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H I G H L I G H T S

• We apply novel image analysis techniques in radiomics and deep learning.
• These techniques can identify carotid artery disease from CT images.
• Radiomics and deep learning approaches outperformed the calcium score.
• These techniques may facilitate better stroke risk classification.
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A B S T R A C T

Purpose: To assess radiomics and deep learning (DL) methods in identifying symptomatic Carotid Artery Disease 
(CAD) from carotid CT angiography (CTA) images. We further compare the performance of these novel methods 
to the conventional calcium score.
Methods: Carotid CT angiography (CTA) images from symptomatic patients (ischaemic stroke/transient ischae-
mic attack within the last 3 months) and asymptomatic patients were analysed. Carotid arteries were classified 
into culprit, non-culprit and asymptomatic. The calcium score was assessed using the Agatston method. 93 
radiomic features were extracted from regions-of-interest drawn on 14 consecutive CTA slices. For DL, 
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convolutional neural networks (CNNs) with and without transfer learning were trained directly on CTA slices. 
Predictive performance was assessed over 5-fold cross validated AUC scores. SHAP and GRAD-CAM algorithms 
were used for explainability.
Results: 132 carotid arteries were analysed (41 culprit, 41 non-culprit, and 50 asymptomatic). For asymptomatic 
vs symptomatic arteries, radiomics attained a mean AUC of 0.96(± 0.02), followed by DL 0.86(± 0.06) and then 
calcium 0.79(± 0.08). For culprit vs non-culprit arteries, radiomics achieved a mean AUC of 0.75(± 0.09), 
followed by DL 0.67(± 0.10) and then calcium 0.60(± 0.02). For multi-class classification, the mean AUCs were 
0.95(± 0.07), 0.79(± 0.05), and 0.71(± 0.07) for radiomics, DL and calcium, respectively. Explainability 
revealed consistent patterns in the most important radiomic features.
Conclusions: Our study highlights the potential of novel image analysis techniques in extracting quantitative 
information beyond calcification in the identification of CAD. Though further work is required, the transition of 
these novel techniques into clinical practice may eventually facilitate better stroke risk stratification.

1. Introduction

Carotid Artery Disease (CAD) plays a major role in the development 
of ischaemic stroke [1]. 1 in 4 stroke survivors will have another stroke 
within five years, with most recurrences within one year [2]. This rep-
resents a critical window to reduce future stroke risk. Carotid endar-
terectomy is a surgical procedure that reduces the risk of stroke in 
participants with significant stenosis and is currently indicated based on 
the degree of carotid stenosis and the presence of relevant symptoms [3, 
4].

Whilst a known marker of atherosclerotic disease, the degree of 
stenosis alone fails to adequately identify ‘vulnerable’ patients. Stenosis 
does not inform about underlying plaque remodelling, plaque insta-
bility, or the degree of intimal inflammation; all processes which may 
spare luminal patency [5,6]. Furthermore, whilst the criteria for carotid 
revascularisation focuses on 70 % carotid stenosis (‘high-grade carotid 
stenosis’), the prevalence of such a degree of stenosis is low, and a high 
burden of disease may still be present in the absence of high-grade 
stenosis [7]. Similarly, while carotid artery calcification is another 
common marker of atherosclerosis, the association between carotid 
calcification and stroke risk is likewise unclear, and the quantification 
methods are not as standardised as their coronary counterparts [8,9]. 
Better tools are needed to characterise stroke risk.

Novel image analysis methods, such as radiomics and deep learning 
(DL), enable the extraction of higher-dimensional data from CTA scans 
that may be predictive of future vascular events [10]. Radiomics is a 
feature-based approach that extracts quantitative image-derived metrics 
that can then be fed into diagnostic and prognostic prediction models 
[10,11]. Similarly, convolutional neural networks (CNNs) are speci-
alised DL architectures that extract key spatial features from input im-
ages, mimicking the functionality of biological photoreceptor receptive 
fields [12]. In contrast to radiomics, CNNs do not require user-defined 
features for extraction, and are capable of automatically identifying 
de-novo features relevant to the specified task - such as the identification 
of vulnerable carotid arteries [13,14]. Both techniques enable the 
extraction of information from CTA scans beyond carotid luminal ste-
nosis or calcification.

