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Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase
(JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3
regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-
10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell
proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant
activation of STAT3 is associated with poor prognosis. STAT3 is also an important
driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3
aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells
are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive
immune responses and contribute to the composition of the tumor microenvironment.
The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer
immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic
interplay between NK cells and tumor cells. On the one hand, we summarize the current
knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the
other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity,
cytokine production and their anti-tumor responses in vivo. In light of the ongoing research
on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of
STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding
the complexity of this interplay in the tumor microenvironment is crucial for future
implementation of NK cell-based immunotherapies.
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INTRODUCTION

Natural killer (NK) cells belong to the group 1 innate lymphoid cells and are characterized by the
ability to kill virally infected and malignant cells. In contrast to T cells, NK cells do not require major
histocompatibility complex (MHC)-dependent priming by antigen presenting cells. The activity of NK
cells is regulated by a delicate balance of germ-line encoded activating and inhibitory receptors. Upon
recognition of the target cell, an NK cell releases cytotoxic granules for direct cell lysis as well as
produces immunomodulatory cytokines (1, 2). In humans, these tasks are fulfilled by different
subtypes of NK cells: CD56brightCD16lo/- NK cells are main producers of cytokines such as interferon
(IFN) g. In contrast, CD56dimCD16+ NK cells are highly cytotoxic, but do not produce substantial
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amounts of IFNg (3). The inborn ability to lyse transformed cells
renders NK cells an attractive tool for cancer immunotherapy with
a potentially better safety profile compared to T cells (4, 5).
Different approaches to exploit NK cells in immunotherapy are
being investigated. These include adoptive transfer of cytokine-
induced memory-like NK cells or chimeric antigen receptor NK
(CAR-NK) cells. Currently, numerous clinical trials using such
approaches are ongoing, but the efficacy of these treatments still
needs to be evaluated (5, 6). In this context, understanding the
complex processes employed by tumor cells to evade NK-cell
immunity is crucial. These escape mechanisms include
transcriptional downregulation and shedding of ligands for NK-
cell activating receptors, upregulation of inhibitory ligands, as
well as immune suppressive signals derived from the
microenvironment (7–11). Signal transducer and activator of
transcription 3 (STAT3) is constitutively activated in various
cancers and plays a pivotal role in regulating all of these
processes and thereby mediates the crosstalk between the tumor
microenvironment and immune cells (12).

STAT3 is a member of the Janus kinase (JAK)-STAT signaling
pathway, which coordinates central cellular mechanisms including
differentiation, development, proliferation, immune function, or
apoptosis (13, 14). The alternatively spliced STAT3 isoforms, full-
length STAT3a and C-terminally-truncated STAT3b, have
opposing function during tumor development. While STAT3a
promotes tumor growth, STAT3b was identified as a tumor
suppressor and favorable prognostic marker in cancers of
different origin (15, 16). Mechanistically, JAK-STAT3 signaling
is activated by diverse growth factors, peptide hormones and all
interleukin (IL)-6-type cytokines including IL-6, IL-11, IL-27, IL-
31, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary
neurotrophic factor (CNTF) neuropoietin (NP), cardiotrophin-1
(CT-1) and cardiotrophin-like cytokine (CLC) (17–19). IL-6
family cytokines, except for IL-31 which exerts its effects
through IL-31 receptor a, induce signaling via binding to either
a glycoprotein 130 (gp130) receptor b- subunit hetero- or
homodimer (19, 20). Ligands bind to their cognate receptors,
which undergo a conformational change, and induce subsequent
activation of receptor associated JAKs (JAK1, JAK2, JAK3
and tyrosine kinase 2 (TYK2)) by autophosphorylation
and/or transphosphorylation. The JAK-induced tyrosine
phosphorylation of the receptor provides a docking-site for the
SH2 domain of STAT3, which in turn gets phosphorylated on
tyrosine 705 by JAKs (21). Activated STAT3 forms anti-parallel to
parallel homo- or heterodimers with other STATs, is released from
the receptor and translocates into the nucleus through interaction
with importin-b1 (22, 23). To control gene expression, activated
STATs target palindromic consensus sequences located in
promoter and enhancer regions and in the first introns of target
genes (24). Negative regulation of STAT3 occurs in the nucleus
through antagonization by PIAS (protein inhibitor of activated
STAT), an E3 SUMO-protein ligase, or at the receptor by SOCS
(suppressor of cytokine signaling) E3 ubiquitin ligases (25, 26)
(Figure 1). The transcriptional activity of STAT3 can be further
regulated by phosphorylation at serine 727 (Ser727) mediated by
mTOR, p38, ERK and other serine/threonine kinases. However,
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the exact effects of Ser727 phosphorylation have to be put in a
cellular and/or promoter dependent context. Phosphorylated
Ser727 promotes association with different transcription co-
factors and thus activates or diminishes transcriptional
responses of STAT3 (27). Moreover, it can also drive the
mitochondrial metabolic activity of STAT3 and augment the
electron transport chain (28). Activated STAT3 in cancer cells
contributes to oxidative and glycolytic phosphorylation, survival,
epithelial-to-mesenchymal transition, proliferation, metastasis,
and radiation- and chemotherapy resistance (29, 30). Due to its
central contribution to several hallmarks of cancer and its
association with poor clinical prognosis, STAT3 represents a
promising therapeutic target for cancer therapy (14, 31, 32).

