 2. In order to avoid premature convergence, the diversity in IPG needs to be 
maintained, and this has been achieved by the heuristic initialization of the population, followed by a probabil-
istic distribution. The approach’s fundamental design components, i.e., search space, number of individuals, 
problem difficulty and fitness functions, and influencing solution diversity, have been taken into account during 
the IPG process. The former seeding approach avoids premature convergence of TNx and 

(

nx
ilat

, nx
ilon

)

 optimiza-
tion. The population’s diversity has been evaluated at three levels, i.e., gene level, chromosome level, and popula-
tion level. The gene-level diversity formulation in Eq. 11 is a bias measure P bias

t  presented by Diaz-Gomez et 
al.38. Where B total

i  is the length of a chromosome chrx , It is the total number of chrx , and chrx[i]
[

j
]

 is the j th 
gene of i th chromosome. The elements of P bias

t  are distributed over the range [0.5, 1.0] , where the value closer 
to 0.5 is comparatively more stable.

Chromosome-level diversity in Eq. 12 is the average Hamming distance P HD
t  among the chrx in the popula-

tion. Two chromosomes chrx[i] and chrx[j] are distinct if their P HD
t  is equal to chrx length, i.e., P HD

t = B
total

i .

Population-level diversity, determined by Eq. 13, identifies the Centre of Mass (CoM) of the population 
matrix, here chrx[0][0] and chrx

[

It

]

[

B
total

i

]

 are the first and last indexes of the matrix. The CoMx
1 gives the CoM 

of an x coordinate with value 1, and equation CoMy
1 identifies the CoM of y coordinate with value 1.

A perfect CoM for 
(

x, y
)

 coordinate, i.e., 
(

B
total
i
2 + 1

2 ,
It

2 + 1
2

)

 , features a more diverse population generation. 

We have employed the Continuous Uniform probabilistic Distribution (CUD) for population initialization, given 
that the generated chromosomes satisfy the constraint. The Probabilistic distribution function of a uniform 
distribution over the interval 

[

X
PHE
min ,X PHE

max

]

 is given as:

where X PHE
min  and X PHE

min  are the minimum and maximum range of the generated random variable. The mean 

and variance of CUD function are given as X
PHE
min +X

PHE
max

2  and 
(

X
PHE
max −X

PHE
min

)2

12  , respectively.

Non-dominated shorting and crowding distance calculation. A non-dominant shorting approach 
begins with classifying the population It on a distant non-dominant front. A chromosome chrx[i] | chrx[i] ∈ It 
is considered a non-dominant individual if chrx[i] follows the relation in Eq. 15.
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The chrx[i] sorting operation in Eq. 15, starts with identifying all individuals on the first non-dominant front 
and fixes their rank by 1. Then the chrx[i] belonging to the second non-dominant front is identified and set to 
rank 2. This process continues until all fronts have been identified. To filter I , binary tournament selection has 
been used. This approach randomly selects two chromosomes chrx[i] and chrx

[

j
]

 and compares them based 
on rank and crowding distance. If the ranks are different, the one with the lowest rank is chosen. If they are of 
same rank, one with a higher crowding distance chrxCD(i, r) is selected. The process is continued until N out of I 
chromosomes is selected. Initially, the crowding distance of the first and last chrx[i] of the front is set to infinity. 
For the rest of the chrx[i] , the crowding distances chrxCD are calculated as follow:

where r is the rank of the chrx[i] , and n is the number of chromosome ranked r. The count for objective function 
is given by O total . Initially the crowding distance of the chrx[i] is given by chrxCD(i, r) . The values O k denotes the 
k th objective function; O max and O min indicate the maximum and minimum value for the objective function 
O

k , respectively.

Crossover and mutation operation. A crossover operation combines two chromosomes to produce a 
new offspring. In the proposed work, chromosomes selection by  crossover is based on the roulette wheel 
 probabilities39. This greatly increases the likelihood of optimal solution selection and is based on fitness quality. 
To generate the combined solutions, a random crossover approach is applied. Which uses a single point strategy 
to produce two offsprings chrxOS[x] and chrxOS[y] by identifying a breakpoint between two chromosomes chrx[i] 
and chrx[j] . For example, if b is the breaking index of the chromosomes, then the separation within two chromo-
somes can be represented as chrx[i] = chrx[i][0 1 · · · b] + chrx[i][b+ 1 b+ 2 · · ·B − 1] and 
chrx[j] = chrx[j][0 1 · · · b] + chrx[j][b+ 1 b+ 2 · · ·B − 1] . The first half of one offspring chrxOS[x] is taken 
from chrx[j] while the other half is taken from chrx[j] , 
ie.,chrxOS[x] = chrx[i][0 1 · · · b] + chrx[j][b+ 1 b+ 2 · · ·B − 1] . The composition of other offspring is: 

(16)chrxCD(i, r) =
O

total
∑

k=1

∣

∣O
k(chrx[i]+ 1)− O

k(chrx[i]− 1)
∣

∣

O max − O min

Figure 4.  The Cx[D
Tx

L ][D
Tx

B ] for x = wheat in (a) sowing and (b) maturity stage for NSGAII-NDS. MATLAB 
2016a. https:// in. mathw orks. com/.

