
Sequence analysis

Dynamic compression schemes for graph

coloring

Harun Mustafa1,2,3,†, Ingo Schilken1,†, Mikhail Karasikov1,2,3,

Carsten Eickhoff4,*, Gunnar Rätsch1,2,3,* and André Kahles1,2,3,*

1Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland, 2Biomedical Informatics Research,

University Hospital Zurich, 8091 Zurich, Switzerland, 3SIB Swiss Institute of Bioinformatics, 1015 Lausanne,

Switzerland and 4Brown Center for Biomedical Informatics, Brown University, Providence, RI 02912, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: John Hancock

Received on March 19, 2018; revised on June 22, 2018; editorial decision on July 11, 2018; accepted on July 16, 2018

Abstract

Motivation: Technological advancements in high-throughput DNA sequencing have led to an ex-

ponential growth of sequencing data being produced and stored as a byproduct of biomedical re-

search. Despite its public availability, a majority of this data remains hard to query for the research

community due to a lack of efficient data representation and indexing solutions. One of the avail-

able techniques to represent read data is a condensed form as an assembly graph. Such a repre-

sentation contains all sequence information but does not store contextual information and

metadata.

Results: We present two new approaches for a compressed representation of a graph coloring: a

lossless compression scheme based on a novel application of wavelet tries as well as a highly ac-

curate lossy compression based on a set of Bloom filters. Both strategies retain a coloring even

when adding to the underlying graph topology. We present construction and merge procedures for

both methods and evaluate their performance on a wide range of different datasets. By dropping

the requirement of a fully lossless compression and using the topological information of the under-

lying graph, we can reduce memory requirements by up to three orders of magnitude.

Representing individual colors as independently stored modules, our approaches can be efficiently

parallelized and provide strategies for dynamic use. These properties allow for an easy upscaling

to the problem sizes common to the biomedical domain.

Availability and implementation: We provide prototype implementations in Cþþ, summaries of

our experiments as well as links to all datasets publicly at https://github.com/ratschlab/graph_

annotation.

Contact: carsten@brown.edu or gunnar.ratsch@ratschlab.org or andre.kahles@inf.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The revolution of high-throughput DNA sequencing has created an

unprecedented need for efficient representations of large amounts of

biological sequences. In the next five years alone, the global

sequencing capacity is estimated to exceed one exabyte (Stephens

et al., 2015). While a large fraction of this capacity will be used for

clinical and human genome sequencing, such as the 1000 Genomes

Project (Auton et al., 2015) or the UK10K (Walter et al., 2015) ef-

fort, that are well suited for reference-based compression methods,

the remaining amount is still dauntingly large. This remainder does

not only include sequences of model and non-model organisms

(Zhang et al., 2015) but also community approaches such as whole

VC The Author(s) 2018. Published by Oxford University Press. 407

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(3), 2019, 407–414

doi: 10.1093/bioinformatics/bty632

Advance Access Publication Date: 18 July 2018

Original Paper

https://github.com/ratschlab/graph_annotation
https://github.com/ratschlab/graph_annotation
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data
https://academic.oup.com/

metagenome sequencing (WMS) (Ehrlich and Consortium, 2011;

Turnbaugh et al., 2007).

The next logical steps of data integration for genome sequencing

projects are assembly graphs that help to gather short sequence

reads into genomic contigs and eventually draft genomes. While as-

sembly of a single species genome is already a challenging task

(Bradnam et al., 2013), assembling a set of genomes from one or

many WMS samples is even more difficult, with preprocessing meth-

ods such as taxonomic binning (Dröge and McHardy, 2012) helping

to reduce its complexity. A commonly used strategy to generate se-

quence assemblies is based on de Bruijn graphs that collapse redun-

dant sequence information into a set of unique k-mers, substrings of

length k (Pevzner et al., 2001). Especially in a co-assembly setting,

where sequences and meta-information from multiple source se-

quence sets is combined and stored, colored de Bruijn graphs form a

suitable data structure, as they allow association of multiple colors

with each node or edge (Iqbal et al., 2012). In this paper, we use a

definition of this graph specific to the field of bioinformatics. More

precisely, a graph coloring is a graph edge labeling that assigns an

arbitrary number of distinct colors to each edge of the graph. The

set of colors assigned to an edge is called the edge coloring. Note

that we imply no additional restrictions on the graph coloring (i.e.,

neighboring edges are allowed to have same colorings). Another im-

portant application of colored de Bruijn graphs is building an effi-

cient representation and indexing of multiple genomes, forming a

so-called pan-genome store (Myers et al., 2017).

Owing to the large size, and, subsequently, the excessive memory

footprints of such graphs, recent work has suggested compressed

representations for de Bruijn graphs based on approximate member-

ship query (AMQ) data structures (Benoit et al., 2015; Chikhi and

Rizk, 2013) or generalizations of the Burrows-Wheeler transform to

graphs (Bowe et al., 2012). The recent work on compressed colored

de Bruijn graphs has followed this trend. Currently, there exist two

distinct paradigms. The first is to compress the colored graph in a

single data structure while the second proposes two separate (com-

pressed) representations of a graph and its coloring. The first group

contains approaches such as Bloom Filter Tries (Holley et al., 2016)

for pan-genome representation, deBGR (Pandey et al., 2017a) that

encodes a weighted de Bruijn graph, or Split Sequence Bloom Trees

(Solomon and Kingsford, 2017) that index short read datasets based

on a hierarchically structured set of Bloom filters.