Inhibition of STAT3 signaling is currently explored in many
clinical trials for solid and hematopoietic tumors. The direct
approaches to specifically inhibit STAT3 include small molecules
and decoy oligonucleotides (33). The most successful small
molecule STAT3 inhibitor Napabucasin (BBI-608), which
selectively binds to the DNA-binding domain of STAT3, has
reached phase III trials for advanced colorectal cancer and
provided excellent results as monotherapy (34). Another small
molecule, TTI-101, targets the receptor binding site within the
SH2 domain of STAT3 to block its recruitment and activation
FIGURE 1 | The JAK-STAT3 signaling pathway. Signal transducer and
activator of transcription 3 (STAT3) is activated upon binding of diverse
cytokines, hormones, or growth factors to their cognate receptors. Ligand-
bound receptors undergo conformational changes leading to the activation of
the Janus kinases (JAK). Activated JAKs trans- and/or auto- phosphorylate
each other and the cytoplasmic domain of the receptor, enabling STAT3 to
bind via its SRC homology 2 (SH2) domain. JAK-mediated phosphorylation of
a conserved C-terminal tyrosine residue of STAT3 induces dimerization of
phosphorylated STAT3 and the subsequent translocation to the nucleus to
regulate gene transcription. STAT3 induces transcription of suppressor of
cytokine signaling 3 (SOCS3), which can act as a negative regulator by
interacting competitively with the receptor.
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(35). Phase I clinical trials in advanced solid cancers including
breast cancer are ongoing (NCT03195699, NCT05384119). The
SH2 domain is also targeted by other small molecules, OPB-
51602, OPB-31121, OPB-111077, which are undergoing phase I/
II clinical trials for solid and in case of OPB-51602 also
hematopoietic tumors (reviewed in (36)). The antisense
oligonucleotide, AZD9150, which is designed to target STAT3
mRNA (37), has until now reached phase I/II trials for different
advanced solid cancers (e.g. NCT01839604; NCT01839604) (33).
Although the specificity and potency of such antisense
oligonucleotides is very promising, they face problems of
efficient penetration of solid tumors and fast degradation (33).
To the best of our knowledge, the STAT3 inhibitors currently
tested in clinical trials have not been thoroughly studied in the
context of NK cell anti-tumor responses. Here, we summarize
the current knowledge on how STAT3 contributes to NK-cell
fitness and tumor cell evasion from NK cells, and speculate on
how targeting STAT3 may affect NK-cell tumor surveillance.
STAT3 IN TUMOR CELLS – THE DRIVER
OF IMMUNE EVASION FROM NK CELLS

Regulation of NK-Cell Receptor Ligands
NK cells exhibit cytolytic activity towards cells that overexpress
ligands for activating receptors and/or lack the expression of
MHC class I and other ligands, recognized by inhibitory
receptors. In healthy cells, the ligands for activating receptors
are absent or expressed at very low levels. Transformed cells
upregulate these ligands and become sensed by NK cells as
‘danger’ (1, 38). The activating NK-cell receptor natural killer
group 2D (NKG2D) served as a paradigm in studying this
mechanism. In humans, NKG2D binds to MHC class I
polypeptide-related sequence A (MICA) and B (MICB) and
UL16-binding proteins (ULBP1-6) (39–42). In mice, NKG2D
ligands comprise of the RAE1 family (a-ϵ), H60 (a -c), and
MULT1 (43–45). Upon binding of a ligand to NKG2D, the co-
stimulatory molecule DAP10 is activated and the release of
cytotoxic granules is induced (40). Natural cytotoxicity
receptor (NCR) NKp30 recognizes the B7-H6 molecule on
transformed cells and induces NK-cell activation (46). Other
receptors of this family are NKp44 and NKp46, which recognize
heterogenous ligands including viral and bacterial proteins (47).
Further activating NK-cell receptors function more as amplifiers
of NK-cell activation triggered by NKG2D or NCRs (48). An
important example is DNAM-1 and its corresponding ligands
CD112 and CD155 often overexpressed on tumor cells (49, 50).