This is a “proof of concept” study that aims to evaluate the utility of 
radiomics and DL methods in the risk stratification of CAD. We use a 
machine learning approach to assess the discriminative ability of these 
image analysis techniques in identifying symptomatic CAD from carotid 
CTA images. We then compare the performance of these methods to 
conventional methods of atherosclerotic assessment such as the calcium 
score.

2. Methods

2.1. Data extraction and collection

2.1.1. Study population and data
This retrospective study analysed unenhanced CT and CTA images 

pooled from three previous observational research vascular imaging 

datasets (ICARUSS, VISION and CHAI) originating from a single insti-
tution (Addenbrooke’s Hospital, Cambridge, UK) between 2011 and 
2016. Details on the methodology, ethical approvals and inclusion and 
exclusion criteria have been published previously [15,16].

Imaging was performed on a combined GE Discovery 690 PET-CT 
scanner with an integrated 64-slice CT scanner (GE Healthcare, Wau-
kesha, WI, USA), although PET imaging data was not included in this 
post-hoc analysis of CT images. CTA images were acquired from the 
aortic arch to the circle of Willis, using bolus tracking with a region-of- 
interest placed in the aortic arch. CTA acquisition parameters have been 
detailed previously [15,16].

2.2. Classification of arteries

Symptomatic (Sx) patients were defined as patients with confirmed 
carotid artery-related ischaemic stroke or TIA within 3 months before 
imaging. The carotid artery associated with precipitating the cerebro-
vascular event was deemed the ‘culprit’ (CC) carotid artery and deter-
mined via consistency with the clinical presentation of stroke (or TIA) 
symptoms, whilst the contralateral carotid artery was deemed the ‘non- 
culprit’ (NC) carotid artery. Carotid arteries with prior endarterectomy 
were excluded from analysis. Asymptomatic (Asx) patients in this study 
were patients with no prior TIA or stroke. Details on culprit carotid 
plaque identification have also been previously described [15,16].

2.3. Carotid artery analysis

Carotid arteries were evaluated both as single-slice and multi-slices. 
In single-slice analysis, carotid arteries were evaluated from a single 
axial CTA slice of original slice thickness 0.625 mm and slice spacing of 
0.4 mm, located at the carotid bifurcation. For multi-slice analysis, im-
ages were resampled to 3 mm slice thickness using the OsiriX MD soft-
ware resampling plugin (Version 10.0.3, Pixmeo SARL, Bernex, Geneva, 
Switzerland). 14 consecutive slices of the carotid CTA scans were ob-
tained, from three slices below the carotid bifurcation to 10 slices above 
[17]. These resulted in a total of 14 CTA images per carotid artery, and a 
final total of 1848 carotid CTA images. A simplified illustration of these 
methods have been illustrated in Fig. 1.

3. Approaches to carotid artery disease risk stratification

Three approaches to predict carotid artery status were evaluated; (1) 
the calcium score alone, (2) radiomic features (±calcium score), and (3) 
a DL approach (CNN).

3.1. Calcium scoring

Carotid calcification quantification was assessed by using the ‘cal-
cium scoring’ plug-in of OsiriX on unenhanced CT images, as per pre-
vious methodology [15]. The total calcium score per artery represents 
the sum of single calcium scores from all 14 slices of carotid artery, 
which includes the common and internal carotid arteries, and is 

E.P.V. Le et al.                                                                                                                                                                                                                                  European Journal of Radiology Open 13 (2024) 100594 

2 



expressed as a score in Agatston units [18].

3.2. Radiomic feature extraction

The open-source Python-coded radiomics package PyRadiomics 
(PyRad) was used to extract all radiomic features. PyRad enables the 
extraction of both first order and higher-order radiomic features that 
capture spatial interrelationships between pixels [19]. PyRad has been 
effectively used for radiomic feature extraction in both oncology and 
cardiovascular settings [20]. A total 93 radiomic features were extrac-
ted, spanning 7 different feature classes comprising of: (1) first order, (2) 
shape, (3) GLCM, (4) GLSZM, (5) GLRLM, (6) NGTDM and (7) GLDM. 
The formal definitions and equations are available from the online 
documentation at https://pyradiomics.readthedocs.io/.

