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Bi-based nanomaterials, such as Bi2Se3, play an important part in biomedicine, such as
photothermal therapy (PTT) and computed tomography (CT) imaging. Polyethylenimine
(PEI)-modified ultrasmall Bi2Se3 nanodots were prepared using an ultrafast synthetic
method at room temperature (25°C). Bi2Se3 nanodots exhibited superior CT imaging
performance, and could be used as effective photothermal reagents owing to their broad
absorption in the ultraviolet–visible–near infrared region. Under irradiation at 808 nm, PEI-
Bi2Se3 nanodots exhibited excellent photothermal-conversion efficiency of up to 41.3%.
Good biocompatibility and significant tumor-ablation capabilities were demonstrated
in vitro and in vivo. These results revealed that PEI-Bi2Se3 nanodots are safe and a
good nanotheranostic platform for CT imaging-guided PTT of cancer.
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INTRODUCTION

The early diagnosis of cancer and “precision” medicine are major challenges for oncologists.
Scientists need to develop multifunctional biocompatible nanotheranostic platforms that
integrate diagnostic and therapeutic functions (Barreto et al., 2011; Ho et al., 2015; Chen et al.,
2016). As a non-invasive method, phototherapy can alleviate the side-effects and suffering of
treatment as compared with that using resection, chemotherapy, or radiotherapy (Cheng et al., 2014;
Fan et al., 2017; Lei et al., 2018; Basak et al., 2019).

Photothermal therapy (PTT) has attracted significant research attention because it is highly
efficient, minimally invasive, and controllable (Liu et al., 2019; Meng et al., 2020; Zhao et al., 2020).
Recently, PTT agents, such as precious metals (e.g., Au, Pt, or Pd nanoparticles) (Yin et al., 2014;
Tang et al., 2015; Zhu et al., 2017; Zhang et al., 2019), metal chalcogenides (e.g., CuS nanoparticles,
Bi2S3 nanoparticles, Bi2Se3 nanosheets, MoS2 nanosheets, or MoSe2 nanosheets) (Liu et al., 2014;
Yang et al., 2016; You et al., 2017; Huang et al., 2019; Wang et al., 2019), carbon derivatives (Bao
et al., 2018; Ortega-Liebana et al., 2019), and polymeric nanoparticles (Han et al., 2018; Zhang
et al., 2018), have aroused widespread research interest. In particular, Bi2Se3, with its broad near
absorption in the infrared (NIR) region, excellent efficiency for photothermal conversion, good
biocompatibility, and metabolizability, has been used as a PTT agent (Song et al., 2015; Cheng
et al., 2016; Xie et al., 2017; Huang et al., 2019). Moreover, due to the high X-ray attenuation
coefficient (5.74 cm2 g−1, 100 keV) and atomic number (Z � 83) of Bi than those of the extensively
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applied contrast agent iobitridol (X-ray attenuation coefficient
of 1.94 cm2 g−1, 100 keV; Z � 53), Bi-based nanomaterials can be
used as potential contrast agents for computed tomography
(CT) (Lei et al., 2017). Thus, Bi2Se3 has been used widely as a
powerful nanotheranostic agent in CT imaging-guided PTT of
cancer. However, most reports have focused on the synthesis of
Bi2Se3 nanosheets at high temperatures (Xiao et al., 2017; Xie
et al., 2017). Nevertheless, the synthesis is more complicated,
and a larger particle size is not conducive to biological
metabolism. Only a few reports have focused on the
ultrarapid synthesis of water-soluble ultrasmall Bi2Se3
nanodots at room temperature (25°C).

We report a facile room-temperature method for
synthesizing ultrasmall polyethylenimine-decorated Bi2Se3
(PEI-Bi2Se3) nanodots for CT imaging-guided PTT of
cancer in vitro and in vivo. Compared with strategies
reported previously, the rapid synthesis of PEI-Bi2Se3
nanodots may improve the efficiency of the synthesis and
prevent further surface modification. Furthermore, the raw
materials are inexpensive, and the organic solvents are
nontoxic and environmentally friendly, thereby making the
process suitable for future production at a large scale.