Approaches that fall into the second group usually encode graph

coloring as a compressed binary matrix (an annotation matrix), and

include VARI (Muggli et al., 2017), which uses succinct Raman-

Raman-Rao or Elias-Fano compression on the annotation matrix,

and Rainbowfish (Almodaresi et al., 2017), which additionally takes

into account the distribution of the unique edge annotations in the

graph to achieve better compression ratios. A very recent addition

that shows features of both groups is Mantis (Pandey et al., 2017b),

which re-purposes the integer counts in a counting AMQ data struc-

ture to act as keys in a color-class table.

Our contribution falls into the second group and allows for effi-

cient addition and removal as well as editing of individual annota-

tion tracks (individual colors) on an existing graph structure. We

present a data structure for annotation matrix compression based

on wavelet tries that takes advantage of correlations between matrix

columns and achieves excellent compression ratios on a wide range

of input data. Moreover, the proposed data structures can efficiently

handle dynamic settings where coloring or underlying graph struc-

ture are subject to change.

For genomics applications, where an exact reconstruction of the

coloring is not necessary but an approximate recovery with high

accuracy would be sufficient, we also present a probabilistic com-

pression scheme for an arbitrary number of colors. Possible use cases

for such a scenario are the taxonomic classification of sequencing

reads or the identification of approximate matches in a large data-

base of sequences, e.g., the lookup of a sequence marker. As the

graph stores the exact sequence information, approximate labeling

is often sufficient. Based on Bloom filters (Bloom, 1970), a data

structure for efficient AMQ with a one-sided error, we encode colors

as bit vectors and store them in a set of filters. We further reduce the

necessary storage requirements of the individual filters by maintain-

ing weak requirements on their respective false-positive rates, which

is subsequently corrected for using neighborhood information in the

graph.

Although both proposed techniques for color compression take

advantage of the underlying sequence graph, they impose no restric-

tions on its topology.

2 Approach

We consider a colored de Bruijn graph (cDBG) that represents a set

of biological sequences and their metadata. It consists of a node-

centric de Bruijn graph (in which each node is an observed k-mer)

constructed from the collection of input sequences (forward and re-

verse complement) and an annotation associated with the k-mers

generated from these input sequences. The annotation can consist of

several colors, each representing a label to a k-mer, e.g., whether it

is found in a certain species. We represent this annotation as a bin-

ary matrix, where each row corresponds to an edge and each column

corresponds to a color. Set bits in this matrix indicate associations

of edges with colors.

2.1 Preliminaries and notation
Let R be an alphabet of fixed size (in the case of genome graphs,

R ¼ fA;C;G;T;Ng). Given a string s 2 R�, we use s½i : j� to denote

the substring of s from index i up to and including index j, with

i; j � 1.

Given a bit vector b 2 f0; 1gm of length m, we use the notation

jbj to refer to its length, b½i� to refer to its ith character, 1 � i � jbj,
b½j : k� to refer to the bit vector b½j� � � �b½k�; b½: k� to refer to its prefix

b½1 : k�, and b½j :� to refer to its suffix b½j� � � � b½jbj�. The empty vector

is denoted e. Finally, given bit vectors a;b 2 f0;1gm, we use the no-

tation a _ b and a ^ b to denote the bitwise OR and AND opera-

tors, respectively.

The function rank0ðb; jÞ counts the occurrences of the character

0 in the prefix b½: j�, while select0ðb; jÞ returns the index of the jth

0 in b. The functions rank1 and select1 are defined analogously for

the 1 character. We will use the notation 2A to denote the power set

of a set A and abuse the notation j � j to also denote set cardinalities.

2.2 Graph representation
Given an ordering of the edges E ¼ ðe1; . . . ; enÞ of an underlying

graph G ¼ ðV;EÞ and a set of colors 1; . . . ;m, we define the annota-

tion matrix A 2 f0; 1gn�m such that

Ai
j ¼ 1fei has color jg ¼

1; ei has color j;

0; otherwise:

(
(1)

As a proof of concept for the graph coloring presented in this

work, we use a simple representation of a de Bruijn graph with its

edges (the k-mers) stored in a hash table.

During construction of the graph, the edge colorings are com-

puted based on the metadata of the input sequences. We assign to

408 H.Mustafa et al.

each unique metadata string a positive integer index (color). During

k-mer enumeration, each k-mer is assigned to a set of colors encod-

ing its respective metadata strings. We then represent this coloring

through a binary vector (bit vector) with bits set for the correspond-

ing edge colors. When duplicate k-mers are collected to construct

graph edges, we combine the k-mers’ respective bit vectors via bit-

wise OR operations and assign the aggregated coloring to the result-

ing edge. Alongside the de Bruijn graph, this process results in the

encoding of a graph coloring as an annotation matrix A with n

rows corresponding to the edges of the graph and m columns corre-

sponding to the total number of colors observed during construc-

tion. The resulting graph-annotation pair ðG;AÞ is a colored de

Bruijn graph. When the graph is queried, search patterns are

mapped to a path (a sequence of edges) and, hence, to a correspond-

ing sequence of annotation matrix rows.

