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The aim of this study was to assess the effect of sevoflurane and propofol on organ blood flow in a porcine model with a left
ventricular assist device (LVAD). Ten healthy minipigs were divided into 2 groups (5 per group) according to the anesthetic
received (sevoflurane or propofol). A Biomedicus centrifugal pump was implanted. Organ blood flow (measured using colored
microspheres), markers of tissue injury, and hemodynamic parameters were assessed at baseline (pump off) and after 30 minutes
of partial support. Blood flow was significantly higher in the brain (both frontal lobes), heart (both ventricles), and liver after
30 minutes in the sevoflurane group, although no significant differences were recorded for the lung, kidney, or ileum. Serum
levels of alanine aminotransferase and total bilirubin were significantly higher after 30 minutes in the propofol group, although
no significant differences were detected between the groups for other parameters of liver function, kidney function, or lactic acid
levels. The hemodynamic parameters were similar in both groups. We demonstrated that, compared with propofol, sevoflurane
increases blood flow in the brain, liver, and heart after implantation of an LVAD under conditions of partial support.

1. Introduction

Ventricular assist devices (VADs) are a promising therapeutic
option for patients with advanced heart failure. VADs can
act as a bridge to transplantation, as a destination therapy
for patients with contraindications to transplantation, or as
a bridge to a future recovery [1-3]. In the last few decades,
VADs have been increasingly used in patients with end-stage
heart failure, because heart transplantation is limited by a
marked lack of donors [4].

The main purpose of a VAD is to maintain perfusion of
vital organs. To improve the clinical output of the VAD, it is
necessary to optimize perioperative conditions (continuous-
flow VAD, hemodynamic monitors, and anesthetic drugs)
[5, 6]. Although several studies show the effects of the VAD

on organ blood flow (heart, brain, liver, and kidney) [7-9],
the effect of anesthetics on organ blood flow in patients with
a VAD has not been analyzed to date. Several studies have
reported data on the response of organ blood flow to the
administration of various anesthetics [10-13], although this
effect remains unclear for VADs.

Given the beneficial effects of volatile anesthetics (sevo-
flurane) compared with intravenous anesthesia (propofol)
on organ blood flow during cardiovascular surgery [14-17],
we hypothesized that, compared with propofol, sevoflurane
would increase organ blood flow in patients with a left VAD
(LVAD). The aim of this study was to investigate differences
between the effect of sevoflurane-based volatile anesthetic
and that of propofol-based intravenous anesthetics on organ
blood flow (brain, liver, heart, kidney, lung, and intestine)
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FIGURE 1: LVAD placement. Aortic partial cross-clamp (a). Implant of the input cannula through the apex of the left ventricle (b and c).

and to assess markers of tissue injury after implantation of
an LVAD (continuous centrifugal pump) under conditions of
partial support in a porcine model.

2. Methods

The animals used in our experiment were from the farm
of the Technological Institute of Agrarian Development
(EX 013-C) (Community of Madrid, Spain). The pigs were
moved from this farm to the Experimental Medicine and
Surgery Unit, Gregorio Marafién University General Hospital
(ES280790000087), where they remained under a controlled
environment until the intervention (20-22°C and relative
humidity of 55%). The study was performed in accordance
with European Union guidelines on the protection of ani-
mals used for experimental and other scientific purposes
(Directive 2010/63/EU and Spanish Royal Decree RD 53/2013
BOE) and was approved by the Ethics Committee, Gregorio
Marafién University General Hospital, Madrid, Spain.

2.1. Experimental Design. The study was conducted with
ten healthy minipigs. Animals were block-randomized
(Microsoft Excel 2003) to receive either propofol in contin-
uous perfusion as anesthetic maintenance (propofol group,
n = 5) or sevoflurane (sevoflurane group, n = 5).