The synthesized nanodots exhibited excellent absorption
properties and the efficiency of photothermal conversion was
high under laser irradiation at 808 nm. Moreover, the
outstanding CT imaging and photothermal-ablation
capacity observed in vitro and in vivo, and non-significant
long-term toxicity observed in vivo, revealed that PEI-Bi2Se3
nanodots could achieve CT imaging-guided PTT of cancer.
Hence, PEI-Bi2Se3 nanodots could be powerful and safe
nanotheranostic agents in cancer therapy.

RESULTS AND DISCUSSION

The Synthesis and Characterization of
PEI-Bi2Se3 Nanodots
A novel NIR light-responsive nanotheranostic platform based
on PEI-Bi2Se3 nanodots for CT imaging-guided PTT of cancer
was fabricated (Scheme 1). Under the protection of an inert-
gas atmosphere and ice-water bath, Se powder was reduced by
NaBH4 under magnetic stirring at room temperature (25°C) to
obtain NaHSe solution (Se2− precursor solution). An
appropriate amount of the Se2− precursor solution was

SCHEME 1 | Fabrication of PEI-Bi2Se3 nanodots for CT imaging-guided PTT of cancer.
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FIGURE 1 | (A) TEM image, (B) HRTEM image, and (C) size histogram of PEI-Bi2Se3 nanodots.

FIGURE 2 | (A)UV–Vis–NIR absorption spectra of PEI-Bi2Se3 nanodots in water with different concentrations of Bi
+3. (B) Plot of temperature increase of pure water

and aqueous solutions of PEI-Bi2Se3 nanodots of different concentrations upon exposure to a NIR laser at 808 nm (1.0 Wcm−2) as a function of irradiation duration. The
temperature was measured every 10 s using a thermocouple microprobe. (C) Plot of temperature change (ΔT) over a period of 600 s vs. the concentration of PEI-Bi2Se3
nanodots. (D) IR thermal images of an aqueous solution of PEI-Bi2Se3 nanodots (200 μg ml−1) and pure water after irradiation for 10 min (808 nm, 1.0 W cm−2). (E)
Photothermal response of an aqueous solution of PEI-Bi2Se3 nanodots (200 μg ml−1) after irradiation for 600 s with an NIR laser (808 nm, 1.0 W cm−2). Subsequently,
the laser was turned off. (F) Linear time data vs. −lnθ obtained after a cooling period of (E).
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transferred rapidly to a mixed solution of ethylene glycol and
water containing Bi(NO3)3·5H2O and PEI. The reaction
solution turned black rapidly, indicating that the reaction
was ultra-facile and efficient (within 1 min). In the
Experimental section in Supplementary Material, the
experimental details are presented. Moreover, Bi2Se3
nanodots had promising potential for CT imaging-guided
PTT of cancer owing to an efficient photothermal
performance, strong absorption in the NIR region, and the
high X-ray attenuation coefficient of Bi3+.

A transmission electron microscopy (TEM) image of the
obtained PEI-Bi2Se3 nanodots is shown in Figure 1A. A clear
lattice fringe with a distance of 0.304 nm can be seen on the high-
resolution TEM image (Figure 1B), which can be attributed to the
(015) planes of Bi2Se3. Furthermore, the prepared PEI-Bi2Se3
nanodots, as uniform spheres with relatively narrow size
distribution, had a mean diameter of 3.56 nm (Figure 1C).
The X-ray diffraction (XRD) patterns of the prepared PEI-
Bi2Se3 nanodots are shown in Supplementary Figure S1. All
the characteristic XRD peaks matched well with the standard
hexagonal phase of Bi2Se3 (Joint Committee on Powder
Diffraction Standards � 33-0214). Moreover, PEI-Bi2Se3
nanodots could maintain good dispersity in various solutions,
such as Dulbecco’s modified Eagle’s medium, phosphate-buffered
saline (PBS), NaCl, and water, for several months
(Supplementary Figure S2), indicating that the PEI

modification was beneficial for improving the stability of PEI-
Bi2Se3 nanodots.