Figure 5.  The Cx[D
Tx

L ][D
Tx

B ] for x = wheat in sowing an maturity stage for GBA. MATLAB 2016a. https:// in. 
mathw orks. com/.

https://in.mathworks.com/
https://in.mathworks.com/
https://in.mathworks.com/
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chrxOS[y] = chrx[i][0 1 · · · b] + chrx[j][b+ 1 b+ 2 · · ·B − 1] . The employed mutation operation follows the 
bit-flip mechanism that transforms the chromosome chrx[x] to chrx[y] ∈ chrxU by flipping the individual bit in 
chrx[x] with probability p = 1

B
total  . Given chrx[x] , the probability of obtaining chrx[y] using bit-flip mutation is 

given as follow:

Pareto-optimal solution estimation. The Pareto Optimal outcome (POS) of NSGA-II operation is a set 
of possible solutions I POS

t =
{

chrxPOS[1], chr
x
POS[2] · · · , chrxPOS[z]

}

| z =
∣

∣I
POS
t

∣

∣ . We need to select the best 
solution chrxPOS[i] from I POS

t  to implement NDSz , and hence the approach Technique for Order Performance 
by Similarity to Ideal Solution (TOPSIS) has been  used40.

Results and discussion
The proposed NSGA-II based node location optimization is performed and the chromosomes are compared 
over objective functions, coverage, over coverage, and RSS. A measure of the percentage of area covered and 
over-covered is presented to illustrate the effectiveness of individual chromosomes. A comparison with approach 
DT-NDS developed by Wu et  al.11, is performed over metric RSS and coverage in target area 
Tx | x ∈ {wheat, potato} . The NSGAII-NDS outcome (nx

i
lat , n

x

i
lon ) | ∀nxi ∈ Nx obtained after the TOPSIS operation 

was employed in the target areas. The measurements were obtained for coverage and over-coverage in 

Twheat |
∣

∣Nwheat
∣

∣ = 25 , and are visualized by plotting Cwheat [DT
wheat

L ][DT
wheat

B ] . The measurements for Twheat were 
collected at sowing and maturity stages, and are presented by Fig. 4a,b. Similarly, for the DT-NDS, the measure-
ments in Twheat are presented in Fig. 5a,b. The RSS measurement in DT-NDS suffers more degradation than in 
NSGAII-NDS. Since the initial deployment in DT-NDS was done in bare land, the distance between the two 
nodes was more due to η being equal to 13, and this increased the likelihood of additional RSS degradation. In 
the floral-initiation, terminal-spikelet-initiating and heading stages, the counter value of NSGAII-NDS is higher 
than DT-NDS. However, in the Grainfilling period, the DT-NDS has experienced network disconnectivity due 
to node isolation inception. On the other hand, η based NSGAII-NDA strategy accounted for the possible signal 
degradation and outage probability threshold, resulting in a reliable IEEE 802.4.15 2.4GHz infrastructure for 
wheat crop monitoring.

The wheat crop under observation is of the MP-3173 variety, which is in the category of medium height 
vegetation and was planted with an optimal row spacing of 22 cm . Furthermore, according to Köppen’s climate 
classification, the plantation location is a humid subtropical climate, with the highest and lowest temperature 
recorded from June 2019 to April 2020 was 49◦C and 1◦C , respectively . The problem formulation and results of 
NSGAII-NDA may vary if the crop is grown in a different geographical area with a different variety or planta-
tion strategy. For example, if the wheat sowing is delayed, a closer spacing of 15–18 cm is practiced, resulting 
in increased density per square meter. The change in density may affect the calculated path loss coefficient. To 
develop a comprehensive node placement strategy, path loss coefficient needs to be identified in all possible com-
binations of factors that can affect the receiving capability of two transceivers. Following the former goal, future 
works will be directed toward the collection of path loss coefficient measurements in different wheat crop varie-
ties in different geographical regions. Furthermore, sensor nodes nxi  in WSN had a homogeneous transmission 
range T x and could be extended to a heterogeneous T x implementation. The integration of a self-adjusting T x 
strategy into NSGAII-NDA can reduce over-coverage in the early stages of the plantation. This can be achieved 
by gradually increasing the T x of nodes with an increase in PLC.

Conclusion
This article proposes a reliable NSGA-II optimized Node Deployment Strategy (NDS) in the IEEE 802.15.4 wire-
less infrastructure for potato and wheat crop monitoring. The relationship between vegetation cover and signal 
attenuation for 2.4 GHz radio frequencies has been analyzed in detail through real-time experimentation. The 
results of the experiment led to two significant findings; First, when the monitoring infrastructure for the wheat 
crop uses the NDS that was originally developed to monitor the potato crop, faces network dis-connectivity due 
to increased signal attenuation which is caused by growth in vegetation cover. The second finding is inferred 
from the first conclusion and states that it is necessary to identify a Path Loss Coefficient (PLC) in the target crop 
before developing NDS. The PLC has been identified at various growing stages of potato and wheat crop through 
empirical measurement campaigns. The implementation of the derived PLC in Lognormal path loss shadowing 
model was subsequently integrated into proposed NSGAII-NDS to optimize NDS over coverage, over-coverage, 
and Received Signal Strength (RSS). The significant difference between the NSGAII-NDS and the existing NDS 
strategy is that the PLC for a crop to be monitored is accounted before deployment, eliminating the possibility 
of a link break between two sensor nodes due to increased vegetation cover.
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