A previous paper indicated that of the 93 extracted radiomic fea-
tures, 10 features demonstrated excellent robustness against perturba-
tions and inter-observer variability [17]. We conducted supplementary 
analyses that compared the predictive performances of including only 
these 10 “robust” features versus the full 93 features. Explainability 
analysis (elaborated in a latter section) was also conducted using these 
“robust” features only.

3.3. Image settings for radiomic feature extraction

Prior to feature extraction, two image pre-processing schemes were 
applied to the CTA scans: (a) Original (no pre-processing) and (b) 
Resegmentation. Resegmentation restricts the upper and lower limits of 
CT Hounsfield units for consideration [21]. A resegmentation filter was 
applied in the range of 0–200 HUs, reducing the effects of excess mac-
rocalcification and limiting the effect of luminal contrast and 

perivascular fat that might have been captured due to human error 
during segmentation of the region of interest [17].

In summary, the following image settings were investigated in the 
context of radiomic feature extraction:

• Single-slice analysis (at the carotid bifurcation):
o Without resegmentation (‘single-slice original’).
o With resegmentation to 0–200 HU (‘single-slice resegmented’).

• Multi-slice analysis (all 14 slices of the carotid artery):
o Without resegmentation (‘multi-slice original’).
o With resegmentation to 0–200 HU (‘multi-slice resegmented’).

3.4. Deep learning approach

CNNs are specialised DL architectures characterised by the convo-
lution operation which acts as a filter to extract spatially correlated 
features of an input image, similar to the receptive field of our photo-
receptors [22]. In comparison to traditional machine learning algo-
rithms which require the extraction of pre-defined features from images 
(e.g the calcium score, or other pre-defined radiomic features), CNNs 
automatically learn which features in the images make the best pre-
dictions [14].

Axial CTA slices were cropped to a 30 × 30 pixel image patch centred 
around the carotid artery to direct the DL model towards the relevant 
anatomy (Fig. 1). As per standard DL protocol, carotid images were 
dynamically augmented before input into the models for training. This 
image altering process adds an additional layer of robustness by pre-
venting excessive overfitting, and encourages the models to focus on 
more generalisable features that are more likely to be suggestive of ca-
rotid pathology.

Fig. 1. Conceptual Illustration of delineation of single-slice and multi-slice region of interest for radiomics and deep-learning approaches. 1a: 14 consecutive slices of 
the carotid CTA scans were obtained, from three slices below the carotid bifurcation to 10 slices above. 1b–d: For each slice, ROIs were manually drawn to encompass 
the outer vessel wall as illustrated in blue. 1e: The ROI’s were automatically propagated for multi-slice analysis along the artery to create a volume, which was then 
manually adjusted. Multi-slice extraction of radiomic features were applied towards the entire volume. 1f: For deep-learning, a 30 × 30 pixel image patch centred 
around the manually drawn carotid ROI was cropped to direct the DL models towards relevant anatomy. Multi-slice deep-learning analysis comprised of 2D analysis 
of each of the 14 slices individually, before obtaining a composite probability.
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3.5. Transfer learning

To compensate for the relatively low numbers of images (in a DL 
context), transfer learning involves adapting existing pre-trained CNN 
models that have been trained on large generic image datasets [23]. The 
VGG-16 architecture [24] from the Python Keras library (pre-trained on 
the ImageNet Large Scale Visual Recognition Challenge with over 1.2 
million images) was ultimately selected due to its relatively simple ar-
chitecture [25].

The VGG-16 architecture consists of 5 blocks of convolutional layers 
which act as the feature extractors of the DL model [24]. The convolu-
tional layers then feed into the final block of the model that acts as a 
classifier which assigns weights to the extracted features mapping them 
to the final output classes [24]. Two architectures of the VGG-16 were 
used, one preserving the entire original architecture (VGG-16 Original), 
and one that set the final convolutional layer (block 5) to trainable 
(VGG-16 Trainable).

