
246 Current Molecular Medicine 2011, 11, 246-254  

 

 1566-5240/11 $58.00+.00 © 2011 Bentham Science Publishers Ltd. 
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Abstract: Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease. The cause 

is unknown, but genetic abnormalities have been identified in subjects with familial ALS and also in subjects 

with sporadic ALS. Environmental factors such as occupational exposure have been shown to be risk factors 

for the development of ALS. Patients differ in their clinical features and differ in the clinical course of disease. 

Immune abnormalities have been found in the central nervous system by pathological studies and also in the 

blood and CSF of subjects with ALS. Inflammation and immune abnormalities are also found in animals with a 

model of ALS due to mutations in the SOD1 gene. Previously it has been considered that immune 

abnormalities might contribute to the pathogenesis of disease. However more recently it has become apparent 

that an immune response can occur as a response to damage to the nervous system and this can be 

protective.  
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INTRODUCTION 

Neurodegenerative diseases such as amyotrophic 
lateral sclerosis (ALS) lack the prominent infiltrates of 
blood-derived mononuclear cells that characterize 
primary autoimmune diseases. However, there is 
abundant evidence many substances involved in the 
promotion of inflammatory processes are present in the 
CNS of patients with such neurodegenerative diseases 
and there are also modest numbers of inflammatory 
cells present in the tissue in ALS. There have been 
previous reviews of the role of inflammation in ALS and 
the possibility of treating ALS by immune modulation 
[1-3]. We now review the evidence of immune 
abnormalities in ALS and whether this is helpful or 
harmful.  

There have been suggestions that immune 
modulation could be used to modify the course of ALS. 
However, before such therapy is attempted, it is 
important to know if the immune response is harmful or 
beneficial. The presence of antibody and T cells at a 
site of pathology can occur as part of a harmful 
autoimmune process although there are a number of 
other criteria that must be met for a disease to be 
considered autoimmune [4]. Immune abnormalities at 
the site of disease could also be a response to damage 
[5] through activation of the innate immune system. 
This occurs as a response to so-called “danger signals” 
that are molecules released from damaged tissue [6]. 
Release of mitochondria is known to be important in 
provoking a systemic response to tissue injury [7]. In 
the brain the cells that respond to damage are 
microglia [8]. After an initial innate immune response 
due to microglia there can be further adaptive immune 
response to injury. 
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Once it has been provoked, an immune response 
could modulate the rate of progression of disease. One 
possibility is that an immune response could make 
disease more severe. However, an immune response 
can also be protective [9] and indeed strategies that 
enhance protective immunity are possible options for 
therapy of neurological diseases [10]. We will review 
the clinical features and pathogenesis if ALS, then 
provide evidence of immune abnormalities in ALS and 
the evidence for a role of these in pathogenesis and 
disease progression, including studies in experimental 
animal models of ALS. 

BACKGROUND TO ALS 

Clinical Features 

ALS is a progressive disorder causing weakness of 
the limbs, and leading to death, usually within 3 –5 
years. The incidence of ALS is around 2 per 100,000 
[11-15]. ALS is slightly more common in men than in 
women [16]. For the diagnosis of ALS, there are strict 
clinical definitions [17] that involve the finding of a 
combination of upper and lower motor neurone signs. 
At first presentation, some patients do not fulfil these 
strict criteria but as time goes by they develop 
additional signs that confirm the diagnosis [18]. 
Although predominantly a motor disorder, ALS is 
commonly associated with dementia [19]. Although not 
clinically apparent, testing had found that there can 
also be subtle sensory abnormalities [20] and 
autonomic dysfunction [21].  