NKG2D is crucially involved in NK cell-mediated tumor
surveillance and is one of the best studied receptors in this
context. Mice deficient in NKG2D show strong defects in
immune surveillance of epithelial and lymphoid tumors (51).
In line, high expression of NKG2D ligands in leukemic patients
correlates with better survival (52). Absence of NKG2D ligands is
also a feature of leukemic stem cells, which allows them to escape
NK-cell surveillance in acute myeloid leukemia (AML) in vivo
models (53). Tumor cells evade NKG2D-mediated recognition
Frontiers in Immunology | www.frontiersin.org 3
by downregulation or shedding of the ligands. Not only does it
allow to hide from NK-cell cytotoxicity, but also leads to
desensitization of NKG2D-mediated NK-cell activation. High
levels of shed NKG2D ligands result in downregulation of
NKG2D-mediated signaling (54, 55).

STAT3 has been implicated in direct transcriptional
repression of NKG2D ligands. Bedel et al., revealed that
inhibition or knockdown of STAT3 in the colorectal cancer
cell line HT29 leads to stronger activation of NK cells and
therefore killing of tumor cells in an NKG2D-dependent
manner. Further, they could show that STAT3 directly binds
to the MICA promoter, repressing its transcription (56). A
similar mechanism has been described in multiple myeloma
(MM) cell lines. Upon treatment with glycogen synthase kinase
3 (GSK-3) inhibitor, MM cell lines showed decreased STAT3
activation and reduced STAT3 binding to the MICA promoter.
The effects corresponded to enhanced sensitivity of treated cell
lines to NK cell-mediated lysis. Importantly, GSK-3 inhibition
had no effect onMICA expression in cell lines with constitutively
active STAT3. In line, the GSK-3 inhibitor was not able to reduce
the activation level of constitutively active STAT3. This strongly
suggests that GSK-3-induced susceptibility of MM cells to NK
cells is greatly dependent on inhibiting STAT3 activation (57). In
another study using colorectal cancer cells, GSK-3 inhibition
significantly upregulated NKG2D ligands and increased their
sensitivity to NK cells. However, in this context the dependence
on STAT3 remains to be elucidated (58).

The correlative observations of low STAT3 activity and/or
expression and high NKG2D ligands surface levels have also
been made in other cancer entities. The adriamycin-resistant
chronic myeloid leukemia (CML) cell line K562 is killed more
efficiently by NK cells upon treatment with a STAT3 inhibitor
and shows an upregulation of MICA and ULBP2 (59). STAT3
inhibition or silencing also enhances ULBP2 expression in
parental K562 cells (60). In AML cell lines, an inverse
correlation between phosphorylated STAT3 (pSTAT3) levels
and MICA expression was observed after rapamycin (61) or
decitabine treatment (62) but the mechanism behind it remains
unclear. In hepatocellular carcinoma cell lines, a STAT3 decoy
resulted in upregulation of NKG2D ligands and increase of NK
cell-mediated killing (63). A layer of complexity is added by the
fact that in human gastric adenocarcinoma cell lines inhibition of
STAT3 results in upregulation of MICB on the cell surface as well
as of the soluble ligands. This implies a potential desensitization
of NK cells driven by inhibition of STAT3 (64). Although all the
mentioned studies point towards a similar effect of STAT3
inhibition or silencing, the interpretation is limited, as all of
the experiments where only performed in vitro. A robust in vivo
xenograft model of STAT3-deficient tumor cell lines with
adoptive transfer of human primary NK cells would be
necessary to further elucidate the impact of STAT3 on
NKG2D-mediated NK-cell surveillance.

The missing-self hypothesis, formulated in the 1980s, states that
NK cells kill those cells that do not express sufficient levels of MHC
I. In line, several classes of inhibitory receptors were discovered,
which unleash NK-cell cytotoxicity upon downregulation of MHC
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Witalisz-Siepracka et al. STAT3 in NK-Cell Tumor Surveillance
I on the target cells (65, 66). These include the Ly49 family in mice
and the KIR family in humans (67–69). Ly49 and KIRs sense the
levels of conventional MHC I, therefore, tumor cells that
downregulate MHC I molecules to escape T cell responses
become targets for NK cells (70, 71). In a mouse model of
carcinogen-induced Non-Small Cell Lung Cancer (NSCLC),
epithelial cell-specific knockout of Stat3 led to downregulation of
MHC I on transformed epithelial cells. This rendered the emerging
cancer cells more susceptible to NK cell-mediated lysis (72).

Regulation of Tumor Microenvironment
STAT3 is considered as a driver of an immune suppressive tumor
microenvironment. STAT3 activation is associated with high
expression of tumor promoting cytokines and growth factors
such as IL-10, transforming growth factor (TGF)-b and vascular
endothelial growth factor (VEGF)-A. The majority of STAT3-
dependent effects in the tumor microenvironment are described
in the context of T cells, macrophages or dendritic cells that have
been extensively reviewed by others (12, 73). However, the
soluble immune suppressive modulators present in tumor
microenvironment not only suppress the function of NK cells,
but also impair their infiltration into the tumor (13) or even
confer a switch towards pro-tumorigenic, VEGF-A-producing
NK cells (74–77). The IL-10/STAT3 axis directly drives VEGF-A
expression in these cells (77). TGF-b in the microenvironment
also drives the conversion of cytotoxic NK cells (CD49a-

CD49b+EOMES+) into ILC1 (CD49a+CD49b-EOMESint),
which lose the ability to control the tumor growth (78).

