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Identification and characterization 
of SET domain family genes 
in bread wheat (Triticum aestivum 
L.)
Ritu Batra, Tinku Gautam, Sunita Pal, Deepti Chaturvedi, Rakhi, Irfat Jan, 
Harindra Singh Balyan & Pushpendra Kumar Gupta *

SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant 
species, but have never been examined in bread wheat; the histone methylation caused due to SDGs 
is associated with regulation of gene expression at the transcription level. We identified a total of 
166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/
interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and 
targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter 
regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had 
truncated SET domain. The TaSDG encoded proteins were classified into six classes (I–V and VII). In 
silico expression analysis indicated relatively higher expression (FPKM > 20) of eight of the 130 TaSDGs 
in different tissues, and downregulation of 30 TaSDGs under heat and drought at the seedling stage. 
qRT-PCR was also conducted to validate the expression of seven genes at the seedling stage in pairs 
of contrasting genotypes in response to abiotic stresses (water and heat) and biotic stress (leaf rust). 
These genes were generally downregulated in response to the three stresses examined.

Eukaryotic DNA is packaged in the form of chromatin, which itself is organized in the form of nucleosomes. 
In turn, each nucleosome consists of two super-helical turns of DNA wrapped around a histone (H) octamer 
consisting of one H3/H4 tetramer and two H2A/H2B  dimers1. The nucleosomes are organized into higher order 
structures stabilized by histone H1. It is widely known that specific amino acid residues of histone tails are post-
transcriptionally modified due to acetylation, phosphorylation, methylation, ubiquitylation, and SUMOylation, 
although all these modifications are  reversible2,3. Post-transcriptional methylation of specific amino-acid residues 
in histone proteins at specific lysine (K) residues is an epigenetic modification that regulates expression of many 
genes associated with these modified histones. Besides other modifications, these epigenetic modifications are 
mediated by proteins called histone methyltransfersaes (HMTase). A fairly large number of these proteins contain 
a SET domain, thus constituting a family of SET-domain methyltransferases. All HMTases belong to this family 
of SET domain proteins, with the solitary exception of the HMTase that is involved in methylation of  H3K794–6. 
In plants, histone methylation has been reported in lysine residues at positions 4, 9, 27, 36 and 79 of H3 and 
position 20 of  H47,8, which are all important epigenetic marks. Each of these lysine residues may carry one, two 
or three methyl residue(s) so that the corresponding states are described as mono-, di- and tri-methylation states. 
In addition to catalyzing methylation of histone proteins, SET domain proteins are also known to be involved in 
methylation of few other proteins including large subunit of the Rubisco holoenzyme  complex9.

The acronym SET [Su(var)3–9, Enhancer-of-zeste and Trithorax] was derived from three different conserved 
regions identified in the following three different proteins in Drosophila: (i) SUPPRESSOR OF VARIEGATION 
3–9 [SU(VAR)3–9], a modifier of position-effect  variegation10; (ii) ENHANCER OF ZESTE [E(Z)], the polycomb-
group chromatin  regulator11 and (iii) TRITHORAX (TRX), the trithorax-group chromatin  regulator12,13. The SET 
domain itself consists of ~ 130–150 amino acids. Some conserved residues within the SET domain sequence form 
a knot-like structure (catalytic core), which constitutes the site for histone methyltransferase (HMT)  activity14; 
methylation occurs, when AdoMet (methyl group donor) and the substrate lysines (e.g. H3Ks) are brought into 
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close proximity. The hydroxyl group of a highly conserved tyrosine in the catalytic core of the SET domain forms 
Van der Waals interactions with the ribose of AdoMet and also deprotonate the amino group of the target lysine 
 residue15. This deprotonation primes the lysine in the side chain to make a nucleophilic attack on the methyl 
group of the AdoMet molecule, thus facilitating the transfer of methyl group to the lysine residue, resulting in 
the production of methylated histone and the co-factor AdoHcy (byproduct of AdoMet demethylation)16–19. The 
crystal structures of SET-domain proteins suggest that the SET domain is folded into several small β  sheets20. 
Often, slight variation is caused in the conformation of SET domain due to β-sheets. Such conformational 
changes modify the specificity of the target residue for methylation and enable methyltransferases to target 
several different residues.