2.1.1. Anesthesia Protocol. The animals were simultaneously
premedicated with intramuscular ketamine 20 mg/kg (Keto-
lar, Parke-Davis, Madrid, Spain) and atropine 0.04 mg/kg
(Atropina Braun, Serra-Pamies, Reus, Spain). Pulse oximetry
and electrocardiographic monitoring were performed in

the operating room. The pigs were provided with oxygen
100% via a face mask, a 20 G cannula was inserted into
an ear vein, and anesthesia was induced with intravenous
fentanyl 2.5 ug/kg (Fentanest, Kern Pharma, Barcelona,
Spain) and propofol 4 mg/kg (Diprivan 1%, AstraZeneca,
Madrid, Spain). After intubation, the animal was con-
nected to a volume-controlled ventilator (Driger SAl,
Driager Medical AG, Liibeck, Germany) with FIO, of 1,
an inspiratory: expiratory ratio of 1:2, a tidal volume of
12-15mL/kg, and the respiratory rate adjusted to main-
tain normocapnia as previously described [18]. Anesthesia
was maintained with intravenous fentanyl (2.5 ug/kg/30 min)
in all animals and propofol in continuous infusion (11-
12 mg/kg/h) (propofol group) or 2% sevoflurane (sevoflurane
group). All animals received an infusion of saline solution
(8 mL/kg/h). A 9 F arterial catheter was inserted into the right
femoral artery and a pulmonary artery catheter (7.5 F Swan-
Ganz CCOmbo catheter, Edwards Lifesciences, Irvine, CA,
USA) connected to an oximetry monitor (Vigilance, Edwards
Critical-Care Division, Irvine, CA, USA) was inserted into
the right internal jugular vein.

2.1.2. Surgical Protocol. A Biomedicus 540 centrifugal pump
was implanted in the minipigs undergoing continuous-flow
support. After median sternotomy, the animal was hep-
arinized at a dose of 4 mg/kg. An aortic partial cross-clamp
was applied (just for anastomosing the output cannula of
the LVAD to the aorta) and a 2cm aortotomy performed
(Figure 1(a)). The output cannula of the LVAD was anas-
tomosed to the ascending aorta, and the input cannula
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(23F Medtronic Ultraflex, Metdtronic Inc., Minneapolis,
USA) was placed through the apex of the left ventricle.
The implant of the input cannula is practiced by placing
two circular sutures (Figure 1(b)), and then the cannula was
placed with two turnstiles around the cannula (Figure 1(c)).
Finally, both cannulas were connected to the device. LVAD
placement was without cardiopulmonary bypass and without
cardioplegia. Console parameters were adjusted to obtain a
pump flow of 50% (partial support) of the baseline cardiac
output (cardiac output before LVAD is initiated) using the
pulmonary artery catheter for 30 minutes. Input flow was
measured using an ultrasound transducer (EMTEC, Ger-
many) attached to the input cannula of the device.

2.2. Organ Blood Flow Measurements. Colored microspheres
(Dye-Trak, Triton Technology Inc., San Diego, CA, USA)
were used to measure organ blood flow. Once the LVAD was
implanted (before the start of LVAD, baseline), yellow micro-
spheres (diameter of 12 microns) were injected into the left
atrium (1.5 million microspheres per injection). The LVAD
was then initiated, and violet microspheres were injected
after 30 minutes of partial support. After each experiment,
the animal was sacrificed using potassium chloride, and
tissue samples of both brain hemispheres (right and left
frontal lobe), heart (right and left ventricles), liver, lung
(middle lobe of right lung), kidney, and ileum were obtained
to measure organ blood flow. The basic principle of all
deposition techniques for regional flow measurement is that
the deposition is proportional to the flow (per unit volume or
mass of tissue). Due to the movement of microspheres out of
the capillaries into the interstitium, retention of microspheres
is excellent. The idea is that deposited markers give a measure
of flow per unit volume of tissue at the level of the capillaries.
The microspheres were isolated from tissue by digestion
with potassium hydroxide, they were centrifugated, the dyes
were extracted from the colored microspheres, and the
separation of colors and measurement of their concentration
was performed by spectrometry [19, 20].

2.3. Markers of Tissue Injury. Serum levels of total biliru-
bin, alanine aminotransferase, aspartate aminotransferase,
gamma-glutamyl transpeptidase, and alkaline phosphatase
were evaluated as parameters of hepatobiliary function.
Creatinine and urea were studied as parameters of renal
function. Lactate dehydrogenase and lactate were measured
as nonspecific indicators of tissue injury. All previously
described markers of tissue injury and nitric oxide (NO) were
studied at baseline (after implantation before turning it on)
and 30 minutes after implantation of the LVAD.

2.4. Hemodynamic Measurements. The hemodynamic data
included heart rate, mean arterial pressure, mean pulmonary
arterial pressure, central venous pressure, pulmonary cap-
illary wedge pressure, systemic vascular resistance index,
pulmonary vascular resistance index, continuous cardiac
output, and mixed venous oxygen saturation, all of which
were recorded at baseline and 30 minutes after implantation
of the LVAD. Body temperature was also studied.