In the previously mentioned, carcinogen-induced NSCLC
model with epithelial cell-specific Stat3 knockout, the tumor
microenvironment is enriched for proinflammatory cytokines
which might contribute to enhanced NK-cell responses against
the tumor (72). In support of this finding, hepatocellular
carcinoma cells treated with STAT3 decoy secrete higher levels
of IFNs and lower levels of immune suppressive TGF-b. Upon
culture in conditioned medium derived from hepatocellular
carcinoma cells pre-treated with STAT3 decoy, NK cells
showed a more activated phenotype with higher expression of
IFNg, granzyme and perforin (63). In line, STAT3 in a murine
melanoma cell line was shown to inhibit the expression of
proinflammatory cytokines such as TNFa and IL-12 and the
chemokine CCL5. Inhibition of STAT3 signaling was associated
with increased levels of CCL5 and thereby enhanced lymphocyte
infiltration into the tumor (79). Importantly, the conclusions
were made in melanoma model overexpressing the alternatively
spliced, truncated isoform of STAT3 – STAT3b, which was
believed to have dominant negative functions over the full
length isoform (80). However, several studies have shown that
STAT3b is transcriptionally active and drives expression of its
unique target genes (81–83). The potential of STAT3b to drive
cytokines and chemokines that support the immune system is in
accordance with the tumor suppressive potential of STAT3b-
overexpressing macrophages in breast cancer (84).

Interestingly, in BCR-ABL-driven lymphoma, the deletion of
STAT3 has opposite effects to those described above. STAT3-
deficient B cell lymphoma shows decreased expression of
proinflammatory cytokines, e.g. TNFa and chemokine CCL5.
Frontiers in Immunology | www.frontiersin.org 4
This is paralleled by a lower abundance of NK cells in the tumors.
Transplantation of the lymphoma cells lacking STAT3 into mice
harboring NK cells results in accelerated tumor growth, but the
difference is lost in immune-deficient mice. The study postulates
that targeting STAT3 in BCR-ABL-driven malignancies might
impair NK-cell surveillance (85).

In summary, STAT3 activity is critically implicated in
determining the outcome of cancer immunity by orchestrating
the release of immunomodulating cytokines. In the majority of
cases, inhibition of STAT3 signaling switches the tumor
microenvironment towards immune activation (Figure 2, right).
STAT3 IN NK CELLS – THE VERSATILE
MODULATOR OF NK CELL RESPONSES

STAT3 is activated in NK cells by a variety of cytokines,
including type I IFNs, IL-2, IL-6, IL-10, IL-12, IL-15, IL-21
FIGURE 2 | STAT3 contribution to NK cell-mediated tumor immune
surveillance. NK cell-intrinsic STAT3 (left) inhibits expression of granzyme B

and DNAM-1 ( ), increases IFNg secretion ( ) and seems to upregulate

TIGIT and LAG-3 ( ), while the effect on NCRs and NKG2D expression

remain context dependent ( ). Tumor cell-intrinsic STAT3 (right) inhibits
expression of NKG2D ligands (MICA/B, ULBPs) and NK-cell attracting

chemokine CCL5 ( ). STAT3 in tumor cells upregulates surface expression

of MHC I and PD-L1 molecules and secretion of immune suppressive TGF-b
( ). NK, natural killer; IFN, interferon; DNAM-1, DNAX accessory molecule;
NKG2D, NK-cell receptor natural killer group 2D; NCR, natural cytotoxicity
receptor; KIR, killer-cell immunoglobulin-like receptor; CCL5, C-C motif
chemokine ligand 5; CD, cluster of differentiation; MICA/B, major
histocompatibility complex class I-related sequence A/B; ULBP, UL16-binding
protein; MHC I, major histocompatibility complex I; TGF-b, transforming
growth factor b, STAT, signal transducer and activator of transcription. TIGIT,
T cell immunoreceptor with Ig and ITIM domains; LAG-3, lymphocyte-
activation gene 3; PD-(L)1, programmed cell death ligand/protein 1.
July 2022 | Volume 13 | Article 947568
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and IL-27, with diverse effects on NK-cell activation (86–91). NK
cell-intrinsic roles of STAT3 have been analyzed in Stat3fl/flNcr1-
iCre mice lacking STAT3 in NKp46+ cells. Stat3 deletion does
not affect NK-cell development, numbers and maturation.
Furthermore, NK cell-intrinsic loss of STAT3 does not impact
on proliferation of NK cells in Stat3fl/fl Ncr1-iCre mice (87).
However, knockdown of STAT3 in the human NK-cell line NK-
92 is associated with a decreased proliferation rate, correlating
with reduced cyclin D1 expression, and overexpression of STAT3
enhances human NK-cell expansion (92). In line, IL-21, which
primarily activates STAT3 in NK cells, promotes human NK-cell
expansion associated with an increased telomere length (93–95).