A SET domain is often flanked by N-terminal pre-SET and C-terminal post-SET domains. The pre-SET 
domain region contains nine cysteine residues that form triangular zinc clusters, which bind the zinc atoms and 
stabilize the structure. The C-terminal post-domain, on the other hand, has three cysteine residues which par-
ticipate in the formation of a zinc-binding site. It has been shown that both N- and C-terminal regions flanking 
the SET-domain are also required for HMTase  activity18. The interaction between the pre-SET domain and the 
catalytic center of the SET domain is important for enzyme  function16.

The SET-domain proteins have now been found in all eukaryotes/prokaryotes except some lower algae. 
Among plants, these proteins have been best characterized in Arabidopsis thaliana. The genes encoding these 
proteins have been variously classified in different studies using different criteria (including the site of methyla-
tion); following are some details of four such studies involving classification of SET domain genes: (i) 37 Arabi-
dopsis genes were placed in four classes on the basis of characteristics of SET domain, cysteine-rich region and 
additional conserved  domains21; (ii) 32 Arabidopsis genes and 22 maize genes were placed in five classes (I-V), 
based on phylogenetic analyses and domain  organization22,23; the genes in a particular class were further classi-
fied in one (class IV) to seven (class V) orthology groups on the basis of position of SET domain and presence of 
other domains, the total number of orthology groups in five classes being 19. This system of placement of genes 
in orthology groups within a class (for classes I to V) was followed in the present study also; (iii) 47 Arabidopsis 
genes, 37 rice genes and 35 maize genes were placed in seven classes, on the basis of annotation using Pfam and 
ChromDB  database23; and (iv) 31 Arabidopsis genes encoding proteins with SET domain were placed in five 
 classes24. On the basis of their domain architectures and/or differences in enzymatic activity, a consensus clas-
sification containing seven classes has emerged; a summary of these seven classes (along with orthology groups 
in each class) is presented in Table 1. Proteins within each class often share a higher level of similarity in the 

Table 1.  Details of 7 classes of SET domain proteins and the corresponding genes in Arabidopsis thaliana. 
*OG-Number of orthology group; NA-not available.

Class of SET protein; methylation site OG* Genes in OG* Domains present Function

I. Enhancer of Zeste [E(z)] homologs; 
H3K27

1 MEA (SDG5)

CXC (cysteine-rich region), SET Repress homeotic gene expression2 CLF (SDG1)

3 SWN (SDG10)

II. ASH1 homologs and related proteins 
(OGs based on position of SET domain); 
H3K36

1 ASHH3 (SDG7), ASHH4 (SDG24) AWS, SET, Post-SET

Positive regulator of homeotic gene 
expression

2 ASHR3 (SDG4) PHD, AWS, SET, Post-SET

3 ASHH1 (SDG26) Zf, AWS, SET, Post-SET

4 ASHH2 (SDG8) AWS, SET, Post-SET, CW

III. Trithorax homologs and related 
proteins ; H3K4

1 ATX1 (SDG27), ATX2 (SDG30) SET, Post-SET, PWWP, FYRN, FYRC, 
PHD

Positive regulator of homeotic gene 
expression

2 ATX3 (SDG14), ATX4 (SDG16), ATX5 
(SDG29) SET, Post-SET, PWWP, PHD

3 ATXR3 (SDG2) SET, Post-SET

4 ATXR7 (SDG25) SET, Post-SET

IV. Proteins with a SET and a PHD 
domain; H3K4 1 ATXR5 (SDG15), ATXR6 (SDG34) SET, PHD Cell cycle regulation or DNA replication