2.3 Graph coloring compression
2.3.1 Lossless row compression with wavelet tries

For lossless compression of annotation matrices, we propose a novel

application of the wavelet trie data structure (Grossi and Ottaviano,

2012). Wavelet tries compress tuples of dynamic bit vectors by find-

ing their shared contiguous subvectors (Fig. 1). Briefly, a wavelet

trie builds on the concept of a wavelet tree and takes the shape of a

compact prefix tree (a binary radix trie). A set of bit vectors (in our

case representing the annotations) is encoded as paths from the root

to the leaves of the tree, storing prefixes shared by all children of a

node only once. Querying a bit vector at index i is done by tree tra-

versal starting at the root by concatenating the shared subvectors

stored at each node.

In the context of genome graph coloring, we employ wavelet

tries to compress the rows of the annotation matrix to allow for dy-

namic updates in its rows and columns. We employ a construction

strategy based on wavelet trie merging (Böttcher et al., 2017; Grossi

and Ottaviano, 2012), but in a parallel fashion. Their merging algo-

rithm assumes that the set of bit vectors being compressed is prefix

free (i.e., that no vector is a prefix of another vector), which in

our case, is not necessarily true. For our method, we maintain the

property that all bit vectors are of the same length by right-padding

with 0s.

Construction: The wavelet trie encoding the annotation matrix

A 2 f0;1gn�m is constructed recursively and is a binary tree (Fig. 1)

with nodes VT of the form

ðaj;bjÞ 2 VT ; aj; bj 2 f0;1g�:

The aj are referred to as the longest common prefixes (LCPs) and

the bj are referred to as the assignment vectors.

We define the initial tuple of input bit vectors to be the rows of

A, B ¼ ðA1; . . . ;AnÞ; where Ai ¼ ðAi
1; . . . ;Ai

mÞ 2 f0;1g
m; 1 � i

� n: The algorithm starts by constructing the root node ða1; b1Þ
from the initial set of input vectors B1 :¼ B.

Beginning with j ¼ 1 and ‘j ¼ jBjj, for a list of input bit vectors

Bj ¼ ðb1
j ; . . . ; b

‘j
j Þ; bi

j 2 f0;1g
kj ; 1 � i � ‘j;

we compute ðaj; bjÞ as follows. First, we compute the longest com-

mon prefix aj :¼ LCPðBjÞ for the bit vectors in Bj, defined as,

LCPðBjÞ ¼ arg max
fa2f0;1g� jbi

j
½:jaj�¼a 8i¼1;...;‘jg

jaj:

If the computed aj is identical to all the input bit vectors, let the

assignment vector consist of jBjj zeros, bj :¼ ð0; . . . ;0Þ and termin-

ate the recursion branch. ðaj;bjÞ is referred to as a leaf. Otherwise,

the assignment vector is set to be the concatenation of the next sig-

nificant bits in each of the bi
j; 1 � i � ‘j after removing the com-

mon prefix aj,

bj :¼ ðb1
j ½jajj þ 1�; . . . ; b

‘j
j ½jajj þ 1�Þ:

We continue the recursion on the child nodes

ða2j; b2jÞ and ða2jþ1; b2jþ1Þ, with the new tuples of bit vectors

B2j and B2jþ1, respectively, which are defined by partitioning Bj

based on the assignments bj and removing the first jajj þ 1 bits,

B2j :¼ ðbselect0ðbj ;1Þ
j ½jajj þ 2 :�; . . . ;

b
select0ðbj ;rank0ðbj ;jbj jÞÞ
j ½jajj þ 2 :�Þ;

B2jþ1 :¼ ðbselect1ðbj ;1Þ
j ½jajj þ 2 :�; . . . ;

b
select1ðbj ;rank1ðbj ;jbj jÞÞ
j ½jajj þ 2 :�Þ:

Parallel construction via trie merging: To allow for parallel con-

struction from batches of edge colorings, we develop a variant of the

algorithm to merge wavelet tries presented by Grossi and Ottaviano

(2012) and Böttcher et al. (2017). Merging proceeds by performing

an align and a merge step on each node, starting from the root

(Supplementary Section A and Fig. S1). Given two wavelet tries T 0

and T 00 with node sets VT 0 ¼ fða0j0; b0j0Þg
n0
j0¼1 and VT 00 ¼ fða00j00 ; b00j00 Þg

n00

j00¼1

that we want to merge into a new trie T, the merging process can be

summarized in three steps:

1. Align: For the nodes ða0j0 ; b0j0 Þ and ða00j00 ; b00j00 Þ, compute the longest

common prefix ba ¼ LCPða0j0 ; a00j00 Þ: For each of VT 0 and VT 00 , re-

place their respective children with a new child inheriting these

children, set the a values of the new children to the non-LCP

parts of a0j0 and a00j00 and the b values to b0j0 and b00j00 , respectively.

Replace a0j0 and a00j00 with ba and choose appropriate b vectors.

2. Merge: As a0j0 and a00j00 are now equal, concatenate b0j0 and b00j00 .
3. Repeat: Move to the children of j0 and j00 and apply the same

function until all leaves are reached.

In general, this algorithm can be used to insert rows in arbitrary

positions of the annotation matrix by inserting into appropriate

Fig. 1. A wavelet trie constructed for a tuple of bit vectors. Each node is

labelled with a longest common prefix (LCP) a and an assignment vector b.

During construction at a particular node, the LCP of the bit vectors is

extracted and the next significant bit is used to assign the bit vector suffixes

to that node’s children. A node becomes a leaf when all bit vectors assigned

to it are equal. An example is given in bold. The sequence 0010101 results

from the traversal along the dashed line from top to bottom. The index i being

queried is updated by calling rank0(�,i) (i) (traverse left) or rank1(�,i) (i) (traverse

right) on the b vectors

Dynamic compression schemes for graph coloring 409

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data

positions in b. This can also be used to update entries in a com-

pressed matrix by removing that row and internally inserting a

modified row (see Supplementary Section C.1.4).