Effects of cancer cell-extrinsic STAT3 deficiency on anti-tumor
immunity have initially been reported in an inducible STAT3
knockout mouse model (Stat3fl/flMx1-Cre mice) (96). Both Stat3fl/
fl Mx1-Cre and Stat3fl/fl Ncr1-iCre mice demonstrated that lack of
STAT3 enhances NK cell-mediated surveillance in different
transplantable tumor models (87, 96). Treatment with the small-
molecule STAT3 inhibitor CPA7 boosts anti-tumor responses
against the subcutaneously injected urothelial carcinoma cell line
MB49, which is largely dependent on T cells with a partial
involvement of NK cells (96). NK cell-intrinsic STAT3
deficiency is sufficient to increase surveillance of melanoma and
leukemia cell lines (87). Overall, these data provide evidence that
STAT3 suppresses the anti-tumor activity of NK cells (13, 87, 96).
The enhanced cytotoxicity of NK cells upon loss of STAT3 goes
along with increased levels of the cytotoxic effector molecules
perforin and granzyme B (87, 88).

STAT3 is also involved in regulating expression of activating
NK-cell receptors. STAT3 decreases DNAM-1 expression on NK
cells. Elevated DNAM-1 levels upon Stat3 deletion contribute to
enhanced killing of DNAM-1 ligand-expressing tumor cells, e.g.
B16F10 melanoma cells (87). NK cells show a STAT3-dependent
upregulation of NKG2D surface levels in response to IL-10 and
IL-21 stimulation, associated with enhanced NK-cell
degranulation (88, 95, 97). While NK cell-intrinsic loss of
STAT3 does not suffice to impact on NKG2D expression,
STAT3-deficiency in the entire hematopoietic system (Stat3fl/fl

Tie2-Cre mice) causes a reduction of NKG2D levels (87, 95). In
contrast to a potential negative regulatory role of STAT3 on
DNAM-1 expression in murine NK cells (87), these results
indicate that STAT3 enhances NKG2D expression (95).
However, another report demonstrated that IL-2-activated
human NK cells display decreased NKG2D levels upon IL-21
stimulation (98). In addition, STAT3 activation by IL-6 and IL-8
produced by tumor cells has been reported to decrease levels of
NKG2D and NKp30 on NK cells (91). Therefore, the impact of
STAT3 on the regulation of NKG2D might vary depending on
the specific upstream stimuli, signaling pathways and additional
STAT proteins involved (13, 88). Similar to NKG2D, STAT3 has
also been reported to bind to the promoter and drive the
transcription of NCR1 gene encoding NKp46 (92, 95).

In line with the suppressive effect of STAT3 on NK-cell
functionality reported in the murine system (87), tumor-derived
cytokines, such as IL-6 and IL-8, impair humanNK-cell function in a
STAT3-dependent manner (91). On the contrary, another study
Frontiers in Immunology | www.frontiersin.org 5
found a positive correlation between STAT3 levels and expression of
cytotoxic effector molecules and cytokines in human NK cells (92).
STAT3 levels are reduced in NK cells from chronic hepatitis B virus
(HBV) patients, which is associated with lower degranulation and
IFNg production (92). Early cytokine production, including IFNg, in
IL-15 primed human NK cells also requires STAT3 (99). An
involvement of STAT3 in the regulation of IFNg production has
also been described in murine NK cells, where STAT3 directly binds
to the Ifng promoter and contributes to cytokine-induced IFNg
production (87). Besides cytotoxic activity and production of
proinflammatory cytokines , NK cel ls also produce
immunosuppressive cytokines and have immunoregulatory
functions (100, 101). STAT3 also impacts on these functions. For
example, the immunosuppressive cytokines IL-10 and TGF-b are
upregulated in a STAT3-dependentmanner in tumor-infiltratingNK
cells that are positive for the immune checkpoint CD73 (12, 102).

Hypoxia is an important feature of solid tumors that is
associated with immune suppression and escape (103). Indeed,
hypoxia represses NK-cell cytotoxicity by induction of SHP-1
expression, which in turn reduces STAT3 activation (104).
STAT3 also interacts with one of the main players driving
hypoxic response - hypoxia inducible factor 1a (HIF-1a)
(105). In IL-15 primed human NK cells, HIF-1a responses rely
on STAT3 (99). In line, STAT3 induces HIF-1a-mediated
upregulation of miR-224, which is paralleled by reduced
NKp46 expression and a dampened NK cell-mediated killing
of prostate cancer cells (12, 106, 107). The exact underlying
mechanisms how STAT3 activity contributes to hypoxia-driven
effects on NK-cell cytotoxicity remain to be determined.