V. Suppressor of variegation [Su(var)] 
homologs (SUVH) and relatives (SUVR); 
H3K9

1 SUVH1 (SDG32), SUVH3 (SDG19), 
SUVH7 (SDG17), SUVH8 (SDG21) YDG, Pre-SET, SET, Post-SET

Heterochromatin formation and DNA 
methylation in locus specific manner

2 SUVH4 (SDG33), SUVH6 (SDG23) YDG, Pre-SET, SET, Post-SET

3 SUVH2 (SDG3), SUVH9 (SDG22) YDG, Pre-SET, SET, Post-SET

4 SUVR3 (SDG20) Pre-SET, SET, Post-SET

5 SUVH5 (SDG9) YDG, Pre-SET, SET, Post-SET

6 SUVR1 (SDG13), SUVR2 (SDG18), 
SUVR4 (SDG31) WIYLD, Pre-SET, SET, Post-SET

7 SUVR5 (SDG6) Pre-SET, SET, Post-SET

VI. proteins with an interrupted SET 
domain; H3K36 NA

ASHR1 (SDG37), ASHR2 (SDG39), 
ATXR1 (SDG35), ATXR2 (SDG36), 
ATXR4 (SDG38)

SET domain of ASHR1 interrupted by 
Zf-MYND domain Restricts cell cycle progression

VII. RBCMT and other SET-related pro-
teins; methylation of non-histone proteins NA

SDG40, two anonymous proteins (cor-
responding to At2g18850 and At5g14260) 
and five uncharacterized proteins

SET domain Carbon fixation
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SET domain, relative to those from different classes. According to this classification, classes I-V have proteins 
with complete SET domain whereas proteins belonging to classes VI and VII have an incomplete/truncated SET 
domain. Members of classes I-VI are known to be involved in methylation of histone proteins, whereas members 
of class VII are involved in methylation of non-histone proteins. Members of individual classes of SET domain 
proteins have specificity to the following substrates: class I for H3K27, classes II and VI for H3K36, classes III 
and IV for H3K4, and class V for H3K9 (Table 1)23.

Proteins with SET domain have actually been identified in chromatin-associated complexes that are formed 
during regulation of gene  expression25. Through regulation of gene expression, SET domain proteins are also 
known to play a crucial role in diverse physiological processes in plants, including control of flowering time, leaf 
morphogenesis, floral organogenesis and seed  development26,27. The genes encoding SET domain proteins that 
were the first to be characterized included the following: CURLY LEAF (CLF) and MEDIA (MEA), the latter also 
described as FERTILIZATION INDEPENDENT SEED DEVELOPMENT 1 (FISD1) in Arabidopsis thaliana24,28. 
Characteristic features of plant SET domain proteins include chromatin binding and histone methylation that 
were first reported for proteins encoded by tobacco gene NtSET1 and Arabidopsis gene KRYPTONITE (KYP)29,30.

The availability of complete genome sequences for many plant species allowed identification of families of SET 
domain genes in a number of species including Arabidopsis thaliana21,23, Oryza sativa (rice)31, Zea mays (maize)32, 
Setaria italica (foxtail millet)33, Brassica rapa (field mustard/turnip)34, Vitis vinifera (grapes)35 and Gossypium 
raimondii (cotton)36. The present study conducted for the first time in wheat, involved identification of 166 SET 
domain genes (SDGs), of which only 130 genes encoded proteins with complete SET domain (representing 117 
unique genes excluding 13 duplicate genes). These genes were subjected to a systematic in silico analysis, which 
included the study of gene structure, chromosomal distribution, gene duplication events, comparative genomics, 
promoter sequences and the presence of binding sites for miRNAs and genes for lncRNAs. The corresponding 
proteins were also subjected to a detailed study, which included the study of a variety of features including the 
following: (i) structure of proteins in terms of length and amino acid sequence; (ii) occurrence of functional 
domains and different classes of motifs; (iii) functional annotation; (iv) physicochemical properties, and (v) 
phylogenetic relationships. The study also included in silico analysis of expression of these genes in different 
tissues at different developmental stages under drought and heat stress using available expression database. 
Seven (7) representative SET genes were also used for qRT-PCR involving analysis of the expression of these 
SET domain genes under the following three contrasting conditions: (i) water stress using the two contrasting 
wheat genotypes, namely tolerant cv. C306 and sensitive cv. HD2967; (ii) heat stress using tolerant cv. HD2985 
and sensitive cv. HD2329; and (iii) wheat-leaf rust infection, using a pair of NILs including the susceptible cv. 
HD2329 and its resistant NIL (carrying the gene Lr28). The study provides a strong base for further characteriza-
tion and functional validation of SET domain genes in wheat.