4. Machine learning and statistical methods

The three approaches (calcium score vs radiomic features vs DL) 
were assessed based on performance across three classification tasks: (1) 
asymptomatic vs symptomatic carotid arteries (‘Asx vs Sx’), (2) culprit 
vs non-culprit carotid arteries (‘CC vs NC’), and (3) asymptomatic vs 
culprit vs non-culprit carotid arteries (‘multiclass’).

Python version 3.6.7 was used for all analysis [26].

4.1. Machine learning classification models

Traditional machine learning classifiers were trained on (1) the 
calcium score alone, (2) radiomic features, and (3) a combination of 
both the calcium score + radiomic features. We considered 8 standard 
ML benchmarks: K-nearest neighbour, Naive Bayes Classifier, Support 
Vector Classifier, Decision Tree, Random Forest, Elastic Net regression, 
Neural Network and Gradient Boost.

For DL, a total of 4 CNN models were trained – 2 simple de-novo 
models were based on basic “out of the box” CNN architectures which 
were initiated with randomized weights (LeNet and a Simple CNN), 
while the latter 2 were built on top of the VGG-16 architectures (VGG-16 
Original and VGG-16 Trainable) as per transfer learning.

4.2. Evaluation of predictive performance

The area under the receiving-operating characteristic curve 
(AUC–ROC, or AUC) was chosen to evaluate the predictive performance 
of the classification models. For additional robustness, model perfor-
mance was assessed via a five-fold cross-validation scheme [27]. Data 
was partitioned into 5 parts, with each part having its turn as the blinded 
“test” set, whilst the models were trained on the other 4 parts. This 
method generates a set of 5 final AUC values for each model and is 
presented as mean AUC (± standard deviation) for all models. Accuracy 
was also calculated and presented in the Supplementary tables. For 
illustration, ROC curves for the best models were presented for binary 
classification tasks, while “composite” confusion matrices (summated 
predictions of the 5 test sets) are presented for multi-class classification. 
Predictions were calculated at the optimal cut-point (Youden’s Index).

5. Explainability

5.1. Explainability of radiomics-based models: SHAP values

To better comprehend the highest performing classifier algorithms, 
the SHAP (SHapley Additive exPlanations) approach was used to assess 
the relative importance of the processed radiomic features [28]. The 
SHAP approach is a model agnostic approach that employs the “Shapley 
Value” to assess the relative contribution of each radiomic feature to the 

decision function of a classifier [28]. ShapVal has been shown to 
generate consistent accurate reflections of feature for model predictions 
[29]. We ranked the global importance of the radiomic features based on 
mean absolute ShapVal as described in previous studies.

5.2. Deep learning explainability: GRAD-CAM visualisation

The Grad-CAM algorithm was developed by Selvaraju et al. in 2017 
and stands for gradient- weighted class activation mapping [30]. This 
algorithm is useful for understanding which parts of a given image 
contributes to the model’s classification decision, and can help to 
identify the regions of interest where the model is focusing. For “black 
box” algorithms such as CNNs wherein the extracted features are not 
user pre-defined, this serves as a additional layer of robustness analysis 
to ensure that the algorithms are “looking in the right areas”.

6. Results

6.1. Overall study characteristics

66 patients were included in this study, comprising 41 symptomatic 
patients (82 carotids: 41 culprit, 41 non-culprit) and 25 asymptomatic 
patients (50 asymptomatic carotids). The mean age was 71.4 (SD 9.2) 
years, of which 75.8 % were male. Supplementary Table 1 summarises 
the characteristics of all patients (n = 66) and all carotid arteries (n =
132).

6.1.1. Performance of radiomics feature-based approach
Broadly, radiomics models derived from multi-slice images per-

formed better than those derived from the single-slice images. Radio-
mics models attained the highest AUC in Asx vs Sx classification, 
followed by multi-class classification, then NC vs CC classification in 
that order. For multi-slice analysis, image filtering (resegmentation vs 
original) had little impact on the overall performance, but in single-slice 
analysis, resegmentation resulted in poorer performance. The overall 
performance of radiomics models are illustrated in Fig. 2.