2.5. Hematologic Parameters and Arterial Blood Gas Mea-
surements. A femoral arterial catheter was used to perform
the hematologic and blood gas analyses at baseline and 30
minutes after implantation of the LVAD.

2.6. Data Analysis and Statistics. The primary endpoint was
organ blood flow in the LVAD, which was compared between
the two groups. The variable was expressed as mean *
SEM. We used the Kolmogorov-Smirnov test to analyze the
distribution of quantitative variables; between-group com-
parisons were based on the t-test for independent samples.
Statistical significance was set at a P value of <0.05. The
statistical analysis was performed using IBM SPSS Statistics
for Windows, version 20.0 (IBM Corp, Armonk, NY, USA)
and S-PLUS 6.1.

3. Results

3.1 Physiological Parameters. No differences were detected
between the groups (sevoflurane versus propofol) in terms of
age (143 + 7 versus 126 + 10 days, P = 0.28), weight (34 + 1
versus 25+3 kg, P = 0.052), or height (93 +2 versus 87+ 1 cm,
P =0.07).

3.2. Effect of Anesthetics on Organ Blood Flow. Blood flow
was significantly higher in the brain (both frontal lobes)
(Figures 2(a) and 2(b)), heart (both ventricles) (Figures 3(a)
and 3(b)), and liver (Figure 4(a)) after 30 minutes of partial
support in the sevoflurane group than in the propofol group,
although no significant differences were recorded for the lung
(Figure 4(b)), kidney (Figure 5(a)), or ileum (Figure 5(b)).

3.3. Effect of Anesthetics on Markers of Tissue Injury and Nitric
Oxide. Serum levels of alanine aminotransferase and total
bilirubin were significantly higher after 30 minutes of partial
support in the group that received propofol. However, there
were no significant differences between the groups in other
parameters of liver function and kidney function or in lactic
acid levels (Table 1). There were no differences between the
groups in nitric oxide in plasma (Table 1).

3.4. Hemodynamic Parameters. No differences were found
between the groups in pump flow of LVAD (propofol
group 0.94 + 0.09 L/min versus sevoflurane group 1.01 +
0.09 L/min).

The hemodynamic parameters showed marked stability
in both groups; there were no significant differences in
either the sevoflurane group or the propofol group before
implantation of the LVAD and after 30 minutes of partial
support (Table 2).

3.5. Hematologic Parameters and Blood Gas Analysis. No
statistically significant differences were found between the
groups for hemoglobin and hematocrit after 30 minutes
(Table 3). Arterial oxygenation, systemic arterial PCO,,
bicarbonate, and pH were similar in both groups before
implantation and after 30 minutes of partial support
(Table 3).
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FIGURE 2: Date are expressed as the mean + standard error of the mean. Cerebral blood flow in the right frontal lobe (a) and left frontal lobe

(b) of pigs with a ventricular assist device in both groups, sevoflurane (S) and propofol (P), at baseline and after 30 minutes of partial support.
Statistically significant differences are shown: * P < 0.05 versus sevoflurane.
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FIGURE 3: Date are expressed as the mean + standard error of the mean. Blood flow in the right ventricle (a) and left ventricle (b) of pigs with
a ventricular assist device in both groups, sevoflurane (S) and propofol (P), at baseline and after 30 minutes of partial support. Statistically

significant differences are shown: *P < 0.05 versus sevoflurane.
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FIGURE 4: Date are expressed as the mean + standard error of the mean. Blood flow in the liver (a) and lung (b) of pigs with a ventricular assist
device in both groups, sevoflurane (S) and propofol (P), at baseline and after 30 minutes of partial support. Statistically significant differences

are shown: P < 0.05 versus sevoflurane.
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FIGURE 5: Date are expressed as the mean + standard error of the mean. Blood flow in the kidney (a) and ileum (b) of pigs with a ventricular
assist device in both groups, sevoflurane (S) and propofol (P), at baseline and after 30 minutes of partial support.