Results
During the present study, using reference wheat genome sequence, we identified and characterized 166 SDGs and 
described them as TaSDGs to specify that they belong to wheat. In the published literature, different numbering 
systems were used for different plant species (1–99 for Arabidopsis; 101–199 for maize, etc.). The 166 TaSDGs 
were labeled following numbering system used earlier for  Arabidopsis22,23. Since only ~ 40 types of Arabidopsis 
genes were known and labeled as SDG1 to SDG40, additional numbers were used, wherever necessary, so that 
TaSDGs1 to TaSDG51 were available in the present study. Homoeologues were given the same numbers and 
distinguished using identity of homoeologous chromosomes (1A, 1B and 1D, etc.). Also, if TaSDGs having 
similarity to one Arabidopsis gene belonged to more than one homoeologous groups, these were distinguished 
by using alphabets a, b, c, etc. after the number (e.g. TaSDG34a, b, c, d).

Identification of TaSDGs and their assignment to chromosomes. The 166 TaSDGs identified as 
above, were placed in seven classes (class I–VII) on the basis of their similarity with SDGs in other diploid spe-
cies (Supplementary Table S2). However, the proteins encoded by only 130 SDGs had full length SET domain; 
these 130 SDGs belonged to six of the seven (excluding class VI) classes and were distributed on all the 21 
chromosomes [with three sub-genomes (A, B and D) and seven homoeologous groups (1–7)] (Fig.  1). Two 
genes, namely TaSDG34a and TaSDG31d, could not be assigned to any of the 21 chromosomes. Of the remain-
ing 128 genes, the maximum number of genes were present in homoeologous group 3 (32), followed by group 
2 (24), 5 (22), 6 and 1 (14 on each group), 7 (13) and group 4 (9). Among individual chromosomes, 3A carried 
the maximum of 12 genes, while 4A, 4B and 4D each carried a minimum of three genes. Almost equal number 
of genes were distributed on the three sub-genomes as follows: 44 genes on B sub-genome, 42 genes each on A 
and D sub-genomes (Fig. 1). Most genes were located in the terminal regions of chromosomes; only few genes 
were located in the sub-terminal or centric positions (Fig. 1). The above 128 SDGs could be placed in three sets, 
depending on their occurrence on all the three, or on only two or only one homoeologous groups: (i) 84 genes 
constituted 28 sets (each set with one gene on each of the three homoeologues); three TaSDGs belonging to each 
of these sets of homoeologues were homologous to one of the 20 SDGs of Arabidopsis, sometimes more than 
one set being homologous with the same Arabidopsis SDG. (ii) 12 genes comprised six sets of two homoeologues 
each distributed on two of the three sub-genomes of wheat (3 pairs on A/B, 2 pairs on A/D, and 1 pair on B/D), 
(iii) 6 genes had no homoeologues and were independently distributed on six individual chromosomes (5A, 2B, 
3B, 3D, 4D and 7D) (Supplementary Table S2).

Of the 130 genes (each encoding protein with complete SET domain), 13 genes had duplicate copies; the 
duplications were either tandem or interspersed. The values of Ka (non-synonymous substitutions), Ks (syn-
onymous substitutions) and Ka/Ks ratios for all the 13 duplicate (5 tandem and 8 interspersed) gene pairs is 
presented in Supplementary Table S3. The Ka/Ks ratio was < 1 for nine duplicate gene pairs, and was > 1 for three 
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duplicate gene pairs (Ka/Ks ratio for the remaining one pair of duplicate genes could not be calculated, since 
Ka = Ks = zero). Estimates of timeline for divergence of duplicate genes were also calculated on the basis of Ka/Ks 
ratio, and were found to be in the range of 1.88–3.65 MYA for the origin of tandem duplications, and 1.65–6.65 
MYA for interspersed duplications.