Radiomics models attained the highest performance for the binary 
classification of Sx vs Asx carotids, with both multi-slice original and 
resegmented radiomic models performing similarly well, achieving 
mean (SD) AUC values of 0.96 (0.02) and 0.96 (0.03) respectively 
(Fig. 2a). Performance decreased for binary classification of NC vs CC 
carotids. For this analysis, the multi-slice radiomic models only achieved 
mean AUC values of 0.75 (0.09), and 0.76 (0.11) respectively. Perfor-
mance again improved for multi-class classification, with multi-slice 
original and resegmented models attaining relatively high mean AUC 
values of 0.84 (0.04) and 0.85 (0.07) (Fig. 2c).

Amongst the classifier algorithms, no standout algorithm consis-
tently performed better than its counterparts. Fig. 3 illustrates a com-
parison of the performance between the commonly high performing 
classifiers across various settings. Detailed AUC values for each image 
setting and classifier algorithm for the radiomics feature-based approach 
can be found in Supplementary Table 2. Lastly, as a sub-analysis, clas-
sifiers fed only “robust” radiomics features were evaluated and attained 
largely equivalent performances (Supplementary Table 3).

6.1.2. Predictive value of calcium (CAC) score
Table 1 summarises the predictive performance of the calcium score 

alone, and in conjunction with radiomic features. Overall, the calcium 
score alone performed poorly in comparison to radiomic models across 
all three classification tasks. The mean AUC values for calcium were 
0.79 (0.08), 0.60 (0.02) and 0.71 (0.07), for Sx vs Asx, NC vs CC, and 
multiclass classification respectively. The combination of calcium and 
radiomics did not substantially improve the AUC scores for Sx vs Asx and 
multiclass classification, though it achieved the highest mean AUC score 
for binary NC vs CC classification (mean AUC: 0.79 (0.15)) amongst all 
models.
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6.1.3. Performance of deep learning (CNN) approach
Similar to the radiomics models, the DL approach likewise attained 

the highest AUC values for Asx vs Sx classification, followed by multi-
class classification and NC vs CC classification. Of the 4 deep learning 
architectures implemented, the latter 2 architectures based on transfer 
learning (VGG-16) consistently performed better than their de-novo “out 
of the box” counterparts. The VGG-16 trainable model consistently 

offered the highest predictive performance amongst the 4 architectures, 
with mean AUC values of 0.86 (0.06), 0.67 (0.10) and 0.79 (0.05) for 
Asx vs Sx, NC vs CC, and multi-class classification tasks respectively. A 
summary of the overall performance of the DL approach is illustrated in 
Fig. 4, with a more detailed table available in Supplementary Table 4.

Lastly, Fig. 5 offers an illustrative comparison between the top 
radiomics, deep learning and calcium models respectively. The 

Fig. 2. Overall predictive performance of radiomic models. Fig. 2 illustrates the overall predictive performance of the radiomic models for (2a) Asymptomatic vs 
Symptomatic arteries, (2b) culprit vs non-culprit arteries, and (2c) multi-class classification (Asymptomatic vs culprit vs non-culprit). The multislice resegmented 
approach consistently attained the highest predictive performance across all tasks.

Fig. 3. Comparison of performance achieved by Top Machine Learning Algorithms using the Radiomic Features based approach. Fig. 3 illustrates a comparison of the 
performance between the more commonly high performing classifiers across the 3 classification tasks. In terms of classifier algorithms, no standout algorithm 
consistently performed better than its counterparts.

E.P.V. Le et al.                                                                                                                                                                                                                                  European Journal of Radiology Open 13 (2024) 100594 

5 



radiomics models (multi-slice resegmented approach) offered the high-
est predictive performance for all three classification tasks, followed by 
the deep learning (VGG-16 trainable) approach, and lastly the calcium 
score alone.

6.1.4. Explainability
For explainability, Table 2 presents the radiomic features as ranked 

by their mean absolute SHAP values. The “key” features as identified by 
SHAP analysis were often quite consistent across the various classifiers 
and classifier tasks. “GLRM: Long Run High Gray Level Emphasis” was 
consistently a key feature for all Sx vs Asx, NC vs CC and Multiclass 
classification tasks. “GLDM: Dependence Variance” and “GLDM: Large 
Dependence High Gray Level Emphasis” were key features for Sx vs Asx 
and Multiclass classification, while “GLCM: Difference Variance” was a 
key feature for NC vs CC and Multiclass classification. These features 
also consistently had the highest absolute beta-coefficients in the Lo-
gistic Regression models (Supplementary Table 4).