Sub-Types of Disease 

Patients with ALS vary in their clinical features such 
as the site of onset, and whether the subject has 
features of both upper and lower motor neurone 
weakness, or has solely upper or lower motor neurone 
signs. Patients with ALS may be placed into further 
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subgroups (phenotypes) by combining information 
about both the site of onset (bulbar; upper or lower 
limb) and the type of weakness (predominantly 
affecting the upper or lower motor neurons). This type 
of analysis identifies groups such as the flail-arm 
presentation, which involves lower motor neuron 
weakness of the upper limbs [22, 23]. Cluster analysis 
has also found distinct subgroups of patients [23]. 
Furthermore the gender of the subject influences the 
site of onset of ALS, with women being more likely to 
have bulbar onset disease [16]. It is possible that the 
different sub-types of ALS have different pathogenesis. 
In one of the genome-wide association studies in ALS, 
the investigators found that the association with 
different SNPs was different according to gender [24]. It 
is important to understand the causes of heterogeneity 
in ALS, because sub-types of disease with different 
pathogenesis could confound clinical trials [25]. It is 
possible that the immune response could be important 
in the disease process, and this could vary among 
individuals, leading to further heterogeneity.  

Prognostic Factors 

In addition to different clinical features, patients also 
vary in the rate of progression of weakness and it may 
be that once the disease develops, there are factors 
that influence the rate of progression. The known 
prognostic factors in ALS are age and bulbar site of 
onset [26]. It is possible that gender also plays a role in 
prognosis [26] with women having a shorter survival on 
average, but this is controversial, and gender does not 
appear to be an independent risk factor in multivariate 
analysis [16]. It is important to look for modifiable 
factors that affect prognosis, because this could lead to 
possible therapies. This review will focus on the role of 
the immune system and whether immune responses 
alter the rate of progression of disease. Males and 
females have different immune responsiveness [27], so 
this could be another variable that could lead to 
differences between men and women in the clinical 
course of ALS. 

Measuring Disease Progression in ALS 

While prolonging survival of patients with ALS is the 
goal of therapy, survival time is not a good measure of 
the underlying rate of progression of disease, because 
survival is affected by other factors such as the use of 
mechanical ventilation [28], and also the site of onset of 
disease, so that subjects with early involvement of 
respiratory muscles have a shorter survival [29]. The 
underlying rate of death of upper and lower motor 
neurones is more difficult to measure. For this we need 
biomarkers which are “objective measurements that act 
as an indicator of normal biological processes, 
pathogenic processes or pharmacological response to 
therapeutic intervention” [30]. Any studies of the rate of 
disease progression in ALS need to measure the rate 
of cell death or surrogate markers of this. One measure 
of disease progression in ALS is motor unit number 
estimation, using neurophysiological techniques to 

determine the number of motor units in a muscle [30, 
31]. We have developed a method of motor unit 
number estimation that uses measurement of the 
compound muscles action potential in response to 
increasing levels of electrical stimulation. This data is 
analyzed using Bayesian statistics to provide an 
estimate of the number of motor units in the muscle 
[32, 33]. This can be used repeatedly to measure the 
number of motor units in a muscle so that the rate of 
loss of motor units can be calculated [34]. Other 
possible biomarkers include serum levels of 
neurofilaments which are a measure of axonal 
degeneration and which are elevated in ALS [35].  

BACKGROUND TO PATHOGENESIS OF ALS 

The pathology of ALS includes loss of both upper 
and lower motor neurones, but the fundamental 
processes that lead to the death of neurones are also 
not fully understood [36] . Theories of the pathogenesis 
include the effects of abnormal proteins, such as TDP-
43 [37, 38] , altered mitochondrial dysfunction [39], and 
glutamate toxicity [36]. Numerous studies have 
demonstrated biochemical abnormalities in autopsy 
tissue including AMPA receptor medicated toxicity [40], 
increased cytosolic phospholipase A(2) [41] and 
activation of apoptosis inducing factor [42]. While ALS 
is primarily a disease of motor neurones, there is also 
damage that is dependent on factors external to the 
motor neurone. Astrocytes have been implicated in 
causing such damage [43]. This is known as non-cell 
autonomous damage [44, 45] and occurs in other 
neurodegenerative diseases as well as in ALS.  

