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Abstract: Now there is general agreement that the purine nucleoside adenosine is an important neuromodulator in the 

central nervous system, playing a crucial role in neuronal excitability and synaptic/non-synaptic transmission in the hip-

pocampus and basal ganglia. Adenosine is derived from the breakdown of extra- or intracellular ATP and is released upon 

a variety of physiological and pathological stimuli from neuronal and non-neuronal sources, i.e. from glial cells and exerts 

effects diffusing far away from release sites. The resultant elevation of adenosine levels in the extracellular space reaches 

micromolar level, and leads to the activation A1, A2A, A2B and A3 receptors, localized to pre- and postsynaptic as well as 

extrasynaptic sites. Activation of presynaptic A1 receptors inhibits the release of the majority of transmitters including 

glutamate, acetylcholine, noradrenaline, 5-HT and dopamine, whilst the stimulation of A2A receptors facilitates the release 

of glutamate and acetylcholine and inhibits the release of GABA. These actions underlie modulation of neuronal excitabil-

ity, synaptic plasticity and coordination of neural networks and provide intriguing target sites for pharmacological inter-

vention in ischemia and Parkinson’s disease. However, despite that adenosine is also released during ischemia, A1 adeno-

sine receptors do not participate in the modulation of excitotoxic glutamate release, which is nonsynaptic and is due to the 

reverse operation of transporters. Instead, extrasynaptic A1 receptors might be responsible for the neuroprotection af-

forded by A1 receptor activation. 
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INTRODUCTION 

 Since the first suggestion by Drury and Szent-Györgyi in 
1929 [1] that extracellular adenosine may have a physiologi-
cal effect on living cells, forty-one years elapsed before it 
was shown that adenosine acts at the subcellular level to in-
crease cAMP [2]. Studies have also shown that adenosine is 
released [3] from cortical slices and inhibits acetylcholine 
(ACh) release from cholinergic terminals evoked by axonal 
stimulation via activation of theophylline-sensitive receptors 
[4, 5]. The finding [5] that theophylline competitively inhib-
ited the presynaptic inhibitory effect of adenosine (Ki = 21 
μM) and nucleotides has triggered studies using purinergic 
transmission and changed the dogma that nucleotides might 
have exclusive effects on postsynaptic sites. 

 In 1978, Burnstock proposed [6] that there were two 
purinergic receptors: adenosine-sensitive P1 and ATP/ADP-
sensitive P2 receptors. Burnstock concluded that P1 receptors 
were located presynaptically and P2 receptors were located 
on the postsynaptic site. A couple of years later, studies 
found that both ATP and its non-metabolising compound 

, -methylene ATP were able to act presynaptically on P2X 
receptors on the nerve terminals to potentiate transmitter 
release [7-9]. 

 The general view is that adenosine is not a transmitter 
substance. It is not synthesised and/or stored in vesicles and 
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 is not released from nerve terminals in response to depolari-
sation followed by Ca

2+
-influx, although recent studies 

raised the possibility that adenosine could be also released in 
a vesicular fashion [10]. It is the degradation product of ATP 
in the extracellular space and may act as a chemical messen-
ger at ambient concentrations. Therefore, it is generally ac-
cepted that the presence of ATP and its metabolite adenosine 
in the extracellular space may function in the central nervous 
system as nonsynaptic signalling molecules that diffuse far 
away from the cells where they originated from and tonically 
influence chemical neurotransmission [11], inflammation 
[12, 13] and immune responses [14]. Although the role of 
ATP in immunity is closely related to the role of its break-
down products, i.e., the nucleoside adenosine, as far as the 
chemical neurotransmission is concerned, adenosine and 
nucleotides such as ATP, ADP and AMP all have their own 
presynaptic effects on chemical neurotransmission [5, 9]. 
These molecules can inhibit or facilitate the release of trans-
mitters via activation of P1 or P2X receptors. To date, two 
families of purinergic receptors have been defined, P1 and P2 
receptors [15]. Adenosine acts on P1 receptors, which are 
subdivided into G-protein-coupled A1, A2A, A2B and A3 re-
ceptor subtypes [16]. The primary second messenger of all 
four subtypes of adenosine receptors is adenylate cyclase, 
which is either activated or inhibited depending on the type 
of receptor that is stimulated. A1 and A3 receptors are cou-
pled to Gi, and their activation results in a decrease of cAMP 
levels, increase of K

+
 conductance, and decrease of transient 

Ca
2+

 conductance important in transmitter release. These 
effects are analogous to the effect of presynaptic M2 acetyl-
choline receptors or 2 adrenergic receptors, both of which 
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are Gi-coupled receptors. Adenosine A2A and A2B receptor 
subtypes, however, are coupled to Gs and increase levels of 
cAMP. 