Photothermal Performance of PEI-Bi2Se3
Nanodots in vitro
PEI-Bi2Se3 nanodots showed a broad ultraviolet–visible–NIR
(UV–Vis–NIR) absorption spectrum ranging from 500 to
1,100 nm (Figure 2A). As the concentration of Bi3+ increased, the
absorption intensity of PEI-Bi2Se3 nanodots was enhanced, and the
colorless solution turned dark black (Supplementary Figure S3).
Absorbance at 808 nm increased linearly (Supplementary Figure
S4), which suggested that PEI-Bi2Se3 nanodots exhibited good
dispersibility in water, and could be excellent photothermal agents
for PTT. To investigate the photothermal performance, pure water
(control) and aqueous solutions of PEI-Bi2Se3 nanodots (25, 50, 100,
200 μg/ml) were exposed to a NIR laser (808 nm, 1.0W cm−2) for
10min. The temperatures of the different PEI-Bi2Se3 nanodot
solutions increased rapidly, exhibiting noticeable concentration-
and irradiation time-dependent behavior (Figure 2B). This
finding indicated that the temperature of the PEI-Bi2Se3 solution
could reach up to 70.1°C at a concentration of 200 μgml−1

(1.0W cm−2, 10min), which is highly effective for killing tumor
cells via hyperthermia. In contrast, under identical experimental
conditions, the temperature of pure water increased by up to
8.4°C (Figure 2C). The IR thermal images of pure water and

FIGURE 3 | (A) Viability of A549 cells incubated with PEI-Bi2Se3 nanodots (0–200 μg ml−1) for 24 and 48 h (B) IR thermal images of A549 cells in a 96-well plate
incubated with PEI-Bi2Se3 nanodots after irradiation for 10 min (808 nm, 1.0 W cm−2). (C) Fluorescence images of A549 cells stained with calcein-AM (live cells, green)
and PI (dead cells, red) after various treatments. Scale bar � 200 μm.
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aqueous solution of PEI-Bi2Se3 nanodots (200 μgml−1) after a certain
duration of irradiation are shown in Figure 2D. The temperature of
the PEI-Bi2Se3 aqueous solution (200 μgml−1) increased rapidly with
an increase in the irradiation duration using a laser at 808 nm
whereas, under identical conditions, the temperature of pure water
increased slowly.

PEI-Bi2Se3 nanodots could therefore convert NIR energy into
thermal energy rapidly and efficiently, and act as potential
photothermal agents during PTT. In particular, the efficiency of
photothermal conversion of PEI-Bi2Se3 nanodots was up to 41.3%
(Figures 2E,F), which is much higher than that of currently reported
photothermal agents, such as PVP-Bi nanodots (∼30%) (Lei et al.,
2017), Bi2Se3 nanosheets (∼33%) (Xie et al., 2017), and Cu2−xSe
nanocrystals (∼22%) (Hessel et al., 2011). Photostability is another
prerequisite for evaluating the performance of photothermal agents
during PTT. After irradiation of the aqueous solution of PEI-Bi2Se3
nanodots (200 μgml−1) using a continuous-wave NIR laser at 808 nm
for 1 h (1.0W cm−2), the color of the solution,UV–Vis–NIR spectrum,
and morphology exhibited no distinct changes (Supplementary
Figures S5, S6). Hence, PEI-Bi2Se3 nanodots possessed satisfactory
photothermal stability. All the results shown above (excellent
photothermal effect and good photostability) highlighted the
potential of PEI-Bi2Se3 nanodots as suitable agents for PTT of cancer.

Studies on Cytotoxicity and Photothermal
Ablation of Tumor Cells
Evaluation of the cytotoxicity of PEI-Bi2Se3 nanodots is important.
The cytotoxicity of PEI-Bi2Se3 nanodots was tested by the Cell

Counting Kit-8 assay. Even at a high concentration of PEI-Bi2Se3
nanodots (200 μgml−1), the viability of A549 cells was 96 and 92%
after incubation for 24 h (red bars) and 48 h (green bars),
respectively (Figure 3A). These results indicated that PEI-Bi2Se3
nanodots exhibited no distinct toxicity towards A549 cells.