Structure analysis of TaSDGs. Considerable variation was observed in the lengths of individual TaSDGs 
(867–22,640  bp), their corresponding cDNAs (819–7,516  bp) and CDSs (819–6,765  bp). Variation was also 
observed in the number of exons (1–24) and introns (0–23) in individual TaSDGs; 35 of the 73 TaSDGs in class 
V had no introns. Distribution of intron phases was as follows: phase 0 (58.41%), phase 2 (23.53%) and phase 1 
(18.06%). Maximum number of genes (65) have all the three intron phases (0, 1, 2) followed by 14 genes having 
two phases (0 and 2); remaining 15 genes had one or two intron phases (Supplementary Figs. S1a-S1f.). Eighty 
five (85) TaSDGs each had only a single transcript while the remaining 45 genes had each 2–7 splice variants. 
The summary of the results of structure analysis of TaSDGs is presented in Table 2 and detailed information is 
available in Supplementary Table S4.

Promoter analysis allowed identification of elements for basal transcription (TATA box and CAAT box) as well 
as specific cis-regulatory response elements (light responsive, tissue specific, biotic and abiotic stress responsive) 
within 1 kb 5′ upstream sequence of each of the 130 TaSDGs. The details of these elements for basal transcrip-
tion and specific response elements is provided in Supplementary Table S5. Eleven (11) response elements were 
identified which could be grouped as follows: (i) two response elements for biotic stress, namely GARE and TC 
rich repeat, and (ii) nine response elements for abiotic stress, namely, ARE, ABRE, P-box, CCATT, LTR, MBS, 
GARE, GC and TCA [one response element (GARE) was common between biotic and abiotic stresses]. These 
response elements were identified in 127 of 130 TaSDGs. However, tissue specific response elements were present 
in relatively fewer genes (33 of 130). Some response elements were present in multiple copies (Supplementary 
Table S6). Promoter sequences of only 47 of 130 genes had transcription factor binding sites (TFBS) related to 
nine families of transcription factors (ERF, C2H2, BBR-BPC, Dof, MIKC-MADS, MYB, GATA, NAC and Nin-
like). Of these 47 genes, the promoters of 33 genes each had a single TFBS; promoters of the remaining 14 genes 
had 2–6 TFBS (Supplementary Table S7). TFBS for ERF was present in 25 genes followed by C2H2 (6 genes), 
BBR-BPC (5 genes), Dof (4 genes), MIKC-MADS/MYB (2 genes each). A solitary TFBS was present in each of 
the remaining genes and were meant for binding of TFs belonging to one of the following TF families i.e. GATA, 
NAC and Nin-like TF.

As many as 196 SSRs were detected in different genic regions (exons, introns, UTRs) of 96 of the 130 TaSDGs. 
The SSRs included mononucleotide to octanucleotide repeats. The number of SSRs per TaSDG varied from 1 to 
10 (Supplementary Table S8). Trinucleotide repeats were most abundant (79 SSRs) followed by hexanucleotide 
repeats (47 SSRs), tetranucleotide repeats (24 SSRs), and others. A total of 42 TE were also identified in 25 of the 
130 TaSDGs. These TEs were mainly DNA transposons (En/Spm) and retro-elements [LTR (Copia and Gypsy) 
and non-LTR (SINE)] (Supplementary Table S9).

Figure 1.  Chromosomal localization of TaSDGs on 21 chromosomes of wheat. The chromosome numbers are 
indicated on top of chromosomes. On each chromosome, the gene names are indicated on the right side and 
their physical positions are indicated on the left side. The TaSDGs were mostly located in the terminal regions 
and only a few TaSDGs were located in the sub-terminal or centric regions of different chromosomes. The figure 
was drawn using MapInspect software (https ://www.plant breed ing.wur.nl/UK/ software_map-inspect.html).