SOURCE OF EXTRACELLULAR ADENOSINE 

 The role of extracellular space has been emphasized in 
nonsynaptic chemical interactions [11]. Extracellular adeno-
sine is thought to be generated in the extracellular space ei-
ther as a breakdown product of released ATP [17] or as the 
released adenosine, depending on the type of stimulus (e.g. 
during ischemia, [18]). Because ATP is ubiquitous, all me-
tabolically active cells of the nervous system are able to syn-
thesise ATP, which provides a potential pool for the release 
of adenosine. Therefore, the cellular source of released 
purines in the hippocampus and basal ganglia could be any 
cell type present in these brain areas (i.e., nerve terminals, 
astrocytes and other types of glia, microglial cells and endo-
thelia). The majority of ATP is formed in the mitochondria 
by oxidative phosphorylation, which results in approxi-
mately 5-10 mM ATP concentration in the cytoplasm under 
normal metabolic conditions. In addition, ATP has also been 
shown to be taken up and stored in synaptic vesicles of nerve 
terminals [19] and astrocytes [20]. There is, however, intense 
controversy about whether astrocytes can exocytose trans-
mitters in vivo [21]. Conversely, the basal extracellular 
adenosine concentration was much lower (in the low-
micromolar to high-nanomolar range), and the majority of 
adenosine was taken up into cells and rapidly reincorporated 
into ATP stores or deaminated by adenosine deaminase un-
der normal metabolic conditions [21, 22]. 

 A wide variety of stimuli are known to release ATP 
and/or adenosine to the extracellular space, which could 
theoretically lead to sufficient purine levels to activate either 
ATP or adenosine receptors [19, 22, 23]. Indeed, ATP and 
adenosine have been shown to be released in response to 
KCl depolarisation [24] low- [25, 26] and high-frequency 
[25, 27, 28] electrical stimulation from acute hippocampal 
and striatal slices and in response to glutamate receptor acti-
vation [29]. Interleukin-1  (IL-1 ), a cellular mediator of 
inflammation is able to release ATP from hippocampal slices 
[30]. Generally, it appears that the proportion of adenosine 
derived from the extracellular breakdown of ATP is higher 
when the stimulation frequency is higher [25]. ATP and 
various transmitters are released from nerve terminals when 
exocytosis occurs in response to neuronal firing because neu-
rotransmitters are stored together with ATP in the vesicles. 
ATP could also be released from postsynaptic sites in re-
sponse to activation of receptors by primary transmitters 
[31]. Various purines, including ATP and adenosine, are also 
released from the hippocampus and striatum in vivo by the 
quasi-physiological stimuli mentioned above [32-35]. It is 
also important to mention that depolarising stimuli lead to 
the extracellular accumulation of not only adenine nucleo-
tides and nucleosides but also guanine and pyrimidine nu-
cleosides, such as uridine, which might also act as neuroac-
tive substances under certain circumstances [36-38].  

 Although the stimulation-dependent release of ATP and 
adenosine by conventional neuronal activity is well docu-
mented, these stimuli probably result in a spatially restricted, 
localised increase in extracellular purine levels, which con-

tribute to the synaptic transmission and the modulation of 
pre- and post-synaptic functions within the synaptic cleft. 
Thus, ATP-metabolising ectoenzymes, present on the nerve 
terminal membrane, and nucleoside transporters may 
strongly limit further purine availability. 

 Pathological events are also known to powerfully stimu-
late purine release. These signals include mechanical [20, 39, 
40] and hypotonic [41] stimuli, hypoxia/ hypoglycemia/ 
ischemia and consequent energy deprivation [18, 26, 42-44], 
inflammatory signals, such as bacterial lipopolysaccharide 
(LPS) [45, 46], and cytolysis. Among pathological stimuli, 
hypoxia and ischemic-like conditions are well-known causes 
of adenosine release in the striatum and hippocampus both in 
vitro [18, 47-53] and in vivo [54-58] (for further reference 
see [22]). However, unlike extracellular adenosine accumu-
lation detected in response to physiological stimuli, the 
source of adenosine released by metabolic distress is mainly 
intracellular [59]. Pathological signals could release purines 
from neurons and non-neuronal cells. This release would 
result in a purine-rich extracellular milieu that could lead to a 
widespread activation of receptors that may reach neighbour-
ing or distant cells, such as astrocytes and microglia. Moreo-
ver, nucleotides and nucleosides themselves may promote 
further release of purines, by a homo- or heteroexchange 
mechanism, if they reached relatively high concentrations in 
the extracellular space [60]. 