Altogether, STAT3 has complex effects on NK-cell activity,
including the expression of cytotoxic granule proteins, cytokines
and NK-cell receptors (Figure 2, left). Whether STAT3 has an
overall beneficial or detrimental effect on NK-cell function appears
to be context-dependent (13, 87, 92, 95). STAT3 induces its own
negative feedback regulation, including the upregulation of SOCS3
(Figure 1). SOCS3 suppresses NK cells, as loss of SOCS3 enhances
NK-cell proliferation and cytotoxicity (108). The effects of SOCS3
on STAT3 activation might depend on the upstream stimuli,
which are likely to be differently susceptible to SOCS3-mediated
inhibition (109, 110). This could contribute to the context-
dependent effects of STAT3 in NK cells. As mentioned above,
cancer cell-intrinsic alternatively spliced STAT3 isoforms have
opposite roles in driving tumor progression. Since STAT1
isoforms differentially affect NK-cell functionality (111), it is
attractive to speculate that also STAT3a and b have non-
redundant functions in regulating NK cells. Analyzing the
consequences of STAT3a or b deficiency in NK cells might
improve our understanding of STAT3-dependent effects.
STAT3 MUTATIONS IN NK CELLS –

INSIGHTS FROM PATIENTS

Another level of evidence for a crucial role of STAT3 in NK-cell
biology stems from studies analyzing NK cells in patients with
STAT3 mutations. Heterozygous germline STAT3 loss-of-
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function (LOF) mutations are found in autosomal dominant
hyper IgE syndrome (HIES) patients, which display
immunological deficiencies with increased susceptibility to
infections linked to impaired STAT3-regulated T helper 17
(Th17)-mediated immune responses and B cell function (112–
116). NK cells from HIES patients harboring STAT3 LOF
mutations have decreased NKG2D levels (95). This might be
associated with impaired NK cell function, however a thorough
functional characterization of NK cells from HIES patients has
not been published. Apart from LOF mutations, germline and
somatic activating mutations of STAT3 have been described in
humans with different disease characteristics (112–115, 117).
Germline STAT3 gain-of-function (GOF) mutations are
associated with diverse clinical manifestations, including
immunodeficiencies and autoimmune diseases (112, 118–122).
Haapaniemi et al. reported that NK-cell numbers are reduced in
patients with germline STAT3 GOF mutations, while maturation
and functionality of NK cells are unaffected (120). However,
another study did not find reduced NK-cell numbers (123),
indicating that the impact of STAT3 GOF mutations on
immune cells, including NK cells, varies between patients (122).

An oncogenic potential of STAT3 in NK cells has been indicated
by the discovery of somatic STAT3 GOF mutations, predominantly
within the SH2 domain, in a subset of patients with different NK-cell
malignancies, including chronic lymphoproliferative disorder of NK
cells (CLPD-NK), aggressive NK-cell leukemia (ANKL) and
extranodal NK/T-cell lymphomas of nasal type (NKTCL) (124–
135). Apart from STAT3 GOF mutations, enhanced STAT3
phosphorylation can also be observed in NK-cell malignancies by
other means, including activation of upstream JAKs or reduced
expression of negative regulators of STAT3 (124, 127, 131–133, 136–
139). Pro-tumorigenic effects of STAT3 on NK cells are linked to its
role in proliferation and survival (133, 136, 140–142). IL-10mediated
STAT3 activation as well as somatic STAT3 GOFmutations increase
expression of MYC and thereby drive metabolic activation of ANKL
cells, fueling leukemia cell survival and proliferation (131). To the
best of our knowledge, the effects of somatic STAT3 GOF mutations
on the functionality of malignant NK cells have not been directly
tested. Interestingly, STAT3 GOF mutations in CLPD-NK patients
correlate with a cytotoxic CD16hiCD57-phenotype and a more
symptomatic disease, characterized by anemia and severe
neutropenia (127, 134, 135, 143).
STAT3 – A POTENTIAL TARGET TO
ENHANCE IMMUNE CHECKPOINT
INHIBITOR THERAPY?

Immune checkpoint inhibitors are one of the most successful
approaches of immunotherapy. By targeting the inhibitory
ligands (programmed cell death ligand 1 - PD-L1) or
inhibitory receptors (programmed cell death protein 1 - PD-1,
cytotoxic T-lymphocyte-associated protein 4 - CTLA-4) with
monoclonal antibodies, the immune response against tumors can
be unleashed (144). It is clear that T cells are the main drivers of
immune checkpoint inhibitor responses, but a role of NK cells
Frontiers in Immunology | www.frontiersin.org 6
herein has been proposed (145). Several reports find PD-1-
dependent effects of NK cells in specific tumors including MM
(146), Kaposi sarcoma (147), Hodgkin lymphoma (148) and
head and neck cancer (149). Other studies indicate that the
expression of PD-1 in NK cells is minor or neglectable (150) and
the exact function of NK cells in anti-PD-1/PD-L1 therapy
remains a matter of debate (151). Importantly, vast evidence
indicates the direct involvement of STAT3 in driving PD-L1 and
PD-L2 expression in tumor cells (132, 152–154). For example, in
T cell lymphoma STAT3 is required for induction of PD-L1
transcription by directly binding its promoter (153). Therefore,
combinatorial inhibition of STAT3 and PD-L1/PD-1 axis has
been explored as an attractive approach. Encouraging results
from preclinical studies (33, 155, 156) led to first clinical trials
combining STAT3 inhibitor (BBI-608) with anti-PD-L1
therapies in metastatic colorectal carcinoma (NCT03647839,
NCT02851004) or STAT3 targeting antisense oligonucleotide
(AZD9150) with anti-PD-L1 therapy in NSCLC (NCT03334617)
and other solid tumors. It remains unclear whether NK cells
contribute to this combination therapy outcome. Xu et al.
suggested that in vitro combination of PD-L1 and STAT3
inhibition enhances NK-cell cytotoxicity against prostate
cancer cell lines, but the in vivo relevance still needs to be
elucidated (157).