Time complexity: Let A 2 f0;1gn�m be the annotation matrix.

The height of a constructed wavelet trie with nodes VT depends on

the degree to which the input bit vectors share common prefixes.

Since there can be at most n leaves, and the maximum height of the

trie is at most m, the number of nodes can be at most

jVT j � minð2n� 1; 2m � 1Þ.
Given two wavelet tries with sets of nodes VT 0 and VT 00 , merging

is performed in OðjVT 0 j þ jVT 00 j þ jb01j þ b001jÞ time (Grossi and

Ottaviano, 2012). Once a wavelet trie is constructed, queries can be

performed in OðhÞ time; where h � m is the height of the trie. To

achieve this value, the bj are compressed with RRR coding (Raman

et al., 2007) to support rank operations in Oð1Þ time.

Using prior knowledge to improve compression: One of the most

important factors determining the compression ratio (see Section 2.4

for a formal definition) of a wavelet trie is the distribution of longest

common prefixes encountered during construction. We explore

whether prior knowledge can be used to form groups of similarly

colored edges and help optimize compression ratios.

Given a similarity metric defined on edge colorings, edges can be

grouped into classes defined by high similarity between their con-

stituent edge colorings. Example class definitions can be based on

phylogenetic information (e.g., shared taxonomic IDs) or sequence

alignment information (e.g., alignment to a given reference

genome).

To encode the assignment of edges to classes, we introduce add-

itional colors called class indicator bits and add corresponding new

columns to the annotation matrix. Additionally, we hypothesize

that if the indicator columns are of low index, then edges from the

same class are more likely to be co-assigned to matching nodes in a

wavelet trie. This would facilitate a partitioning of the rows that has

the potential to significantly improve the compression ratio of the

wavelet trie by facilitating grouping of similar rows closer to the tree

root. We implement this procedure by providing class information

as additional metadata strings, which are then used to augment the

coloring of each edge with the color of its corresponding class.

Such class information can be either an encoding of prior know-

ledge, such as phylogenetic distance or sample similarity, or if such

information is unavailable a measure for the expected similarity be-

tween the sequences of any two given colors, which could be esti-

mated using sketching techniques such as minimal hashing (Ondov

et al., 2016).

2.3.2 Probabilistic column compression with Bloom filters

For cases where a lossy compression scheme with moderate loss of

accuracy will suffice in place of fully lossless compression, we ex-

plore a probabilistic compression of the annotation matrix as a

near-exact compromise. Since, by definition, the columns of the an-

notation matrix encode set membership, it is possible to compress

them using Bloom filters (Bloom, 1970), a probabilistic data struc-

ture for approximate set membership queries.

A Bloom filter is a tuple BF ¼ ðB;HÞ, where B 2 f0;1gb is a bit

vector and H ¼ fh1; . . . ; hdg is a collection of d hash functions map-

ping each input to an element of f1; . . . ; bg. For simplicity of nota-

tion, let ei 2 f0; 1gb denote a bit vector in which only the ith bit is set

to one.

Construction: Two of the operations supported on this structure

are insert and the relation of approximate membership 2,

insertððB;HÞ; xÞ ¼
�

B _ eh1ðxÞ _ � � � _ ehdðxÞ;H
�
;

x 2 BF() insertðBF;xÞ ¼ BF;

where insert is used to successively hash new elements into the

filter.

Bloom filter reparametrization: Although the Bloom filter has no

false negative errors, the false positive probability (FPP) of the ap-

proximate membership query on a Bloom filter with s inserted ele-

ments can be approximated (Mitzenmacher, 2001) as

FPPðb; d; sÞ ¼ 1� 1� 1

b

� �ds
 !d

	 1� e�
ds
b

� �d
: (2)

As a corollary, an alternate parametrization of Bloom filters can

be derived. Given a target false positive probability p and s elements

to insert, optimal values for d and b (Mitzenmacher, 2001) are

d ¼ d� log 2pe; b ¼ �s
log 2p

ln 2
: (3)

Given an encoding of an annotation matrix A 2 f0; 1gn�m as a

collection of Bloom filters BF1; . . . ;BFm, the raw annotation of an

edge ei 2 E being queried is as follows:

queryðeiÞ ¼ ð1fei2BF1g; . . . ;1fei2BFmgÞ: (4)

Neighborhood-based Bloom filter correction: Following the

same rationale as for the wavelet tries, and building on the fact that

edges neighboring in the graph often share a large proportion of

their colors, we introduce an assumption that all nodes in a linear

path (a directed path in which all inner nodes, i.e., except for the

first and last nodes, have exactly one incoming and one outgoing

edges) share an identical coloring. For annotations representing

membership of input sequences to the source datasets, this assump-

tion can be always satisfied by prepending and appending all the in-

put sequences with a sentinel character, e.g., $. This would

implicitly create branchings in linear paths of the de Bruijn graph,

within which edge colorings in general could be different. Working

under this assumption can also drastically improve the compression

power of the Bloom filters. More precisely, given a linear path, we

compute the intersection of the colorings of ‘ edges in some neigh-

borhood within the path and obtain a coloring with drastically

reduced FPP. We let NðeÞ
 E denote the topological neighborhood

of cardinality ‘ around an edge e 2 E within a linear path in which

all nodes are assumed to share the same colorings, and define the

corrected annotation as

annotationðeÞ ¼ queryðeÞ ^ ^
e02N ðeÞ

queryðe0Þ: (5)

Following the argument in (Mitzenmacher, 2001) (see Formula

2), the FPP for one color of a segment of length ‘ can be approxi-

mated as

FPPðb;d; sÞ‘ 	 1� e�
ds
b

� �d‘
; (6)

since ‘ false positive errors have to be made to lead the overall

Bloom filter to a false positive error.