 If purines are in the extracellular space, then their extra-
synaptic concentrations are controlled by the enzymes that 
catalyse their conversion [61]. Several enzyme families are 
responsible for the extracellular degradation of ATP in the 
nervous system. The first step of the inactivation of ATP is 
mediated by the family of ectonucleoside triphosphate 
diphosphohydrolases (E-NTPDases, EC 3.6.1.5, also known 
as ectoATPase or apyrase), which are able to hydrolyse ATP 
and ADP to AMP [61]. These enzymes show widespread 
distribution in the brain [62, 63] and have micromolar Km for 
ATP and ADP, which causes rapid and highly effective hy-
drolysis of ATP in almost all neuronal tissues (Table 1). In 
addition to the E-NTPDase family, ATP can also be dephos-
phorylated by ecto-nucleotide pyrophosphatases (E-NPPs) 
and alkaline phosphatases, which both have broader sub-
strate specificity and widespread tissue distribution [61]. The 
next step of extracellular inactivation is the hydrolysis of 
AMP by the ecto-5`nucleotidase (EC 3.1.3.5) (CD73) en-
zyme, which is the rate-limiting step in the formation of 
adenosine [19, 64]. Ecto-5’-nucleotidase exhibits a micromo-
lar Km for AMP and is feed-forwardly inhibited by ATP, 
which results in a delayed, ‘burst-like’ adenosine production 
[65]. It is also widely expressed in the brain, and it is pre-
dominantly associated to glial cells [66, 67]; however, its 
expression has also been demonstrated in purified hippo-
campal and striatal nerve terminals [68, 69]. Adenosine 
deaminase and adenosine kinase are the key enzymes in 
adenosine metabolism. Adenosine deaminase catalyses the 
deamination of adenosine to inosine [70], and adenosine 
kinase catalyses the phosphorylation of adenosine to AMP. 
Microglial cells are brain-specific macrophages that are able 
to release adenosine, produce it through ATP breakdown and 
respond to extracellular adenosine Fig. (1). Microglial cells 
are also equipped with different adenosine receptors [71]. 
They express functional A1, A2A and A3 but not A2B adeno-
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sine receptors [71], which regulate different aspects of the 
microglial response [13]. 

Table 1. Kinetic Parameters of ATP, ADP and AMP Hy-

drolysis in Rat Hippocampal Slices (Data are Taken 

From [63]) 

 Km Vmax 

ATP 322 ± 95.24 μM 14.5 ± 3.4 nmol/min/prep 

ADP 321.5 ± 94.4 μM 22.6 ± 3.8 nmol/min/prep 

AMP 267 ± 52.88 μM 4.99 ± 0.44 nmol/min/prep. 

 

 Adenosine-mediated actions can be terminated by its 
uptake into the cells via specific nucleoside transporters, 
which are widely expressed in the nervous system. Specific 
nucleoside transporters consist of two families: equilibrative 
transporters (ENTs) and concentrative transporters (CNTs). 
ENTs are driven by the concentration gradient, and CNTs 
are driven by the sodium gradient [72, 73]. ENTs can carry 
different nucleosides, including adenosine and inosine, but 
not nucleotides, across the cell membrane in both directions. 
They are regarded as the dominant nucleoside transporters of 
the brain. Because the intracellular adenosine level under 
normal metabolic conditions is in the low micromolar range 

[22], ENTs loaded from the extracellular space by excess 
adenosine mediate adenosine uptake into the nerve terminals. 
When adenosine is taken up, the adenosine kinase and 
adenosine deaminase enzymes convert it to AMP and 
inosine, respectively, thereby maintaining the driving force 
of the carrier. However, the ENTs can also act in a reverse 
direction under certain circumstances, which mediates the 
release of adenosine into the extracellular space. Excessive 
accumulation of adenosine could occur during energy depri-
vation or metabolic distress when ATP stores are depleted 
and AMP is generated intracellularly. Cytosolic 
5’nucleotidase, which has a relatively high Km for AMP (1-
14 μM), becomes active under energy deprivation and accu-
mulates adenosine intracellularly. This adenosine then flows 
out to the extracellular space in a transporter mediated man-
ner [22, 65]. 

EXTRACELLULAR CONCENTRATIONS OF 
ADENOSINE 

 The availability of extracellular adenosine is determined 
by a balance between the speed of decomposition of ATP by 
ectonucleotidases [64] and the rate of release of ATP and 
adenosine. Extracellular ATP is decomposed to adenosine in 
the hippocampus with a half-life of about 200 msec [17]. 
The maintenance of an ambient concentration of adenosine 
in the extracellular space is mainly dependent on ATP re-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A schematic model of the interaction of P2X7, CB1 and A1 receptors located on glutamatergic terminals. Activation of P2X7 recep-

tors facilitate and those of A1 receptors reduces the release of glutamate. Glutamate (Glu) released into synaptic gap activates AMPA and 

NMDA receptors on the postsynaptic site. ATP released from astrocytes [20] and microglia [172] acts on P2X7 receptors located on the termi-

nal of glutamatergic neurons and facilitates the release of Glu ([173] for review see [174]). Adenosine decomposed from ATP acts on A1 

receptors inhibiting the release of Glu [168, 175]. This inhibitory effect of A1 receptor activation may be mediated by inhibiting voltage-

dependent Ca
2+

 channels, which reduces Ca transients measured in the bouton [176]. CB1 cannabinoid receptors together with A1 receptors 

are also expressed on glutamatergic terminals [80] and activation of both of these receptors results in a decrease of Glu release. Extremely 