Similarly, for the DL models, the GRAD-CAM visualisations of the 
“key image areas” are illustrated in Fig. 6. The GRAD-CAM mappings for 
the de-Novo CNN architectures appear closely centred around the ca-
rotid artery walls and lumens, whilst the mappings for the VGG-16 
transfer architectures highlight a more diffused hot region covering 
areas within the central lumen but also including peri-vascular areas.

7. Discussion

7.1. Overall key findings

To our knowledge, this is the first systematic “proof of principle” 
study that evaluates the ability of radiomic features and DL methods to 
identify carotid artery disease from carotid CT angiography images. We 
investigated the performance of these novel image analysis techniques 
across 3 classification tasks: Asymptomatic vs Symptomatic, Culprit vs 
non-Culprit, and Multiclass (Asymptomatic vs Culprit vs non-Culprit). 
We also demonstrated superior classification performance compared 
to the traditional carotid calcium score. Lastly, we applied SHAP and 
GRAD-CAM analysis for explainability of these machine learning 
models.

We report the following key findings: (1) both radiomic features and 
deep learning methods offered better predictive accuracy of CAD than 
the calcium score, (2) radiomic features attained the highest perfor-
mance within our dataset, (3) a multi-slice approach for radiomic 
feature extraction was the most optimum setting, and (4) there may be 
utility for a combination of novel and traditional features (ie radiomics 
+ calcium score). Together, these findings highlight the potential of 
using radiomic and DL methods in the clinical assessment of carotid 
artery disease. As CT angiography already forms part of the workflow in 
ischaemic cerebrovascular management, there is ripe potential for the 
integration of these novel imaging biomarkers into the clinical practice 
for better risk stratification and tailoring of patient management[31].

Previous studies have investigated the use of other CTA derived 
metrics to evaluate symptomatic carotid artery disease. Gupta et al. 
investigated the discriminative ability of CTA plaque thickness [32], 
while Magge et al. [33] and Motoyama et al. [34] both assessed the 
utility of defined morphological plaque characteristics (i.e. wall thick-
ness, fibrous cap thickness, lipid-rich necrotic core). Lastly, a pilot study 
by Zaccagna et al. highlighted the potential of texture analysis in iden-
tifying vulnerable patients in stroke and TIA [11]. Our results further 
reinforce the potential of the additional information that can be mined 
from carotid CT angiograms.

7.1.1. Radiomics models
The radiomics models offered the greatest performance across all 

three classification tasks. Radiomic features extracted from multi-slice 
settings performed considerably better than their single-slice counter-
parts. These radiomics models were best able to differentiate carotid Ta
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arteries between symptomatic patients and asymptomatic patients, and 
encountered more difficulties differentiating culprit versus non-culprit 
carotid arteries. These may all reflect differences in the presence of ca-
rotid atherosclerotic plaques, carotid calcium burden and stenosis [1, 
17].

7.1.2. Calcium score utility
As a univariable predictor, the carotid calcium score had the poorest 

predictive performance in comparison to other approaches. However, a 
combination of radiomics + calcium did appear to marginally achieve 
the highest predictive performance for Culprit vs Non-Culprit classifi-
cation (0.79 ± 0.14), though we are wary of the large standard deviation 
observed in the set of AUC values. This result suggests that carotid cal-
cium and the information captured by radiomic features (with reseg-
mentation) may contain complementary information that can be 
exploited with multivariable models.