We implement Bloom filter annotation correction as propagation

of precomputed edge colorings to their respective neighboring edges.

410 H.Mustafa et al.

The propagation terminates when the coloring stops changing or the

ends of a linear path are reached.

This correction method relies on direct access to the underlying

graph structure to reference during decoding, in contrast to the

wavelet trie approach in which this is not strictly required.

2.4 Data
The datasets used to evaluate the performance of our compression

schemes originate either from viruses (Virus100–Virus50000), bac-

teria (Lactobacillus) or human (chr22þgnomAD and hg19þ
gnomAD) and are chosen to test the methods on different color dis-

tributions, annotation matrix sizes and densities. They further re-

flect varying graph topologies and allow us to study the effect of

topology-informed compression in a robust testing bed. We con-

struct de Bruijn graphs of order k¼63 for each dataset and compare

the compression performance of all methods by measuring the com-

pression ratio and time for each dataset, defined as the ratio of the

number of bits in an annotation matrix and the number of bits in its

respective compressed representation.

Table 1 summarizes all used datasets in terms of their number of

nodes and edges for the constructed de Bruijn graphs, as well as their

respective numbers of colors and unique edge colorings. Please refer

to Supplementary Section C for a more detailed description of the

datasets.

3 Evaluation and applications

In this section, we explore our hypothesis that graph topology can

aid in improving compression ratios and study the space complex-

ities of our compression techniques on a variety of viral datasets

increasing in size. Finally, we compare the compression ratios of our

methods to those of general compression algorithms and those of

methods developed specifically for de Bruijn graph coloring

compression.

Experiments were performed on a single thread for Bloom filter

compression and ten threads for wavelet trie compression, on the

Intel(R) Xeon(R) CPU E5-2697 v4 (2.30 GHz) cores of ETH’s

shared high-performance compute systems. Run times and peak

RAM consumption are reported in Supplementary Figure S6.

3.1 Graph topology affects compression ratios
For both the wavelet trie and Bloom filter compression schemes, we

explored methods for encoding graph topology with the goal of

improving compression ratios. To this end, we explore the introduc-

tion of class indicator bits for wavelet tries and graph

neighborhood-based annotation correction for Bloom filters.

3.1.1 Improving wavelet trie compression using indicator columns

We test the hypothesis that optimal compression can be achieved by

setting class indicator bits in low-index positions in annotation

matrices (H0: column ordering does not influence compression

ratios when class indicator bits are set) via an exact test by permut-

ing the annotation matrix column order on the Virus100 and

Lactobacillus datasets. More precisely, we generate 100 samples by

randomly permuting the columns in the annotation matrix and com-

press the resulting data to approximate the null distribution of com-

pression file sizes across permutations of the matrix column order

(Supplementary Fig. S2).

First, when we test the hypothesis without setting class indicator

bits, the compressed file size corresponding to the column ordering

induced by the graph construction algorithm is found to not be opti-

mal (Supplementary Fig. S2). However, when class indicator bits are

set as the matrix column prefixes, the original ordering of columns

is optimal with respect to its approximated null distribution, result-

ing in an empirical p-value of p<0.01.

3.1.2 Improving Bloom filter FPP using neighborhood correction

We study the effects of neighborhood-based Bloom filter correction

on all datasets by varying the average number of bits per edge of the

Bloom filters and measuring the accuracy of edge coloring recon-

struction (see Section 2.3.2). The results show 70-fold decreases in

the number of bits required per edge to achieve similar decompres-

sion accuracies on almost all datasets (Fig. 2). A notable exception is

the chr22 dataset, where only a 30-fold improvement is observed.

The average number of linear traversal steps (see Section 2.3.2)

needed to correct Bloom filters with sizes ranging from 0.36 to

2.58 bits per edge (Table 2) to an accuracy of 95% ranges from 99.1

to 207.3 (Supplementary Table S1). To correct Bloom filters with

Table 1 Datasets used for evaluation

Data set Nodes Edges (n) Colors (m) Colorings Density (%) (s
nm)

Virus100 2,954,719 2,956,113 100 463 1.056

Virus1000 30,310,634 30,347,373 1,000 11,612 0.117

Virus50000 622,587,315 625,110,390 53,412 1,359,843 0.006

Lactobacillus 134,951,429 135,369,397 135 6,630 1.475

chr22þgnomAD 178,196,890 180,023,641 9 510 15.270

hg19þgnomAD 5,714,136,751 5,728,489,633 30 380,051 1.762

Columns represent number of nodes and edges per dataset, total number of colors and number of unique edge colorings, or unique rows of the annotation ma-

trix, and density of the annotation matrices, where the quantity s refers to the number of set bits in the annotation matrices.

Fig. 2. Improvement in Bloom filter compression ratios after neighborhood

correction. Bloom filter accuracy (average fraction of correct edge colorings)

as a function of filter size (Color version of this figure is available at

Bioinformatics online.)