high concentrations of adenosine act on A2A receptors to increase the release of Glu [77]. 
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lease from astrocytes [74]. Once ATP is released into the 
extracellular space, it can be rapidly metabolised (within 
seconds, [17]) to adenosine, which is normally present in a 
concentration between 10 and 30 nM. Under hypoxia or 
ischemia, adenosine concentrations can reach 20 [17] and 30 
μM [75], respectively, in the extracellular space of the hip-
pocampus. According to Zetterström et al. (1982) [58], 
adenosine concentrations under resting conditions can be as 
high as 1-2 μM. One in vivo study observed adenosine levels 
around 19- to 23-fold compared with resting levels in re-
sponse to ischemia [55]. Extracellular concentrations of 
adenosine and ATP of neuronal or glial origin can increase 
markedly in response to inflammation [22]. Once released 
into the extracellular space, adenosine may diffuse far away 
and reach nonsynaptic A1 receptors as well as high-affinity 
nonsynaptic A2A receptors. Therefore, the balance between 
A1-receptor-mediated neuroprotective and A2A receptor-
mediated excitotoxic effects plays an important role in the 
outcome of adenosine action [76]. At lower concentrations 
of adenosine, the A1 receptors were mainly tonically acti-
vated and A2A receptors were not stimulated [77]. However, 
neuronal activity increased the bursting rate and the concen-
tration of adenosine in the extracellular space, which caused 
both receptors to get tonically activated. It was observed that 
the stimulation of A2A receptors by adenosine, formed from 
ATP at high-frequency neuronal firing, caused a down-
regulation of the A1 receptors. This finding supports observa-
tions that A2A receptor blockade potentiates the neuroprotec-
tive actions of A1 receptor activation [78].  

EFFECT OF ADENOSINE ON TRANSMITTER RE-
LEASE 

 It is generally accepted that adenosine plays a crucial role 
in neuronal excitability and synaptic transmission in the 
CNS. Electrophysiological and neurochemical evidence 
showed that presynaptic A1 receptor activation reduced the 
release of different transmitters in the CNS including the 
hippocampus and basal ganglia (Table 2). The adenosine A1 
receptors are widely distributed in the CNS, and their activa-
tion induces several responses. These responses include in-
hibition of voltage dependent Ca

2+
 channels, activation of K

+
 

channels resulting in hyperpolarisation and inhibition of 
adenylyl cyclase, all of which may cause inhibition of trans-
mitter release. Furthermore, evidence was observed that 
nerve terminals were equipped with A2A receptors, and 
stimulation of these receptors increased the release of differ-
ent transmitters. 

Electrophysiological Evidence 

 Activation of A1 receptors decreases synaptic transmis-
sion in the hippocampus [79]. The stimulation of A1 recep-
tors located on Schaffer collateral axon terminals by adeno-
sine decomposed from ATP inhibited the field EPSPs and 
EPSCs in hippocampal slices [80]. This finding indicated 
that the release of glutamate (Glu) Fig. (1) was inhibited 
from the hippocampus [81, 82]. Other studies also shed light 
on that endogenous adenosine, involved in the tonic A1 re-
ceptor mediated inhibition of glutamatergic transmission, has 
largely astrocytic origin. Astrocytes are able to release ATP 
in a vesicular fashion [20], which then broke down to adeno-

sine by the ectonucleotidase cascade [74]. Activation of hip-
pocampal astrocytic network leads to heterosynaptic depres-
sion of excitatory transmission, a mechanism, whereby the 
stimulation of a particular pathway could suppress the acti-
vation of a nearby pathway and coordinate the activity of a 
given network [83]. Heterosynaptic depression is mediated 
by A1 adenosine receptors and selective gliotoxins [84] or 
selective knockdown of exocytotic machinery in astrocytes 
[74] leads to the disappearance of A1-receptor mediated in-
hibition of excitatory transmission and the heterosynaptic 
depression in the hippocampal slices. 

 In this preparation, A1 and CB1 cannabinoid receptors 
were colocalised on glutamatergic terminals [80]. A1 recep-
tor activation by endogenous adenosine (e.g., increased in 
concentration during ischemia or hypoxia) prevented the 
CB1 receptor-mediated reduction of Glu release. Accord-
ingly, A1 receptor antagonism with caffeine potentiated the 
effects of endocannabinoids [80], which indicated that can-
nabinoid signalling and presynaptic control of glutamatergic 
transmission in the hippocampus was limited by the tonic 
modulation mediated by the ambient levels of adenosine 
present in the extracellular space. Interestingly, this study 
concluded [80] that the effects of marijuana on hippocampal-
dependent memory and cognition in humans might be poten-
tiated during the simultaneous consumption of marijuana and 
caffeine, which happens frequently.  

 By contrast, in the striatum, A2A receptor activation 
seems to play a permissive role on CB1 receptor mediated 
depression of excitatory transmission [85]. This effect, how-
ever, is related with the activation of postsynaptic A2A recep-
tors, as the effects of cannabinoid agonists were reduced in 
slices from mice lacking post-synaptic striatal A2A receptors. 

 A1 receptor mediated inhibition of excitatory transmis-
sion could serve as fine tuning mechanism to decrease the 
noise of excitatory transmission but also as a break of exces-
sive synaptic activation under pathological conditions and is 
involved in the regulation of widespread physiological and 
pathological phenomena, from the regulation of arousal to 
neuroprotection and seizure susceptibility [81].  

 Activation of A1 receptors also inhibits excitatory trans-
mission in the striatum [86], while excitatory A2A receptors 
participate in NMDA receptor dependent long-term potentia-
tion of synapses between cortical pyramidal neurons and 
principal striatal medium spiny neurons [87, 88]. Moreover, 
a recent study showed that co-activation of A2A receptors and 
fibroblast growth factor (FGF) receptor not only facilitates 
corticostriatal long term potentiation but also induce mor-
phological plasticity, by inducing increasing spine density 
and neurite formation by the activation of MAPK/ERK sig-
nalling pathway [89]. 