It is likely that genetic and environmental factors 
play a role in pathogenesis of ALS. Some cases are 
familial ALS (fALS) with a number of causative genes 
being identified. The first gene to be identified was 
Cu/Zn superoxide dismutase 1 (SOD1), which has 
numerous different mutations [46]. The exact means of 
toxicity of mutant SOD1 is not fully understood, but 
mutant SOD1 expression in astrocytes and microglia 
contributes to disease progression in ALS [45]. Other 
genes implicated in fALS are fused in sarcoma protein 
(FUS) [47] and tar-DNA binding protein of molecular 
weight 43kDa (TDP 43) [48].  

In sporadic ALS, genetic factors are also important. 
Having even a single relative with ALS increases risk of 
disease for an individual [49]. The genes implicated in 
sporadic ALS (sALS) include TDP-43 [48], FUS [50] 
and the SMN gene [51]. There have been several 
genome wide association studies in ALS. These have 
found somewhat differing results [24, 52, 53] but have 
found associations with genes for neurotransmitter 
release, genes associated with familial spastic 
paraparesis and genes associated with frontotemporal 
dementia. Environmental factors linked to ALS include 
cigarette smoking [54], occupational exposures 
particularly to toxins and metals, exercise [55, 56] and 
education [57-60].  
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EVIDENCE OF THE PRESENCE OF IMMUNE 
AND INFLAMMATORY ABNORMALITIES IN 
ALS 

Findings from Pathology and Imaging 

Studies in Humans 

There is considerable evidence of inflammation in 
ALS. Studies of human post-mortem pathology have 
shown immune abnormalities in ALS. However, these 
studies are necessarily studies done at the end stage 
of disease, and do not reveal the early changes. In 
studies of ALS pathology there is morphological 
evidence of microglial activation [61-63]. Microglial 
activation occurs after tissue injury and involves 
change in shape and expression of cell surface 
receptors [8, 64] and is part of an innate immune 
response. Microglial activation in ALS has been further 
demonstrated by the finding of the signal transducer 
and activator of transcription-3 (STAT3) in microglia in 
autopsy studies [65]. Gene expression studies have 
found upregulation of the TLR4 signalling genes in 
subjects with ALS [66] and the authors suggest that 
this indicates chronic monocyte/macrophage 
activations.  

Nuclear medicine technology is able to demonstrate 
neuroinflammation [67] and microglial activation can be 
demonstrated by binding of the PK 11195 ligand to the 
peripheral benzodiazepine receptor [68, 69]. Using this 
ligand, microglial activation has been demonstrated in 
ALS with PET imaging [70]. In ALS it is not clear is 
whether this change occurs early in disease or is a 
reaction to disease. For example, microglia activation 
can occur after distant pathology such as after a dying-
back axonopathy [71].  

There are also infiltrating immune cells in the CNS 
in human ALS [72] . These include macrophages and 
mast cells [73] and also T cells in the areas of motor 
neuron destruction [63, 74, 75]. There is evidence of 
immunoglobulin deposition in the CNS in ALS [76] and 
also of complement deposition [63, 77].  

Studies in Animal Models 

The most commonly used animal models of ALS 
are rats or mice with mutant SOD1. In human ALS, 
SOD1 mutations only account for a small proportion of 
subjects and the mechanisms of disease may differ 
from other subjects in whom abnormalities of TDP-43 
are found [78]. However, animals with SOD1 mutations 
show progressive weakness typical of ALS. In 
symptomatic SOD1 mutant animals, there is evidence 
of immune activation, although the timing of onset of 
inflammation is not clear. One study showed that in 
G93A SOD1 mutant mice, early disease is associated 
with astrogliosis and late disease with microglial 
activation [79] while another suggested that microglial 
activation was an early event [80]. T cells are also 
found in the nervous system of mice with the SOD1 
mutation [81]. Inflammation in SOD1 mutant mice is 
associated with activation of caspase 1 and caspase 3 
[82].  