Dynamic compression schemes for graph coloring 411

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data

sizes ranging from 0.44 to 7.41 bits per edge to an accuracy of 99%,

the average number of traversal steps required ranges from 82.3 to

156.3.

3.2 Properties of compression methods
3.2.1 Compression power grows with the number of colors

To test the scalability of the compression methods, we generate a

chain (a linear hierarchy) of virus graphs ranging from 100 to 1000

randomly selected genomes in steps of 100 (i.e., G1
 � � �
 G10),

with additional sets of size 3000 and 20,000, and measure the com-

pression ratios of the annotations for each graph. On our datasets,

the wavelet trie method with the addition of class indicator bits and

the Bloom filter method with FPP < 0.05 display linear growth

in the compression ratio as the number of genomes increases to

1000 genomes (Supplementary Fig. S3), with sublinear growth for

more genomes (Fig. 3). Sublinear growth is observed in the wavelet

trie method without class indicator bits and, to a lesser extent, the

Bloom filter method with FPP < 0.01 (Fig. 3 and Supplementary

Fig. S3). A two-fold decrease in compression ratio is observed when

the false positive probability criterion for the Bloom filters is

decreased from 0.05 to 0.01.

3.2.2 Compression and update times

To test the performance of updates to our dynamic compressors, we

generate a set of virus datasets of increasing sizes, while keeping the

numbers of columns fixed (see Supplementary Section C.1.4).

Update times are an order of magnitude faster for wavelet tries and

two orders of magnitude faster for Bloom filters (Fig. 4).

3.3 Wavelet tries and Bloom filters improve on state-of-

the-art compression ratios
Finally, we close with a side-by-side comparison of the various de

Bruijn graph color compression schemes presented in Section 1. In

addition to these domain-specific methods, we include two popular

general-purpose static compression methods, gzip and bzip2. gzip is

an implementation of the LZ77 algorithm that encodes blocks of

text, while bzip2 performs a sequence of transformations, including

run-length encoding, BWT, move-to-front transforms, and Huffman

coding.

Table 2 lists the number of bits required per edge to compress

our experimental collections.

3.3.1 Wavelet trie compression ratios match state-of-the-art

Our results show that wavelet trie compression outperforms gzip

and the VARI method on most datasets, while performing marginal-

ly better than Rainbowfish and marginally worse than bzip2

(Table 2). The Virus100, Virus1000, Virus50000, and Lactobacillus

datasets are compressed to 2.2, 18.2, 662.1, and 3.3 bits per edge,

respectively. The Virus1000 and Virus50000 datasets are notable in

Table 2 Compression ratio of wavelet trie and Bloom filter schemes (measured as number of bits per edge)

Proposed

Data set Colors (m) gzip bzip2 VARI RBF WTr WTr (CI) BF 95% BF 99.0%

Virus100 100 11.4 4.8 9.8 5.8 2.2 1.3 (52) 0.36 0.44

Virus1000 1000 26.5 7.5 14.7 9.7 18.2 5.28 (272) 0.49 0.82

Virus50000 53,412 135.3 37.7 56.0a a,b 662.1 64.8 (1693) 2.58 7.41

Lactobacillus 135 15.6 5.7 19.3 7.8 3.3 1.6 (20) 0.95 1.40

chr22þgnomAD 9 4.6 2.7 17.3a 3.3a N/A 1.2 (1)c 0.45 2.41

hg19þgnomAD 30 10.9 5.4 14.5a 5.6a N/A 5.4 (22)c 0.68 1.82

Note: Each dataset is encoded with eight different compression schemes, including general compression with gzip and bzip2, existing methods specific to col-

ored de Bruijn graphs VARI (Muggli et al., 2017) and Rainbowfish (RBF, Almodaresi et al., (2017)), as well as the wavelet trie encoding (WTr) with and without

the class indicator bits set (CI; value in parenthesis describes the number of the first columns in the annotation matrices that were used as the indicator columns),

and the corrected Bloom filters at > 95% (BF 95%) and > 99% (BF 99%) accuracy. All compression ratios are measured as average number of bits per edge.

VARI was compiled with 1024 bit support.
aOn these datasets, VARI and RBF results are generated by exporting the annotation data in compatible formats.
bConsumed more than 400GB memory limit.
cThe class indicators were the columns representing the reference chromosomes, hence, no extra columns were added.

Fig. 3. Growth of compression ratios. Compression ratios on virus graphs of

increasing genome count. Error bars were computed from the virus graph

chains resulting from six random draws of the Virus1000 dataset (see Section

3.2.1)

Fig. 4. Construction vs. update times of color compressors for virus datasets

of differing numbers of columns. WTr, wavelet trie; BF, Bloom filter (Color

version of this figure is available at Bioinformatics online.)

412 H.Mustafa et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty632#supplementary-data

that wavelet tries without added indicator bits exhibit the worst

compression ratio among the tested methods. Adding class indicator

bits leads to a three-fold improvement in the compression ratio on

the Virus1000 dataset (from 18.2 bits per edge to 5.3), ten-fold im-

provement on the Virus50000 dataset (from 662.1 to 64.2 bits per

edge), and marginal improvements in ratio on the other datasets

(1.3 and 1.6 bits per edge on the Virus100 and Lactobacillus data-

sets, respectively). In this setting, the chr22þgnomAD and

hg19þgnomAD datasets are compressed to 1.2 and 5.5 bits per

edge.