Neurochemical Evidence 

 The first neurochemical evidence for a presynaptic site of 
action of adenosine was shown on cholinergic terminals in 
the cerebral cortex and ileal Auerbach plexus [5]. In addi-
tion, the study by Vizi and Knoll [5] observed a presynaptic 
inhibitory effect of nucleotides (ATP, ADP and AMP) via 
their degradation product, adenosine and discussed the im-
pact of this effect on transmitter release. They described a
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Table 2. Neurochemical Evidence of Presynaptic Effect of Adenosine on Transmitter Release in the CNS 

 Transmitter Release Effect Receptor Mediated Reference 

ACh inhibition A1 [5, 158] 
Cerebral cortex 

 facilitation A2A [166, 167] 

GABA facilitation A2A [101] 

ACh 
facilitation 

inhibition 

A2A 

A1 
[92, 94] 

NA inhibition A1 [93, 99] 

Hippocampus 

Glutamate inhibition A1 [168] 

Glutamate inhibition A1 [169] 

5-HT inhibition A1 [170] 

GABA inhibition A2A [103] 

ACh 
no effect 

inhibition 

A2A 

A1 
[93] 

Striatum 

DA 
inhibition 

no effect 

A1 

A2A 

[93, 105, 171]  

 

phenomenon that was different from the generally accepted 
view that the transmitter of purinergic nerves, ATP, has ex-
clusive actions on P2 receptors of the postsynaptic sites [90]. 
Stimulation of A2A receptors resulted in an increased release 
of different transmitters, such as glutamate [65, 91] and ace-
tylcholine [92, 93]. 

 Following these pioneering investigations, subsequent 
studies revealed that the release of almost all transmitters of 
the CNS is regulated by inhibitory A1 and/or facilitatory A2A 
adenosine receptors (Table 2). For example, in acute hippo-
campal slices the electrically evoked release of acetylcholine 
is subject to dual modulation: it is inhibited by the activation 
of A1 receptors [92, 94] and facilitated by A2A receptors [92, 
93]. However, the spatial extension and intensity of the two 
kind of modulation is not equal. Whilst A1 –receptor medi-
ated inhibition is detected in all subregions of the hippocam-
pus, A2A receptor mediated facilitation is manifested only in 
the CA3 regions and in the dentate gyrus and not the whole 
hippocampus [92]. It also has been shown that endogenous 
adenosine, if released as such, preferentially activates A1 

receptors, whereas it is formed from the released ATP pref-
erentially activates A2A receptors [77]. Moreover aging and 
other pathological conditions seems to differentially affect 
inhibitory and facilitatory modulation. The level of endoge-
nous ATP and adenosine is increased during aging [95, 96] 
and in parallel with these changes the density of A1 receptors 
is decreased [96]. Consequently, a lower degree of inhibitory 
effect of adenosine agonists on acetylcholine release is de-
tected in hippocampal slices prepared from aged rats [95, 96] 
but see [97]. On the other hand, the number and functional 
responsiveness of A2A receptors is increased during aging 
[95, 97, 98]. 

 In addition to acetylcholine, other transmitters such as 
glutamate [65, 91] are also subject to dual modulation by A1 

and A2A receptors, respectively, whereas the release of 
noradrenaline (NA) [93, 99] and 5-HT [100] appears to be 
exclusively modulated by A1 receptors and that of GABA by 
A2A receptors [101] in the hippocampus. Adenosine inhibits 
the release of [

3
H]Glu from hippocampal slice preparation, 

an effect mediated via A1 receptors Fig. (2). 

 Similar rules seems to be valid for the striatum, where the 
release of acetylcholine is regulated by both inhibitory A1 
and facilitatory A2A receptors [93, 102] and the release of 
GABA by A2A receptors [103], while the release of dopa-
mine and 5-HT is modulated by A1, but not A2A receptors 
[93, 104, 105].  

 During ischemia and/or hypoxia, the release of glutamate 
[106], NA, dopamine (DA) [107] and adenosine [26, 108] 
was enhanced. During ischemia, the release of transmitter 
was [Ca

2+
]o-independent [11] and mainly originated extra-

synaptically from varicose nerve terminals without synaptic 
contact due to the reverse operation of transporters. There-
fore, it seems very unlikely that adenosine is able to reduce 
transmitter release during ischemia Fig. (3). In support of 
this assumption, we showed that [

3
H]glutamate release from 

the hippocampus in response to oxygen–deprivation was 
increased and cannot be inhibited by adenosine and the se-
lective A1 receptor antagonist 1,3-dipropyl-8-cyclopentyl-
xanthine (DPCPX) [109] failed to enhance the release Fig. 
(3). However, low temperature completely prevented the 
effect of glucose and oxygen deprivation (OGD) to release 
glutamate Fig. (3), which act nonsynaptically on NR2B re-
ceptors Fig. (4). 