Because of the outstanding photothermal performance of PEI-
Bi2Se3 nanodots, we investigated their photothermal effects against
tumor cells. The IR thermal images of A549 cells incubated with
PEI-Bi2Se3 nanodots in a 96-well plate are shown in Figure 3B.
Notably, the temperature could increase up to 53.8°C under
irradiation at 808 nm (1.0W cm−2) after addition of PEI-Bi2Se3
nanodots to the culture. Cancer cells are sensitive to heat, and can
be killed effectively at >42°C. To identify further the anti-cancer
effect of PEI-Bi2Se3 nanodots onA549 cells, live and dead cells were
imaged using a fluorescence microscope after staining with calcein
acetoxymethyl ester (green fluorescence) and propidium iodide
(red fluorescence), respectively. In the control groups, notable
cytotoxicity was not observed (PBS, PEI-Bi2Se3 nanodots only,
laser only), whereas almost no living cells were observed in the PEI-
Bi2Se3 + laser group (Figure 3C). These results suggested that the
as-synthesized PEI-Bi2Se3 nanodots with low cytotoxicity would
produce satisfactory results upon in vivo cancer treatment. In
addition, endocytosis pathways were determined in order to
identify the uptake mechanism of extracellular PEI-Bi2Se3
nanodots. The cellular uptake of PEI-Bi2Se3 was evaluated by
monitoring the fluorescence of FITC in the A549 cells at
various incubation times (1, 3, and 6 h). As shown in
Supplementary Figure S7, green fluorescence of FITC was
observed after 1 h incubation with FITC-labeled PEI-Bi2Se3. The

FIGURE 4 | (A) In vitroCT images of iobitridol and PEI-Bi2Se3 nanodots at different concentrations. (B)Concentration-dependent CT signals of iobitridol (black line)
and PEI-Bi2Se3 nanodots (red line) in vitro. (C) Time-dependent CT imaging of tumor-bearing mice before and after intravenous injection of PEI-Bi2Se3 nanodots. (D)CT
signal intensities of the tumor area at different times.
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signals increase obviously with incubation time, demonstrating
efficient internalization of PEI-Bi2Se3 by cancer cells.

CT Imaging in vitro and in vivo
High resolution, easy manipulation, and high penetrability make CT
imaging an important part of medical diagnoses (Lee et al., 2013; Du
et al., 2020). Bi element with its large atomic number and high
electron density has promising capacity for X-ray attenuation
(Kinsella et al., 2011; Li et al., 2016). The X-ray absorption
coefficient and iobitridol were compared to evaluate the in vitro
CT imaging capability of PEI-Bi2Se3 nanodots. The latter exhibited a
much higher CT density than that of iobitridol at equivalent
concentrations (Figure 4A), whereas the Hounsfield unit (HU)
values of both contrast agents exhibited a typical linear

dependence on the concentration (Figure 4B). Compared with
the curve for iobitridol, the curve for PEI-Bi2Se3 nanodots had a
steeper slope. Hence, the as-synthesized PEI-Bi2Se3 nanodots had
superior ability in CT imaging and were effective contrast agents.

Inspired by the satisfactory CT effect in vitro, we assessed the
feasibility of using PEI-Bi2Se3 nanodots as CT contrast agents in
vivo. Time-dependent CT imaging was undertaken after tumor-
bearing mice were injected (i.v.) with PEI-Bi2Se3 nanodots (Bi
concentration � 30 mM, 150 μL). At 0 h–1 h after injection, the
CT density at the tumor site brightened gradually (Figure 4C),
which was caused by passive accumulation of PEI-Bi2Se3
nanodots at the tumor site through the enhanced permeability
and retention effect. Thereafter, the density decreased because
some PEI-Bi2Se3 nanodots had metabolized. The mean HU value

FIGURE 5 | (A) IR thermal images and (B) corresponding curve showing the temperature variation of tumor-bearing mice injected (i.v.) with PBS (control) or PEI-
Bi2Se3 nanodots, followed by irradiation with a laser at 808 nm for 10 min (C) Bodyweight of mice and (D) curves showing relative tumor growth in different groups after
various treatments. (E) Mean tumor weight of each group after various treatments. (F) Photographs of tumors of each group and (G) H&E staining of tumor slides
collected from different groups. All scale bars � 100 µm.
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increased from 40.2 HU (pre-injection) to 40.7 HU (0.5 h) and
51.6 HU (1 h) and decreased gradually from 49.4 HU (2 h) to 46.1
HU (24 h) at the tumor site (Figure 4D). These results
demonstrated that PEI-Bi2Se3 nanodots could serve as
promising in vivo CT contrast agents for the accurate
diagnosis of cancer.