4. Discussion

The results obtained show that, compared with propofol,
anesthesia with sevoflurane increases blood flow in the
brain, liver, and heart tissue after implantation of an LVAD
under conditions of partial support in a porcine model. In
addition, increased levels of serum markers of cellular injury
in LVAD were observed with propofol. To our knowledge,
this is the first study to demonstrate a beneficial effect of
sevoflurane compared with propofol on organ blood flow in a
Biomedicus 540 centrifugal pump in a porcine model. These
findings justify further investigation to determine whether
sevoflurane modifies organ blood flow in clinical settings.

The number of patients diagnosed with advanced heart
failure is increasing worldwide, and LVAD is a pivotal
treatment option for end-stage heart failure [21]. Because
complications in the use of LVAD (multiple organ fail-
ure, right ventricular failure, neurological dysfunction, and
arrhythmias) have been reported [22, 23], anesthesia and
perioperative management of these critically compromised
patients requires extensive monitoring, special anesthetic
management with appropriate drugs, and expert postopera-
tive care [24, 25].

4.1. Effect of Anesthetics on Organ Blood Flow. Several studies
have reported changes in organ blood flow in response
to the administration of volatile anesthetics and propofol
[11-13, 26-28], although this effect has not been analyzed
during implantation of an LVAD. Sevoflurane and propo-
fol are frequently used as maintenance anesthetics during
placement of an LVAD [29]. Some authors have associated
reduced cerebral blood flow with both drugs [12]; however,
we only found greater cerebral blood flow in sevoflurane-
anesthetized animals with an LVAD. Patients with LVAD
are associated with neurologic events. The most common
causes are thromboembolism and hemorrhagic stroke and
less frequent causes are ischemia due to low perfusion and
air embolism [30]. However, we are not sure that a higher
flow reduces the occurrence of ischemia due to air embolism.
According to our results, sevoflurane could be a good option

to lower the incidence of ischemia due to low perfusion in
LVAD-supported patients.

The results of some studies support cardiac and hepatic
protective effects of sevoflurane with respect to propofol
after coronary artery surgery in humans [14, 16]. Our results
also support the beneficial effect of sevoflurane compared
with propofol on the heart and liver in LVAD. However, no
differences were observed with sevoflurane compared with
propofol for blood flow in other organs (lung, kidney, and
intestine). The different blood flow response to sevoflurane
could be explained by its dose-dependent effect [26-28].

Propofol and sevoflurane are used during cardiac surgery.
Propofol exerts cardioprotective effects by different mecha-
nisms: in the isolated heart, it attenuates metabolic changes
induced by exogenously applied hydrogen peroxide [31],
reduces infarct size by inhibition of GSK-3 activity (propo-
fol induces cardiac preconditioning) [32], and attenuates
ischemia-reperfusion injury mediated through increase in
nitric oxide synthase activity and NO production (cardiac
function and coronary flow are improved with propofol)
[33, 34]. In our study there were no differences in NO
between both groups: sevoflurane and propofol. Propofol
attenuates the changes in myocardial tissue levels of adenine
nucleotides and lactate during ischemia, reduces troponin
I release on reperfusion after cardioplegic arrest in car-
diopulmonary bypass in a model porcine [35], and shows
antiarrhythmic effect during myocardial ischemia in rats
[36]. However, cardiopulmonary bypass (CPB) is known
to alter the plasma propofol concentrations (hemodilution,
hypotension, hypothermia, isolation of the lungs from the
circulation, and possible sequestration of drugs in the bypass
circuit affect drugs plasma concentrations) [37].

Sevoflurane also induces preconditioning and attenu-
ates myocardial ischemia/reperfusion injury via caveolin-3-
dependent cyclooxygenase-2 inhibition, AMP-activated pro-
tein kinase, and antioxidative effects in experimental studies
[38-40]. Clinical studies show that sevoflurane provides
cardioprotection in patients undergoing coronary artery
bypass graft (CABG) [41], and there is some data that shows
that troponin T levels after off-pump CABG were lower in



TABLE 1: Markers of tissue injury and nitric oxide in both groups
(propofol and sevoflurane) at baseline and 30 minutes after implan-
tation of a left ventricular assist device.
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TABLE 2: Hemodynamic parameters in both groups (propofol and
sevoflurane) at baseline and 30 minutes after implantation of a left
ventricular assist device.