SYNAPTIC AND NONSYNAPTIC ADENOSINE RE-
CEPTORS 

 Whilst A1 adenosine receptors are highly expressed in 
many brain regions including the neocortex, hippocampus 
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cerebellum and brain stem, A2A receptors display a more 
restricted localization, with high expression level in the stria-
tum and olfactory bulb and lower expression in other brain 
regions [110]. By contrast, the expression of A2B and A3 re-
ceptors is moderate or low in most areas of the brain [111]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Inhibitory effect of adenosine on glutamate release evoked 

by axonal stimulation. Hippocampal slice preparation of the rat. For 

Methods see [147]. Electrical field stimulation was used. Note that 

A1 adenosine receptor antagonist DPCPX prevented the effect of 

adenosine to reduce Glu release. *, p<0.01 (compared to control); #, 

p<0.05 (comparison of the effect of adenosine and adenosine plus 

DPCPX). 

 

 Using quantitative autoradiography, both pre-and post-
synaptic localisation of A1 receptors was shown in the CA1 
region of rat hippocampus [112]. More recent investigations 
with postembedding immunogold electronmicroscopy re-
vealed that A1 receptors are co-localized with P2Y1 receptors 
in hippocampal synapses and distributed to the pre-and post-
synaptic membrane as well as to the surrounding astroglial 
membrane [113]. In glutamatergic synapses of hippocampus, 
where both A1 and A2A receptors are presynaptically ex-
pressed [114], the inhibition of synaptic transmission by 
tonic activation of A1 receptors was insurmountable with 
increasing concentrations of adenosine [79, 115]. There was 
an interaction between the two adenosine receptors, and acti-
vation of presynaptic A2A receptors by an agonist may lead to 
a decrease in the affinity of A1 receptors on the terminals 
[116, 117]. 

 In the basal ganglia, the typical localization of A2A recep-
tors are the dendrites and somata of striatopallidal GABAer-
gic neurons, where it is colocalized with D2 receptors. How-
ever, immune electronmicroscopy studies showed that it is 
also expressed, although less abundantly on axons and nerve 
terminals in both asymmetric and symmetric synapses, 
which implicate the role of A2A receptors in the modulation 

of excitatory transmission [118, 119]. Indeed, A1 receptors 
are coexpressed with A2A receptors on the same glutamater-
gic terminals in the striatum and form heterodimers, when 
they are co-transfected [120]. Activation of A2A receptors 
reduce the affinity of the A1 receptors for agonists, and pro-
vides a switch mechanism by which low and high concentra-
tions of adenosine inhibit and stimulate, respectively, gluta-
mate release [120]. A1-A2A heteromers are also recognized as 
targets for caffeine and it is presumed that chronic caffeine 
treatment leads to modifications in the function of the A1-
A2A heteromer that could underlie the strong tolerance to the 
psychomotor effects of caffeine [121]. On the other hand, the 
glial expression of A2A receptor is less prevalent than that of 
A1 receptors.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The effect of low temperature (12 
o
C) and the selective A1 

receptor antagonist DPCPX (50 nM) on combined oxygen glucose 

deprivation (OGD)-evoked [
3
H]glutamate efflux from rat hippo-

campal slices. Hippocampal slices were preloaded with 

[
3
H]glutamate and then superfused. After a 60-min preperfusion, 

perfusate samples were collected and the slices were exposed to 

OGD by the omission of the glucose and the replacement of 95% 

O2+5% CO2 with 95% N2 + 5 %CO2 from the perfusion solution 

according to the horizontal bar. Low temperature and DPCPX were 

applied from 30 min before the beginning of the sample collection 

period till the end of the sample collection period. The release of 

glutamate is expressed as a percentage of baseline. The curves show 

the mean±S.E.M of 16 (OGD), 7 (OGD + 12 
o
C) and 8 (OGD + 

DPCPX) experiments. 

CLINICAL ASPECTS 

 It is generally accepted that adenosine present in ex-
tracellular space and acting on A1 receptors reduces excita-
tory transmission. Adenosine has a neuroprotective action in 
brain injuries, like hypoxia, ischemia, epileptic seizures, and 
neuroinflammation. Therefore, adenosine A1 receptors have 
been suggested as a potential target for the treatment of neu-
rodegenerative diseases [122]. In agreement with this sug-
gestion it was found that inhibition of A2A receptors im-
proves neuronal recovery on brain injury [123]. 

Parkinson’s Disease 

 Corticolimbic and thalamic glutamatergic neurons and 
mesencephalic dopaminergic neurons innervate the 
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GABAergic medium-sized spiny neurons of the striatum 
[124]. These GABAergic pathways are the striatal efferent 
neurons (“indirect” pathways), which project via the globus 
pallidus and the subthalamic nucleus to output nuclei (sub-
stantia nigra and entopeduncular nucleus). The ‘‘direct’’ 
pathway sends axons directly to the GABAergic neurons 
[124]. D1-type receptors belong to the ‘‘direct’’ pathway and 
D2-type receptors signal to the ‘‘indirect’’ pathway [124]. 
The balance between these two pathways is essential for 
proper functioning of the extrapyramidal motor system 
[125]. Overactivity of the ‘‘indirect’’ striatal pathway plays 
an important role in generating parkinsonian symptoms 
[125]. The degeneration of the nigrostriatal dopaminergic 
pathway results in striatal dopamine depletion, which conse-
quently impairs the function of the basal ganglia circuits 
producing akinesia, bradykinesia, tremor, and rigidity [126]. 
Adenosine exerts its effects in the basal ganglia by acting 
through A1 and A2A adenosine receptors. The A2A receptors 
are co-localised and interact functionally with D2 receptors 
on the medium-sized spiny neurons of the ‘‘indirect’’ path-
way. In addition, A2A receptors also interact with NMDA 
receptors present on a subpopulation of medium spiny neu-
rons, in a negative way [127, 128]. 