3.3.2 Bloom filters dramatically improve on state-of-the-art

At an accuracy of 95%, our method is considerably more space effi-

cient, achieving compression ratios over an order of magnitude

greater than bzip2 and Rainbowfish (Table 2). An average of 0.35

and 0.49 bits per edge are required to compress the Virus100 and

Virus1000 datasets, respectively, compared to 5.8 and 9.7 bits for

Rainbowfish and 4.8 and 7.5 bits for bzip2. An average of 2.4 bits

per edge are required to compress the Virus50000 data set, com-

pared to 37.7 bits for bzip2. We were unable to compress this data-

set using the Rainbowfish method due to its RAM consumption

exceeding the per-job limit on our computing system. On the

Lactobacillus dataset, an average of 1 bit per edge are required,

compared to 7.8 bits for Rainbowfish and 5.7 bits for bzip2. On the

chr22þgnomAD and hg19þgnomAD datasets, 0.45 and 0.68 bits

are required per edge, compared to 2.7 and 5.4 bits for bzip2, and

3.3 and 5.6 bits for Rainbowfish.

At 99% accuracy, an increasing number of bits are required per

edge with increased virus dataset size (Table 2). Fold-increases in the

number of bits per edge from 1.3 bits (Virus100) to 5.4 bits

(chr22þgnomAD) are required.

4 Discussion

In this study, we have addressed the problem of encoding metadata

as edge colors of a given graph and demonstrated its application to

de Bruijn graphs by presenting two distinct compression schemes.

First, we have developed a novel application and extended parallel

construction method of the wavelet trie data structure on general

sequences of bit vectors that employs an iterative merging scheme to

build larger tries from many smaller instances. Further, we have pre-

sented a probabilistic, compressed representation using approximate

set representations that can store an arbitrary amount of annota-

tions on the graph and allows for greater compression ratios by tak-

ing advantage of information shared between neighboring nodes to

correct errors. The methods we have presented provide an important

alternative to naı̈ve static data structures for compressing binary

matrices, available in libraries such as SDSL (Gog et al., 2014). Our

methods allow for the dynamic addition of data and for modular

combination of different colors.

We have shown that utilizing the topology of the underlying

graph helps in achieving improved compression ratios. For the

wavelet tries, we used indicators for the backbone regions of the de

Bruijn graph positioned in prefix columns of the annotation matrix

and for the Bloom filter approach, we used neighboring linear

regions in the graph for error correction.

Either representation can be efficiently decompressed and

queried to retrieve the coloring of arbitrary paths in the graph.

Although it is helpful to know the frequency of individual colors up-

front to design an optimal order of columns for the wavelet trie

compression or to optimally choose the size of the individual Bloom

filters used, these parameters can be easily estimated from a sub-

sample of the input data, allowing to directly build the full coloring.

We have shown the utility of our approaches on different bio-

logical datasets, including data from virus, bacteria and human

genomes, representing different graph topologies and colorings. On

all datasets, we achieve comparable or strongly increased compres-

sion performance at very high levels of decompression accuracy.

Notably, our approach is dynamic and allows for an easy extension

with additional colors or for changes in the underlying graph struc-

tures, enabling the augmentation of large colored graphs with new

annotations—a scenario commonly occurring in the genomics set-

ting. Additionally, the wavelet trie model is fully dynamic, allowing

for color and edge removal.

A possible limitation of the wavelet trie method is its reliance on

shared contiguous subvectors, especially in the first few columns of

the annotation matrix, to effectively partition the rows for optimal

compression. The results on the viral datasets confirm that, given an

annotation matrix with very sparse and mutually-exclusive rows,

wavelet tries underperform relative to other methods due to tree im-

balance. While this is partially addressed by setting class indicator

bits in the annotation matrix, a more principled approach with less

user input will become necessary in future work and could involve

an analysis of the de Bruijn graph topology to algorithmically deter-

mine optimal backbone paths. Further improvements in compres-

sion ratio could be gained by an optimal ordering of the rows of the

annotation matrix, but at the additional cost of maintaining a map

from graph coordinates to their respective annotation matrix rows.

One of the limitations of our Bloom filter correction method is

its reliance on the presence of long, identically-colored paths for cor-

rection. While this assumption worked well for the Virus100 and

Virus1000 datasets, the shorter linear paths in the larger sets

reduced our ability to correct errors in this fashion. Despite its

higher compression ratio, one restriction of the Bloom filter-based

method is that its corresponding graph must be accessible for refer-

ence. Although this is already done in our application, it couples

color query times to graph query times. To decouple the graph from

the filters, an additional structure could be constructed to indicate

edges in the graph at which changes in coloring occur. Such a struc-

ture would then allow for the assumption that colors remain con-

stant in linear regions to be relaxed.

Future work on probabilistic compression will focus on improv-

ing scaling properties. In a dynamic setting, if a dataset grows rapid-

ly in the number of edges, the decoding accuracy will eventually

drop, ultimately requiring a re-initialization into a larger Bloom fil-

ter. Further, despite being dynamic, the current probabilistic repre-

sentation does not allow for the removal edges from the graph. To

support this, we could replace the Bloom filters with other probabil-

istic set representations that allow for item removal (Bender et al.,

2012; Fan et al., 2014). Lastly, an additional space improvement

could be achieved with more space-efficient probabilistic set repre-

sentations such as compressed Bloom filters (Mitzenmacher, 2001).