Immune Abnormalities in Blood and CSF in ALS 

There have been numerous studies investigating 
peripheral immune abnormalities in ALS. These include 
studies of antibodies, T cells, chemokines and 
cytokines and other markers of inflammation. The first 
studies were concerned with the presence of 
antibodies in the blood of subject with ALS. There have 
been many reports of antibodies to voltage gated 
calcium channels [83, 84]. In addition there have been 
studies of non-specific changes in antibodies, as a 
recent study has shown an increase in IgG levels in 
subjects with ALS compared to controls [85].  

With respect to T cell abnormalities, in the blood of 
subjects with ALS, there have been reports of 
increased numbers of CD4+ T helper cells and 
increased expression of HLA class II molecules on 
monocytes and macrophages, suggestive of systemic 
immune activation [86]. Another study also found 
increased CD4

+
 cells, reduced regulatory T cells (Treg) 

but reduced expression of HLA DR by monocytes [87]. 
T cell clones from CSF of ALS subjects can be induced 
to secrete IFN gamma [75]. IL-13 producing T cells 
have been found in the blood of subjects with ALS and 
correlate with the rate of disease progression [88, 89]. 
The co-stimulatory pathway activated through CD40 
ligand is upregulated in some human subjects with ALS 
[90].  

There are increased levels of circulating 
chemokines and cytokines in ALS. There are higher 
levels of the chemokine MCP-1 in patients with a 
shorter diagnostic delay, which is a marker of more 
severe rapidly progressing disease [91]. Expression of 
MCP-1 receptor (CCR2) is reduced on circulating 
monocytes in ALS [92]. Increased levels of IL17 are 
found in the serum of subjects with ALS [88]. Levels of 
IL-6 are elevated in ALS, but only in subjects with 
hypoxia, so are probably a response to hypoxia rather 
than to the disease itself [93].  

Other markers of inflammation are also abnormal in 
ALS. Levels of lipopolysaccharide are elevated in 
patients with ALS suggesting systemic inflammation 
[94]. There are also abnormalities of complement in 
ALS. Two dimensional gel electrophoresis was used to 
study serum proteins in ALS subjects and found that 
components of complement C3 were increased 
compared to controls [95]. There is also evidence of 
low level systemic inflammation with increased levels of 
C reactive protein and ESR in subjects with ALS 
compared to controls, with the levels correlating the 
levels of disability as measured by the ALS functional 
rating scale [96]. All these studies demonstrate the 
presence of an immune response in subjects with ALS.  

DOES INFLAMMATION PARTICIPATE IN 
PATHOGENESIS?  

The Immune Response can be Helpful or Harmful 

Having shown that there is local and systemic 
alteration in the immune system in ALS, it is necessary 
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to determine if this primary or secondary, and whether 
it is harmful or beneficial. The immune and 
inflammatory changes in ALS could be primary and 
part of the cause of the disease. Alternatively 
neuroinflammation and T cell infiltration could also be 
secondary to the tissue damage that occurs in ALS, as 
it is in other nervous system injury. Once established, 
inflammation and immune changes could exacerbate 
damage [97] or be protective [98]. The protective 
aspects of inflammation include clearance of debris by 
microglia which is important in repair [99] and 
interaction with T cells [98]. Brain-specific T cells at the 
site of injury can play a role in the repair of damaged or 
inflamed tissues — this has been termed “protective 
immunity” [9, 100, 101]. This is likely to be due to the 
effects of cytokines and growth factors delivered by T 
cells to the site of injury [102-105]. Such protective 
immunity was appears to be a general phenomenon, 
that is homeostatic [106].  

To determine whether the immune system 
contributes to disease it is necessary to look at the 
effects of passive transfer, experimental studies in 
animals and the effects of modifying the immune 
response in humans with ALS.  