 In the basal ganglia, A2A receptors are prevalently and 
selectively localised in dendrites, dendritic spines and axons 
of GABAergic neurons of the indirect pathway projecting 
from the caudate putamen to the external globus pallidus 
[118, 119]. Adenosine influences striatal output pathways 

known to be involved in motor symptoms and the onset of 
dyskinesia in Parkinson’s disease (PD). Therefore, inhibition 
of A2A receptors seems to be a potential target for neuropro-
tection in PD. Indeed, in rodent models of PD, A2A antago-
nism exerts antiparkinsonian actions [119, 129, 130]. Simi-
larly, this treatment proved to be effective against experi-
mentally-induced tremor [131]. The anti-tremor effect might 
be explained by the fact that A2A receptor antagonists re-
duced the release of ACh from the striatum [132]. Recently, 
it was shown that expression level and functionality of A2A 
adenosine receptors on human lymphocytes correlate with 
the severity of parkinsonian motor symptoms as scaled by 
the Unified Parkinson's Disease Rating Scale (UPDRS) 
[133], implicating that peripheral A2A receptors could also 
play a role in disease progression. Preclinical studies with 
istradefylline (an A2A selective antagonist) suggest that these 
antagonists prevent the development of dyskinesia induced 
by a dopamine agonist [134]. This mechanism offers a ra-
tionale for the A2A receptor antagonist treatment as a mono-
therapy of concurrent administration with levodopa or a do-
pamine receptor agonist [119, 135]. Unfortunately, clinical 
trials with istradefylline failed to fulfil expectations [119].  

 Nevertheless, the potential role of A2A receptors in neu-
rodegeneration of the nigro-striatal dopaminergic pathway is 
supported by a 30-year follow-up study [119, 136], which 
reported that there was an inverse relationship between con-
sumption of the non-selective adenosine receptor antagonist 
caffeine and the risk of PD. The neuroprotective action of 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Scheme of exocytosis of glutamate in response to axonal firing and its release during ischemia. Note that adenosine inhibits the 

release of Glu under physiological condition. This type of release is [Ca2+
]o-dependent. Glutamate is taken up by glutamatergic terminals 

through plasma membrane transporters. During ischemia the ion gradients that power Glu uptake run down and axonal firing fails to release 

Glu, but in response to reverse operation of Glu transporter Glu release occurs in [Ca
2+

]o–independent way. Glu released in this way diffuses 

far away and activates non-synaptic NR2B receptors inducing excitotoxicity [11]. Under this condition cooling inhibits the excessive release 

of Glu. 
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A2A receptor antagonism is further supported by preclinical 
studies. Administration of caffeine prevents MPTP-induced 
damage of dopaminergic terminals [137-139]. DPCPX, an 
A1 receptor antagonist treatment [137] or genetic deletion 
[137] of A2A receptors proved to be effective against the 
MPTP model of PD. However, inhibition of A2A receptors 
expressed on glial cells was also involved in the neuropro-
tective actions [140]. Cunha et al. [141] have shown that A2A 
receptors in the hippocampus and cerebral cortex are high- 
affinity receptors, whereas those in the striatum are different. 
Drugs that were effective in animal models of PD proved to 
be ineffective as neuroprotective agents in clinical trials 
[142, 143]. 

Ischemia 

 Glutamate is removed from the extracellular space by 
nonsynaptically localised glutamate transporters. Astrocytes 
possess two forms of these transporters, but glutamate is 
released from glial cells under ischemia due to a reversal of 
transporter operation. The cascade of events in response to 
hypoxia or cerebral ischemia is still being debated. However, 
it is generally accepted that a large amount of glutamate re-
lease causes excitotoxic effects Fig. (4). The excessive 
amount of glutamate leads to over-depolarization and the 
subsequent depression of evoked population potential size, 
and both A1 and A2A receptor activation has been shown to 
modulate the recovery from the loss of fEPSP in response to 
glutamatergic insult in the CA1 region of the hippocampus 
[144]. Evidence has accumulated that neuroprotection is also 
related to activation of nonsynaptic A1 receptors [78]. The 
A1 receptor-mediated effect of adenosine on the release of 
glutamate has been assumed to play a major protective role 
against post-ischemic damage [145]. However, this conclu-
sion was drawn from in vitro experiments under normoxic 
conditions e.g. [79, 146]. There is strong neurochemical evi-
dence that the release of transmitters under ischemic condi-
tions is mainly due to the reverse operation of transporters. 
The release was [Ca