7.1.3. Deep learning
Our results also demonstrated a potential utility for deep-learning 

(CNNs) methods in the assessment of carotid artery disease. We note 
however, that whilst the DL models outperformed the calcium score, 
they performed more poorly than the radiomics models. The perfor-
mance of DL models scale with sample size, wherein they often 
outperform traditional models when trained on large sample sets. Due to 
our relatively small sample size (within the context of DL), it is likely the 
DL models were unable to achieve optimal optimization of their large 
number of parameters. This observation was reinforced when the 
application of transfer learning (the VGG models) resulted in 

considerable improvement over the “out of the box” architectures. 
Lastly, we note that the DL models were given a ‘harder’ task, wherein 
radiomic models were fed features bounded within the specific carotid 
region of interest, whilst the entire 30×30 image was fed into the DL 
models. Ultimately, our results indicate even though deep learning is 
potentially a viable method for learning new features from carotid im-
aging data, 1) more data and 2) refinement of the deep learning methods 
is still needed. For centres looking to develop personalised image anal-
ysis models tailored to regional based imaging modalities and pop-
ulations, our results suggest it might be more pragmatic to adopt 
radiomic feature analysis over DL models in the absence of larger local 
training datasets.

7.1.4. Explainability
SHAP-value analysis of the radiomic feature approach revealed 

consistent patterns in the identification of high value radiomic features. 
“GLRM: Long Run High Grey Level Emphasis”, “GLDM: Dependence 
Variance”, “GLDM: Large Dependence High Grey Level Emphasis” and 
“GLCM: Difference Variance” were all features deemed “important” to 
the decision function of the classifier functions. These are higher-order 
radiomic features that considered the spatial interrelationships be-
tween pixels, which reflect a degree of complexity in the information 
that the radiomic models are extracting.

For GRAD-CAM visualisations of the DL models, GRAD-CAM visu-
alisations were focused closely on the contours of the carotid arteries in 
the simpler models, whilst displaying a more diffuse region of focus in 
the VGG-16 models. These differences are likely due to differences in the 
depth of architecture between the VGG-16 vs simpler DL models, which 

Fig. 4. Overall Predictive Performance of Deep Learning (Convolutional Neural Network) Approach. Fig. 4 illustrates the overall predictive performance of the 
various deep learning convolutional neural network models for (4a) Asymptomatic vs Symptomatic arteries, (4b) culprit vs non-culprit arteries, and (4c) multi-class 
classification (Asymptomatic vs culprit vs non-culprit). The VGG16 trainable model (transfer learning approach) consistently attained the highest predictive 
performance.
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likely resulted in heavier upsampling and interpolation of the VGG-16 
GRAD-CAM visualisations. It was nonetheless reassuring that the key 
regions for all models were all closely centred around the carotid 
arteries.

7.1.5. Limitations
This study has a few limitations. First, we note the comparatively 

small sample size in the context of deep-learning analysis, as discussed in 
above sections. Second, all images were acquired using the same scanner 
and same scanning protocols in a single centre, which limit the gen-
eralisability of our findings. Third, this was a retrospective study, and 
our imaging dataset only captured information from culprit carotid ar-
teries after plaque rupture had occurred. Prospective studies of at-risk 
patients prior to recurrent stroke events are warranted. Fourth, we 
were unable to assess carotid stenosis as an unbiased “predictive 
marker” due to the nature of the inclusion criteria for the imaging 
studies from which the pooled dataset was derived. The ICARUSS and 
CHAI studies for example, mandated ≥ 50 % and ≥ 30 % stenosis in the 
culprit carotid arteries. Consequently, most symptomatic carotid ar-
teries already had a significant degree of stenosis. Lastly, the primary 
objective of this study was to evaluate the utility of radiomics and DL 
approaches as a “proof of principle”, rather than developing a definitive 
radiomics signature or CNN architecture. As such, the default configu-
rations for most machine learning classifiers were used, without exten-
sive hyperparameter tuning – generally an accepted approach as per 
previous studies [35]. Whilst these models may not yet be robust enough 

for implementation in current clinical practice, our results pave the way 
for future studies to further optimize and validate these parameters and 
workflows for future clinical implementation.

8. Conclusion

Our “proof of principle” study demonstrates the feasibility of radio-
mics and deep learning approaches in the identification of carotid artery 
disease. This highlights the potential clinical utility of these novels 
techniques in extracting quantitative information from CTA images 
beyond calcification. Future work is warranted to explore methods to 
optimise carotid CTA workflows, and the acquisition of prospective data 
for clinical validation will be crucial to support the transition of these 
techniques into the clinical practice of cardiology and stroke medicine. 
This will ultimately facilitate better stroke risk stratification and a shift 
towards personalised patient management.
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