Photothermal Effect, Photothermal
Therapy, and Long-Term Toxicity of
PEI-Bi2Se3 Nanodots in vivo
Based on the good properties of PEI-Bi2Se3 nanodots at tumor sites
(i.e., excellent in vitro photothermal effect, satisfactory CT imaging
effect, and outstanding passive targeted accumulation), we
studied the feasibility of CT imaging-guided PTT of cancer
in vivo. PEI-Bi2Se3 nanodots (Bi concentration � 20 mg kg−1)
were injected (i.v.) into tumor-bearing mice. Obvious
enhancement was observed 1 h after injection, so the tumor
was irradiated using a laser at 808 nm (1.0 W cm−2) 1-h later,
and the photothermal effect in vivo was monitored by an IR
thermal camera. The temperature at the tumor site in the
treatment group increased rapidly as the duration of
irradiation increased (Figure 5A) but the temperature at the
tumor site did not show a significant change compared with
that in the control group. The corresponding curve detailing
temperature variation is shown as Figure 5B. After 10 min of
NIR irradiation (808 nm, 1.0 W cm−2), in the presence of PEI-
Bi2Se3 nanodots, the temperature at the tumor sites was as high
as 51.1°C whereas, in the control group, a minor increase in
temperature was observed. Hence, PEI-Bi2Se3 nanodots could
serve as excellent photothermal agents for in vivo tumor
ablation: they could kill cancer cells and inhibit their
continued diffusion.

A tumor model was established by injecting (s.c.) U14 cells
into the left axilla of female Kunming mice. Once the tumors had
grown to ∼100 mm3, mice were used for experimentation. The
mice bearing the U14 cells were divided randomly into four
groups of six: 1) control; 2) laser only; 3) PEI-Bi2Se3 nanodots; 4)

PEI-Bi2Se3 nanodots + laser. The tumors in mice were irradiated
(808 nm) 1 h after injection of PEI-Bi2Se3 nanodots. The
bodyweight and tumor volume of mice were measured every
2 days to evaluate therapeutic efficacy. After various treatments,
the bodyweight of mice showed a steady increase (Figure 5C),
thereby indicating that PEI-Bi2Se3 nanodots did not produce
toxic side-effects during PTT. The tumor volume of each mouse
was measured using a Vernier caliper, and plotted as a function of
the relative tumor volume and treatment duration (Figure 5D).
The average weights of excised tumors are shown in Figure 5E,
and representative tumor photographs of each group are shown
in Figure 5F. Compared with groups 1–3, the growth of tumors in
group 4 was inhibited significantly after 14 days of PTT. In
addition, hematoxylin and eosin (H&E) staining revealed no
appreciable damage in groups 1–3; simultaneously, severe
shrinkage and discrete cancer cells were observed clearly in
group 4 (Figure 5G). Taken together, these results
demonstrated that PEI-Bi2Se3 nanodots possessed potential as
ideal and safe photothermal agents for cancer treatment.

The potential long-term toxicity of PEI-Bi2Se3 nanodots in vivo
was also investigated. Thirty days after injection, pathological samples
of major organs (heart, lungs, liver, spleen, kidneys) from control
mice and treated mice were obtained. H&E staining (Figure 6)
revealed no distinct tissue damage or inflammatory lesions in any
major organ.Moreover, there were no abnormal signs in treatedmice
during the entire observation period. These results confirmed that
PEI-Bi2Se3 nanodots were not significantly toxic in vivo.

CONCLUSION

Ultrasmall PEI-Bi2Se3 nanodots were fabricated via an ultrafast,
facile, and environmentally friendly method. The obtained PEI-
Bi2Se3 nanodots could ensure good contrast enhancement owing to
their high X-ray attenuation coefficient, and showed good
photothermal killing effects in vitro and in vivo owing to
considerable photothermal-conversion effects. Moreover, PEI-
Bi2Se3 nanodots possessed negligible long-term toxicity in vivo.

FIGURE 6 | H&E staining of major organs (heart, liver, spleen, lungs, and kidneys) of mice 30 days after injection of PEI-Bi2Se3 nanodots. All scale bars � 100 µm.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7950127

Zhang et al. Bi2Se3 Nanodots for Cancer Therapy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Therefore, we believe that the as-synthesized PEI-Bi2Se3 nanodots
are useful theranostic agents for CT-imaging-guided PTT of
cancer.
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