Tissue Culture and Passive Transfer of Disease 

In older studies, immunoglobulins from patients with 
ALS were toxic to motor neurones in culture, and 
thought to act on calcium channels. Passive transfer to 
mice of ALS immunoglobulin caused some 
abnormalities at motor end-plates [107] and also 
caused degeneration of motor neurones after passive 
transfer to BalbC mice [108]. IgG from subjects with 
ALS caused apoptosis of neurones in primary spinal 
cord cultures [109]. This suggested that antibody could 
contribute to disease pathogenesis.  

Experimental Studies in Animal Models  

Much of this work has been done in mice that have 
abnormalities of SOD1. Mutations in this gene are 
found in a small percentage of subjects with human 
ALS, so whether these results can be generalized to all 
subjects with ALS in unclear. There is conflicting 
evidence about whether the immune system is 
beneficial or harmful in this model. It must be noted that 
most mice used with the SOD1 mutation are of the BL6 
strain. Mouse strains vary in their immune response. 
The immune system of BL6 mice produces a 
predominant Th1 response, as demonstrated by the 
response to Leishmania infection [110]. The 
macrophages of BL6 mice are involved in this process 
[111].  

Mice with different genetic background to the SOD1 
mutation have a different clinical course of disease, 
with SJL/J mice that are very susceptible to 
autoimmune disease having a shorter survival than 
mice with the BL6 background [112] and mice with 
ALR, NOD.Rag1KO and C3H background also 
showing a more severe phenotype than BL6, B10, 

BALB/c and DBA strains [113]. This has implications. It 
means that the results in SOD1 mice cannot 
necessarily be generalized to humans with ALS for two 
reasons- firstly not all subjects have SOD1 mutations 
and secondly, like different mouse strains, human ALS 
suffers will have different immune system capability.  

There is evidence that the immune system can 
exacerbate disease in SOD1 mutant mice. Non-specific 
inflammation seems to make disease worse. For 
example in SOD1 mice, endotoxemia can stimulate 
disease in mice [114]. The role of microglial activation 
appears to be complex, but there is evidence that 
activation of innate immunity through TLR4 activates 
microglia and leads to increased neurodegeneration 
[115]. In SOD1 mice there have been studies 
suggesting that treatment with minocycline, starting in 
the presymptomatic stage, with the intention of 
reducing micgroglial activation, is helpful in reducing 
progression [116]. However, a more recent study 
shows that when treatment starts in the late stages of 
disease, treatment with minocycline increases 
microglial activation [117]. In SOD1 mutant mice, 
treatment with bee venom led to reduction in microglial 
activation and with some reduction in severity of 
disease [118]. However, it must be noted that if 
microglial activation is secondary to degeneration, then 
any treatment that slowed degeneration would also 
slow microglial activation.  

Inflammation in SOD1 mice is mediated through 
inflammasomes, which are activated by NOD-like 
receptors in response to danger signals [119] and 
which contribute to sterile inflammation. This type of 
inflammation is thought to characterize 
autoinflammatory disorders, which are a rather new 
class of disorders where the clinical features include 
recurrent inflammation [120]. This leads to activation of 
caspase 1, which leads to activation of IL-1 . In SOD1 
transgenic mice, mutant SOD1 leads to activation of 
this pathway. SOD1 mice that are deficient in caspase 
1 or in IL-1  or treated with IL-1 receptor antagonists 
have increased lifespan [121]. SOD1 mice given 
intraventricular injections of a caspase inhibitor also 
have reduced disease severity. Taken together, these 
studies indicate that this type of inflammation leads to 
more severe disease in SOD1 1. It is not known if this 
mechanism is active in human subjects with ALS who 
have normal SOD1 protein.  

Other evidence that immune processes are harmful 
include the finding that inhibition of C5a ameliorates 
disease in SOD1 mice [122]. A monoclonal antibody to 
CD40 ligand, to block co-stimulation, also led to 
reduced weight loss in SOD1 mice [90].  

However, while the immune system can worsen 
disease, it is not the primary cause of disease since 
SOD1 mice deficient in B cells still get disease [123] 
and SOD1 mice without microglia have the same 
disease as those with normal microglia [124].  