Novel immune checkpoint molecules are currently emerging
and some have entered clinical trials or have recently been
approved. In contrast to the above described PD-1 and CTLA-4,
the expression of novel checkpoints: T cell immunoreceptor with
Ig and ITIM domains (TIGIT), lymphocyte-activation gene 3
(LAG-3) and T cell immunoglobulin and mucin-domain-
containing-3 (TIM-3) is clearly shared between T and NK cells
(158–161). The exact role of STAT3 in the regulation of these
checkpoints has not been addressed in NK cells. In T regulatory
cells, TIM-3 is strongly downregulated upon STAT3 inhibition
suggesting a potential dependency of TIM-3 expression on STAT3
in other lymphocytes (162). It is attractive to speculate that LAG-3
expression in NK cells might be enhanced by STAT3 signaling. IL-
12, which predominantly signals via STAT4 and STAT3, was
shown to upregulate LAG-3 expression in NK cells (163). In line,
STAT3 inhibition together with blockage of the STAT3-activating
cytokine IL-6, downregulated TIGIT expression in the human
NK92 cell line. Combination of TIGIT checkpoint inhibitor with
blockage of IL-6R and STAT3 enhanced cytotoxicity of NK92 cells
towards prostate cancer cells (164). Although further
investigations are essential, both studies suggest a potential
synergism between STAT3 targeting molecules and novel
checkpoint inhibitors in driving NK responses.
CONCLUSION AND OUTLOOK

STAT3 regulates immune evasion from NK cells on several
different levels. It helps tumor cells to hide from NK cells by
downregulating activating ligands, drives an immune suppressive
environment, which in turn limits the chemoattraction and
activity of NK cells, and intrinsically regulates NK-cell responses
July 2022 | Volume 13 | Article 947568
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(Figure 2). Somatic GOF mutations in STAT3 have an oncogenic
potential in NK cells underlining its key role in NK-cell biology. It
remains unclear why the effects of STAT3 on NK-cell biology are
so complex and context dependent. The discrepancy between
some findings in human and mouse NK cells might come from
in vitro cultures of human NK cells that do not reflect the situation
in vivo with different cytokines present in the tumor
microenvironment in the mouse models. Moreover, one cannot
exclude that the results obtained using mice with STAT3-deficient
NK cells are influenced by compensatory mechanisms, including
upregulation of STAT5, which is a key driver of NK-cell survival
and functionality (77, 165, 166). Not only can the STATs
compensate for each other (23, 167) but also crosstalk to other
signaling pathways (168). This adds another layer of complexity in
understanding the role of STAT3 in NK-cell anti-tumor responses.

Inhibition of STAT3 signaling is currently explored in many
clinical trials for solid and hematopoietic tumors. The direct
approaches have reached clinical trials but achieving specificity
over other STAT family members remains challenging (33, 169,
170). Based on the current evidence, STAT3 inhibition might not
only impair tumor cell survival but also enhance their recognition
by NK cells. Moreover, targeting NK cell-intrinsic STAT3 could
unleash their anti-tumor responses in some tumor models (87),
while the consequences on other aspects of NK-cell functionality
are difficult to predict. At the moment, there is an unmet need
to understand the effects of STAT3 inhibitors on NK-cell anti-
tumor responses in vivo to be able to foresee the clinically
relevant consequences.