2+
]o-independent, did not result from 

neuronal activity and was not subjected to presynaptic modu-
lation [11]. Lowering the temperature inhibited transporter 
operation [147, 148] and completely inhibited the extracellu-
lar flood of transmitter release, which indicated that the 
transporter was responsible for the release. To avoid excito-
toxicity due to extremely high concentrations of glutamate in 
the extracellular space and its possible effect on nonsynaptic 
high affinity NR2B receptors [11], local cooling or inhibition 
of transporter operation would be an efficient treatment. In 
addition, it was shown that damage after middle cerebral 
artery occlusion was not significantly altered by the lack of 
A1 receptor genes [149]. An interesting observation is that 
A1 receptor activation decrease brain energy metabolism [56] 
and the neuroprotective action of the chemokine fractalkine 
is mediated by the release of adenosine from microglia and a 
subsequent action on A1 receptors [150, 151]. All these data 
support the emerging view that neuroprotection, afforded by 
A1 receptor activation, is related with extrasynaptic, rather 
than synaptic receptors. 

Immune Responses 

 The original view that the brain is not involved in adap-
tive and innate immune reactions is no longer accepted. The 

innate immune system has been implicated in variety of neu-
rodegenerative disorders [152]. Multiple acute and chronic 
neurodegenerative disorders of the CNS are accompanied by 
activation of microglia and increased production of proin-
flammatory cytokines (IL-1, IL-6, IL-12, TNF ) and 
chemokines [153]. Adenosine possesses anti-inflammatory 
properties and inhibited proinflammatory cytokine produc-
tion via activation of A3 receptors [154]. However, it has 
also been shown [155] that A3 receptor stimulation had det-
rimental neurotoxic effects in cerebral ischemia. The case is 
similar to stimulation of A2A receptors as their activation 
may produce anti-inflammatory and proinflammatory actions 
[156]. Interestingly, the balance between the anti- and pro-
inflammatory actions of A2A receptor is governed by ex-
tracellular glutamate levels in the brain, and the increase in 
glutamate levels results in a shift of A2A effects from antiin-
flammatory to proinflammatory direction [157]. Adenosine 
involvement in immune response is supported by findings 
that evidence was obtained that there is a significant change 
in ectonucleotidase activites during experimental autoim-
mune encephalitis [158]. 

 The combined effects of adenosine on neurotoxicity and 
inflammatory processes have also led to considerations of its 
role in Lesch-Nyhan syndrome, and multiple sclerosis [159]. 

Epilepsy 

 It is known that during epileptic seizures, endogenous 
adenosine accumulates in significant amounts in the ex-
tracellular space and suppresses epileptic seizure activity 
[59, 160, 161]. Adenosine exerts an anticonvulsant effect on 
the A1 adenosine receptors by modulating ionic currents 
postsynaptically and reducing excitatory neurotransmitter 
release presynaptically [162]. In addition, A2A receptors 
modulate the stability of currents mediated by GABAA re-
ceptors microtransplanted into Xenopus oocytes from neuro-
surgically resected epileptic human nervous tissues [163]. In 
the model of chronic temporal lobe eplilepsy there is an 
upregulation of the A1 receptors [162]. An interesting obser-
vation is that a single convulsive episode in early life causes 
a delayed memory deficit in adulthood accompanied by a 
glutamatergic synaptotoxicity that was prevented by caffeine 
or adenosine A2AR antagonists [160]. 

Psychiatric Disorders 

 There is growing evidence that A2A receptors able to in-
teract with D2 dopamine receptors [164] which are major 
targets of psychoactive drugs. Therefore these receptors are 
promising candidate target for therapy applied in mood dis-
orders [165]. 

CONCLUDING REMARKS 

 It is now clear that adenosine is one of the most impor-
tant neuromodulators in hippocampus and basal ganglia, 
which regulates a wide variety of neuronal functions pre-, 
post- and non-synaptically, including synaptic transmission, 
neuromodulation, glia-neuron interactions and neuroimmu-
nomodulation. Nevertheless, there are a number of aspects 
which needs further investigation. Despite of the wealth of 
data on adenosine receptor mediated signaling at the molecu-
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lar and cellular level, the present knowledge is still limited at 
the systems level. This holds true to any aspects of puriner-
gic mechanisms including the release and inactivation 
mechanisms of adenosine and to presynaptic adenosine-
receptor mediated responses as well, which are well charac-
terized in in vitro systems, but poorly extrapolated to in vivo 
conditions. The progress along this line together with the 
utilisation of more adequate disease models might lead to the 
therapeutic utilization of purinergic signaling system, which 
offer a number of potential target sites for pharmacological 
intervention in the CNS pathology. 
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ABBREVIATIONS 

ACh = Acetylcholine 

CNT = Concentrative transporter 

DA = Dopamine 

DPCPX = 1,3-dipropyl-8-cyclopentylxanthine 

E-NPP = Ecto-nucleotide pyrophosphatase 

ENT = Equilibrative transporter 

E-NTPDase = Ectonucleoside triphosphate diphospho-
hydrolase 

FGF = Fibroblast growth factor 

Glu = Glutamate 

IL-1  = Interleukin-1  

LPS = Bacterial lipopolysaccharide 

NA = Noradrenaline 

OGD = Oxygen and glucose deprivation 

PD = Parkinson’s disease 

UPDRS = Unified Parkinson's disease rating scale 
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