There is also evidence that protective immunity can 
lessen the disease. Protective immunity can lessen the 
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harmful effects of damage to the nervous system [9, 
125]. Protective immunity is mediated by regulatory T 
cells (Treg) and transfer of wild type Treg cells delayed 
symptom onset in G93A SOD1 mice [126]. Vaccination 
with SOD1 protein induces protective immunity and 
lessens disease [127]. SOD1 mice that are deficient in 
T cells have greater progression of disease and lack 
the upregulation of IGF-1 and downregulation of IL-6 
that are seen in control mice [128] or increased levels 
of pro-inflammatory cytokines and NOX2 [129] .  

Effects of Immune Therapies in Human Subjects 
with ALS 

It is attractive to consider that modulation of the 
immune response will be a useful therapy in ALS. If 
neuroinflammation enhances disease activity, then 
control of neuroinflammation should be helpful [130] 
possibly by enhancing protective immunity [131]. So far 
there is little evidence in human subjects regarding the 
effects of enhancing protective immunity. There have 
been trials of immune suppression in ALS. After 
treatment with minocycline, to reduce microglial 
activation, patients did worse [132]. This might suggest 
that microglial activation is beneficial in ALS. Total 
body irradiation and stem cell therapy were of no 
benefit in ALS [133]. Earlier attempts at immune 
therapy included treatment with intravenous 
immunoglobulin, which was of no benefit [134], with 
cyclophosphamide, which also was of no benefit [135] 
and with azathioprine and prednisone which was of no 
benefit [136].  

Recently a trial of granulocyte colony stimulating 
factor led to a decrease in levels of MCP-1 and IL-17 in 
subjects with ALS [137]. It remains to be determined 
whether this will lead to clinical benefit. 

Do Genes for Immunity Modulate Human ALS? 

We speculate that if the immune response plays a 
role in ALS, then genetic differences in immune 
responsiveness could affect the outcome. So far, 
genetic studies in ALS have concentrated on genes 
that are risk factors for acquiring the disease, and one 
recent estimate from twin studies is that the hereditable 
component is 61% of the risk of acquiring ALS, and the 
environment component is 39% [138]. Less is known 
about genes that modify the course of disease, 
although it is likely that there are such genes. The 
variability in the clinical course among individuals in 
families with FALS is evidence of this. Disease 
modifying genes could include genes that are 
protective against neurodegeneration. However, if the 
immune response modifies the clinical course of ALS, 
then genes for immune function might also be 
important in modifying disease. In diseases of 
autoimmune etiology such as multiple sclerosis, 
genome wide association studies show strong 
association with the MHC region and other immune 
genes [139] but this is not the case in ALS, although as 
already mentioned such genes are likely to influence 

the clinical course of ALS, rather than to be risks for 
acquiring ALS. We suggest that this is a field worth 
further study. 

SUMMARY AND FUTURE DIRECTIONS 

Immune activation in the CNS can be detected in 
ALS and indeed in other neurodegenerative diseases 
such as Alzheimer’s disease [140] and Parkinson’s 
disease [141], where there is similar debate as to 
whether the immune response is helpful or harmful. 
Immune activation also occurs after brain injury, such 
as stroke, where there is also uncertainty as to whether 
the immune response contributes to damage or to 
recovery [142]. Previously it was thought that this 
inflammation may contribute to pathogenesis of ALS. 
However, it may also be a protective response. The 
difference in the overall effect of immune activation 
may be related to the timing of the response. It is 
possible that individual variability in immune 
responsiveness means that individual patients have 
different immune responses in ALS. What is needed 
now are studies that use robust measurements of 
disease progression to see if patients with evidence of 
immune activation have different prognosis from those 
who do not, and to explore whether disease modifying 
genes include genes with immune function. It is 
important to know whether inflammation and immune 
response are helpful or harmful in ALS, so that possible 
immunomodulatory therapies can be pursued.  
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