Acknowledgement

The authors would like to thank Torsten Hoefler as well as all members of the

Biomedical Informatics group at ETH Zurich, in particular Amir Joudaki,

Viktor Gal, and Gideon Dresdner, for valuable discussions and feedback.

Funding

This work was supported by the Swiss National Science Foundation

Ambizione Program (to C.E.) under grant agreement no. 174025. Harun

Dynamic compression schemes for graph coloring 413

Mustafa and Mikhail Karasikov are funded by the Swiss National Science

Foundation grant #407540_167331 “Scalable Genome Graph Data

Structures for Metagenomics and Genome Annotation” as part of Swiss

National Research Programme (NRP) 75 “Big Data” (to G.R.).

Conflict of Interest: none declared.

References

Almodaresi,F. et al. (2017). Rainbowfish: A succinct colored de bruijn graph

representation. In: LIPIcs-Leibniz International Proceedings in Informatics.

Vol. 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Auton,A. et al. (2015) A global reference for human genetic variation. Nature,

526, 757168–757174.

Bender,M.A. et al. (2012) Don’t thrash: how to cache your hash on flash.

Proc. VLDB Endowment, 5, 1627–1637.

Benoit,G. et al. (2015) Reference-free compression of high throughput

sequencing data with a probabilistic de bruijn graph. BMC Bioinformatics,

16, 288.

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13, 422–426.

Böttcher,S. et al. (2017) A column-oriented text database api implemented on

top of wavelet tries. In: 9th International Conference on Advances in

Databases, Knowledge, and Data Applications, DBKDA, Barcelona, Spain.

IARIA, pp. 54–60.

Bowe,A. et al. (2012). Succinct De Bruijn Graphs. Springer, Berlin,

Heidelberg, pp. 225–235.

Bradnam,K.R. et al. (2013) Assemblathon 2: evaluating de novo methods of

genome assembly in three vertebrate species. GigaScience, 2, 10.

Chikhi,R., and Rizk,G. (2013) Space-efficient and exact de bruijn graph repre-

sentation based on a bloom filter. Algorithms Mol. Biol., 8, 22.

Dröge,J., and McHardy,A.C. (2012) Taxonomic binning of metagenome sam-

ples generated by next-generation sequencing technologies. Brief.

Bioinform., 13, 646–655.

Ehrlich,S.D. and Consortium,T.M. (2011) MetaHIT: the Eurpoean Union

Project on Metagenomics of the Human Intestional Tract. Metagenom.

Hum. Body, 307–316.

Fan,B. et al. (2014) Cuckoo filter: practically better than bloom. In:

Proceedings of the 10th ACM International on Conference on Emerging

Networking Experiments and Technologies. ACM, pp. 75–88.

Gog,S. et al. (2014). From theory to practice: plug and play with succinct data

structures. In: International Symposium on Experimental Algorithms.

Springer, pp. 326–337.

Grossi,R., and Ottaviano,G. (2012). The wavelet trie: maintaining an indexed

sequence of strings in compressed space. In: Proceedings of the 31st ACM

Symposium on Principles of Database Systems, PODS ’12. ACM, New

York, NY, USA, pp. 203–214.

Holley,G. et al. (2016) Bloom filter trie: an alignment-free and reference-free

data structure for pan-genome storage. Algorithms Mol. Biol., 11, 3.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de bruijn graphs. Nat. Genet., 44, 226–232.

Mitzenmacher,M. (2001). Compressed bloom filters. In: Proceedings of the

Twentieth Annual ACM Symposium on Principles of Distributed

Computing, PODC ’01. ACM, New York, NY, USA, pp. 144–150.

Muggli,M.D. et al. (2017) Succinct colored de bruijn graphs. Bioinformatics,

33, 3181–3187.

Myers,G. et al. (2017) Next generation sequencing (dagstuhl seminar 16351).

In: Dagstuhl Reports. Vol. 6. Dagstuhl-Leibniz-Zentrum Für Informatik.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using minhash. Genome Biol., 17, 132.

Pandey,P. et al. (2017) debgr: an efficient and near-exact representation of the

weighted de bruijn graph. Bioinformatics, 33, i133–i141.

Pandey,P. et al. (2017b) Mantis: a fast, small, and exact large-scale sequence

search index. bioRxiv, 217372.

Pevzner,P.A. et al. (2001) An eulerian path approach to dna fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Raman,R. et al. (2007) Succinct indexable dictionaries with applications to encod-

ing k-ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3, 43–es.

Solomon,B., and Kingsford,C. (2017) Improved search of large transcriptomic

sequencing databases using split sequence bloom trees. In: Lecture Notes in

CS, Vol. 10229. LNCS, pp. 257–271.

Stephens,Z.D. et al. (2015) Big data: astronomical or genomical?. PLoS Biol,

13, e1002195.

Turnbaugh,P.J. et al. (2007) The human microbiome project: exploring the

microbial part of ourselves in a changing world. Nature, 449, 804–810.

Walter,K. et al. (2015) The UK10K project identifies rare variants in health

and disease. Nature, 526, 82–90.

Zhang,G. et al. (2015) Comparative genomics reveals insights into avian gen-

ome evolution and adaptation. Science, 346, 1311–1320.

414 H.Mustafa et al.

	bty632-TF1
	bty632-TF2
	bty632-TF3
	bty632-TF4
	bty632-TF5