Propofol Sevoflurane P values Propofol Sevoflurane P values
n=>5 n=>5 n=>5 n=>5
ALT (U/L) HR (beats/min)
Baseline 29+2 25+2 0.221 Baseline 95+ 4 89+9 0.546
PS 30’ 29+2 23+2 0.048" PS 30’ 101 + 6 101 + 6 0.964
AST (U/L) AP, (mmHg)
Baseline 50 + 10 35+3 0.116 Baseline 70 + 3 65 + 0.384
PS 30’ 94+ 46 44+ 0.358 PS 30’ 65+8 7447 0.404
Bilirubin (mg/dL) PAP,, (mmHg)
Baseline 0.25+0.06 0.13 £0.02 0.081 Baseline 2342 2542 0.506
PS 30’ 0.24 +0.02 0.12 +0.04 0.028" PS 30/ - 343 0.083
GGT (U/L) CVP (mmHg)
Baseline 63+ 12 58 0.584 Baseline 1541 + 0.856
PS 30' 62+ 22 47 +8 0.496 PS 30’ 4+3 1642 0.584
AP (U/L) CPP (mmHg)
Baseline 82+38 72+8 0.428 Baseline 1841 1841 0.471
PS 30’ 89 +12 79 + 0.507 PS 30’ 15405 941 0.052
LDH (U./L) o SVRI
Baseline 33019 31+13 o0 Baseline 1583 + 199 1368 + 143 0.450
P 4 +1 47 +2 .
530 37 8 34727 PS 30’ 1128 +173 1433 + 234 0.351
Creatinine (mg/dL) PVRI
Baseline 0.44 £ 0.03 0.57 £ 0.06 0.085 .
, Baseline 171 + 65 159 + 32 0.877
PS 30 0.45 + 0.03 0.47 £ 0.03 0.596 ,
PS 30 217 + 37 339+ 85 0.269
Urea (mg/dL) CO (Ljmin)
min
Baseline 272422 22.2+0.9 0.059
, Baseline 24+0.3 3+0.3 0.185
PS 30 282 +2.6 22.2+1.2 0.053 ,
L PS 30 2.5+0.4 31+0.4 0.347
Lactic acid
0,
Baseline 15405 114022 0.453 Sv0, (%) .
PS 30’ 15403 12402 0.434 Bascline 77£4 82+ -
15
NO (M) PS 30 82+1 89+3
Baseline 418 + 47 691 + 47 0.056 QY
PS 30’ 280 + 92 478 + 92 0.270 Baseline 351+0.2 359+0.3 0.080
PS 30’ 33.9 + 0.4 346+ 0.4 0.332

Data are expressed as the mean + standard error of the mean. ALT: alanine
transaminase; AST: aspartate aminotransferase; GGT: gamma-glutamyl
transpeptidase; AP: alkaline phosphatase (AP); LDH: lactate dehydrogenase;
NO: nitric oxide; PS: partial support. Statistically significant differences are
shown. * P < 0.05 propofol versus sevoflurane.

patients receiving sevoflurane compared to propofol [42].
In this context, cardioprotection by sevoflurane compared
to propofol could also be superior in patients undergoing
noncardiac surgery [43]. However, troponin T increased
in patients undergoing repair of congenital heart defect
with cardiopulmonary bypass anesthetized with propofol and
sevoflurane [44]. In our study we did not use cardiopul-
monary bypass (there was no ischemia/reperfusion) in LVAD
implantation.

It is known that sevoflurane tends to cause vasodilatation
cerebral, increases cerebral blood flow (CBF), and decreases
cerebrovascular resistance [45]. However, propofol produces

Data are expressed as the mean + standard error of the mean. HR:
heart rate; AP, : mean arterial blood pressure; PAP : pulmonary artery
mean pressure; CVP: central venous pressure; CPP: pulmonary capillary
wedge pressure; SVRI: systemic vascular resistance index; PVRI: pulmonary
vascular resistance index; CO: continuous cardiac output; SvO,: mixed
venous oxygen saturation; T temperature; PS: partial support.

cerebral vasoconstriction indirectly by reducing cerebral
metabolism and causes a decrease in CBF that is well matched
to cerebral metabolism [46]. Regarding why in our study
sevoflurane increases CBE, Kaisti et al. [12] confirmed that
CBEF is lower with propofol than with sevoflurane.

4.2. Effect of Anesthetics on Markers of Tissue Injury. The
objective of a VAD is to maintain adequate organ perfusion
[2]. However, liver dysfunction has been observed despite
adequate hemodynamic support with an LVAD [47]. Some
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TaBLE 3: Hematologic parameters and blood gas analysis in both
groups (propofol and sevoflurane) at baseline and 30 minutes after
implantation of a left ventricular assist device.