It is well appreciated that combination therapies enhance the
efficacy and reduce resistance compared to monotherapies. This
has triggered extensive attempts in combining STAT3 inhibitors
Frontiers in Immunology | www.frontiersin.org 7
with other drugs (33). A new avenue in immunotherapy is opened
by combinations of STAT3 inhibitors explored with the emerging
immune checkpoint inhibitors. Importantly, targeting STAT3 in
the immune system might have complex systemic effects ranging
from autoimmunity to immunodeficiency as indicated by
phenotypes of patients with mutations in STAT3 (112–116). In
summary, targeting STAT3 might be an attractive approach in
restoring NK-cell anti-tumor immunity but needs to be carefully
evaluated in different tumor types and biological contexts.
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PD-1 Mediates Functional Exhaustion of Activated NK Cells in Patients
With Kaposi Sarcoma. Oncotarget. (2016) 7(45):72961–77. doi: 10.18632/
oncotarget.12150

148. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, et al. Immune
Evasion via PD-1/PD-L1 on NK Cells and Monocyte/Macrophages is More
Prominent in Hodgkin Lymphoma Than DLBCL. Blood. (2018) 131
(16):1809–19. doi: 10.1182/blood-2017-07-796342

149. Concha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL.
PD-L1 Mediates Dysfunction in Activated PD-1 Þ NK Cells in Head and
Neck Cancer Patients. Cancer Immunol Res (2018) 6(12):1548–60. doi:
10.1158/2326-6066.CIR-18-0062

150. Judge SJ, Dunai C, Aguilar EG, Vick SC, Sturgill IR, Khuat LT, et al. Minimal
PD-1 Expression in Mouse and Human NK Cells Under Diverse Conditions.
J Clin Invest (2020) 130(6):3051–68. doi: 10.1172/JCI133353
Frontiers in Immunology | www.frontiersin.org 11
151. Cho MM, Quamine AE, Olsen MR, Capitini CM. Programmed Cell Death
Protein 1 on Natural Killer Cells: Fact or Fiction? J Clin Invest Am Soc Clin
Invest (2020) 130:2816–9. doi: 10.1172/JCI137051

152. Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E, et al.
PD-L1 is Commonly Expressed and Transcriptionally Regulated by STAT3
and MYC in ALK-Negative Anaplastic Large-Cell Lymphoma. Leukemia.
(2017) 31(7):1633–7. doi: 10.1038/leu.2017.103

153. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al.
Oncogenic Kinase NPM/ALK Induces Through STAT3 Expression of
Immunosuppressive Protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U
S A (2008) 105(52):20852–7. doi: 10.1073/pnas.0810958105

154. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez
GA, et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and
PD-L2 Expression. Cell Rep (2017) 19(6):1189–201. doi: 10.1016/
j.celrep.2017.04.031

155. Luo F, Luo M, Rong QX, Zhang H, Chen Z, Wang F, et al. Niclosamide, an
Antihelmintic Drug, Enhances Efficacy of PD-1/PD-L1 Immune Checkpoint
Blockade in non-Small Cell Lung Cancer. J Immunother Cancer (2019) 7
(1):245. doi: 10.1186/s40425-019-0733-7

156. Ku JM, Hong SH, Kim HI, KimMJ, Ku S-J, Bae K-R, et al. SH003 Overcomes
Drug Resistance and Immune Checkpoints by Inhibiting JAK-STAT3
Signaling in MCF7/ADR Cells. Phytomed Plus (2021) 1(4):100111. doi:
10.1016/j.phyplu.2021.100111

157. Xu LJ, Ma Q, Zhu J, Li J, Xue BX, Gao J, et al. Combined Inhibition of
JAK1,2/Stat3−PD−L1 Signaling Pathway Suppresses the Immune Escape of
Castration−Resistant Prostate Cancer to NK Cells in Hypoxia. Mol Med Rep
(2018) 17(6):8111–20. doi: 10.3892/mmr.2018.8905

158. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The
Interaction of TIGIT With PVR and PVRL2 Inhibits Human NK Cell
Cytotoxicity. Proc Natl Acad Sci U S A (2009) 106(42):17858–63. doi:
10.1073/pnas.0903474106

159. Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-
Pequignot E, et al. LAG-3, a Novel Lymphocyte Activation Gene Closely
Related to CD4. J Exp Med (1990) 171(5):1393–405. doi: 10.1084/
jem.171.5.1393

160. Gleason MK, Lenvik TR, McCullar V, Felices M, O’Brien MS, Cooley SA,
et al. Tim-3 is an Inducible Human Natural Killer Cell Receptor That
Enhances Interferon Gamma Production in Response to Galectin-9. Blood.
(2012) 119(13):3064–72. doi: 10.1182/blood-2011-06-360321

161. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-
Inhibitory Receptors With Specialized Functions in Immune Regulation.
Immunity. (2016) 44(5):989–1004. doi: 10.1016/j.immuni.2016.05.001

162. Huang L, Xu Y, Fang J, Liu W, Chen J, Liu Z, et al. Targeting STAT3
Abrogates Tim-3 Upregulation of Adaptive Resistance to PD-1 Blockade on
Regulatory T Cells of Melanoma. Front Immunol (2021) 12:1120. doi:
10.3389/fimmu.2021.654749

163. Sun H, Sun C, Xiao W. Expression Regulation of Co-Inhibitory Molecules on
Human Natural Killer Cells in Response to Cytokine Stimulations. Cytokine.
(2014) 65(1):33–41. doi: 10.1016/j.cyto.2013.09.016
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