Propofol Sevoflurane P values
n=>5 n=>5

pH

Baseline 7.4 +0.03 74 +0.02 0.314

PS 30’ 73 +0.03 74 +0.02 0.583
PO, (mmHg)

Baseline 503 + 24 425 + 42 0.147

PS 30’ 492 + 43 483 + 25 0.867
PCO, (mmHg)

Baseline 35+2 38+2 0.428

PS 30’ 38+3 42+3 0.322
HCO,;™ (mmol/L)

Baseline 22+1 26 +1 0.073

PS 30’ 21+1 24+1 0.052
Hb (g/dL)

Baseline 70+ 0.1 74+0.4 0.337

PS 30’ 8.0+0.5 83+0.7 0.730
Hct (%)

Baseline 19.7+0.3 219 +1.2 0.148

PS 30’ 225+ 1.4 24.5+2.0 0.452

Data are expressed as the mean + standard error of the mean. PO,: partial
pressure of oxygen; PCO,: partial pressure of carbon dioxide; HCO; :
bicarbonate; Hb: hemoglobin; Hcto: hematocrit; PS: partial support.

authors have reported hyperbilirubinemia in patients follow-
ing implantation of an LVAD by hepatic sinusoid endothelial
dysfunction [48] or cardiac congestion [49]. In our study,
total bilirubin was higher in propofol-anesthetized animals
than in sevoflurane-anesthetized animals; this finding was
consistent with reduced blood flow in the liver and heart with
respect to sevoflurane-anesthetized pigs.

Bernard et al. [50] found a portal blood flow decreased
at both 1.2 and 2 MAC sevoflurane, whereas an increase in
hepatic arterial blood flow was recorded at 2 MAC. These
findings could explain why sevoflurane increases hepatic
blood flow in our study.

4.3. Benefit of the Results for the Clinics. In our study, the
use of sevoflurane leads to better outcomes after LVAD
implantation by optimizing blood flow in the heart, brain,
and liver. Although the necessary time to place an LVAD
is short, the use of volatile anesthetic in cardiac surgery
potentially reduces long-term cardiovascular complications
and mortality [51]. Furthermore, intraoperative and post-
operative sevoflurane administration in patients undergo-
ing off-pump CABG could improve the cardioprotective
effect compared with patients who received sevoflurane only
in the intraoperative period [42]. It is possible because
there is a disposable delivery system (AnaConDa) that is
designed for halogenated sedation of patients in ICU [42].
LVAD, biventricular assist device (BIVAD), and extracor-
poreal membrane oxygenation (ECMO) are associated with

a high incidence of complications (bleeding and tamponade
requiring reexploration, right ventricular failure, respiratory
failure, acute respiratory distress syndrome and pulmonary
edema, neurologic complications, renal and hepatic failure,
and infection) [5], and patients with complications are likely
to require sedation and mechanical ventilation for a longer
time period in ICU [52]. These patients could benefit from
the sevoflurane effect over organs flow not only during the
intraoperative, but also during the postoperative recovery
period in the ICU.

4.4. Study Limitations. The present study is subject to a series
of limitations. First, the LVAD is designed to be used in
patients with heart failure; therefore, our results may not
be directly applicable in clinical practice, because we used a
healthy heart, as described elsewhere [53, 54]. This limitation
should be addressed in an animal cardiogenic shock model.
Second, since we studied the short-term effects of anesthetics
(propofol and sevoflurane) in animals with an LVAD, the
long-term effects of these drugs on organ blood flow warrant
further investigation. Third, the effects of inhaled anesthetics
[26-28, 55] and the intravenous anesthesia (propofol, opi-
oids) [56, 57] may be dose-dependent. The concentration of
sevoflurane we used represents approximately 1 minimum
alveolar concentration, which is similar to the concentration
used in other studies that show beneficial effects in a model of
ischemia-reperfusion after thoracic-aortic occlusion in pigs
[58].

We found that sevoflurane could be superior to propofol
with respect to blood flow in the brain, liver, and heart
tissue in a porcine model with LVAD. These findings may
have significant clinical implications for anesthesiologists
regarding the choice of sevoflurane in patients with an LVAD.
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