https://www.plantbreeding.wur.nl/UK/
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Target sites for some miRNAs and gene sequences for some lncRNAs were also available in TaSDGs. Nearly 
20% of TaSDGs (27/130) had target sites for 18 different miRNAs. The promoters of only two TaSDGs (TaS-
DG22b-4D and TaSDG22c-3D) each had target sites for two different miRNAs. The expression of TaSDGs with 
target sites for miRNAs were apparently inhibited through post-transcriptional cleavage except the following four 
miRNAs, which were found to inhibit expression of the target genes at the translational level: (i) tae-miR1120c-
5p inhibiting genes TaSDG1b-7D and TaSDG6-6A/B, (ii) tae-miR1122b-3p inhibiting gene TaSDG1b-7D, (iii) 
tae-miR1137b-5p inhibiting gene TaSDG17a-3A, and (iv) tae-miR1130b-3p inhibiting the gene TaSDG33b-1D 
(Supplementary Table S10). Forty nine (49) of 130 TaSDGs also carried genes (or parts thereof) encoding as 
many as 122 lncRNAs, with a range of 1–10 lncRNAs within the same TaSDG, but majority of TaSDGs (24 of 49) 
each carried a gene for a single lncRNA. The length of gene sequences for lncRNAs ranged from 201–3,64,413 bp, 
the maximum size of lncRNA genes, sometimes exceeding the maximum lngth of TaSDG, so that the TaSDG 
carried only part of a gene for lncRNA (Supplementary Table S11).

Structure analysis of TaSDG proteins. A summary of the details about lengths of proteins, their molec-
ular weights and other important features are available in Table 3 (more details are available in Supplementary 
Table S12). Taken together, the number of positively charged amino acids was greater (26–1,339) relative to neg-
atively charged amino acids (32–342). The TaSDG proteins also contained some important domains other than 
SET domain. These other domains included the following: AWS, WIYLD, Pre-SET, PHD, PWWP, FYRC, FYRN, 
Post-SET, YDG, Zf, CXC (Supplementary Table S13). It is on the basis of these domains that TaSDG proteins 
were grouped into six different classes (except class VI). TaSDGs within classes I-V were further classified into 
one (class IV) to seven (class V) orthology groups, as done in earlier  studies22,23 (for details, see Supplementary 
Table S13).The distribution of the motifs in TaSDG proteins belonging to the six different classes (I-V and VII) 
is presented in Supplementary Table S14. The proteins within a class were also examined for common motifs, 
which ranged from 2 (class III) to 18 (class I). Among these motifs, some novel motifs were also identified; these 
novel motifs within a class ranged from one (class II) to 11 (class I) (for details of motif sequences, see Supple-
mentary Table S14).

Gene ontology terms for predicted TaSDG proteins were classified into three well-known classes, namely 
biological process, cellular component and molecular function (Supplementary Fig. S2). Among the biological 
processes, most of the predicted TaSDG proteins were localized in the nucleus and were apparently involved in 
methylation of lysine residues of histone proteins (Supplementary Fig. S2); the proteins encoded by the follow-
ing four genes belonging to class VII were located in chloroplast: TaSDG41-6A/B/D and TaSDG44-5A; these are 
involved in methylation of non-histone proteins such as Rubisco. The molecular functions of TaSDG proteins 
generally included the following: (i) zinc-ion binding, (ii) histone-lysine N-methyltransferase activity and (iii) 
protein binding (Supplementary Fig. S2).

Phylogenetic analysis of TaSDG proteins. Phylogenetic tree prepared using aa sequences of SDG pro-
teins of wheat, rice, maize, foxtail millet and Arabidopsis is presented in Fig. 2. The tree contains two major 

Table 2.  A summary of the variation in the lengths of TaSDGs, cDNA and CDS belonging to six different 
classes in wheat.

Classes of genes Range of gene lengths (bp) Range of cDNA lengths (bp) Range of CDS lengths (bp)
Range of number of exons/
gene

Range of number of 
transcripts/gene

I 7,367–13,517 2,907–3,429 2,406–2,907 15–17 2–4

II 4,481–22,640 1,068–6,887 1,017–5,499 10–17 2–3

III 2,221–17,500 1,278–7,516 1,278–6,795 8–24 2–7

IV 1,483–3,946 819–1532 819–1,092 5–6 0

V 867–20,933 867–5,817 867–4,899 1–15 2–5

VII 2,306–9,223 1649–3,744 1,491–3,744 5–14 2

Table 3.  A summary of the different chracateristics of proteins encoded by TaSDGs in wheat. Mol 
wt-Molecular weight; PI-Isoelectric point; PR-Positively charged amino acids; NR- Negitively charged amino 
acids; II- Instbility index; AI-Aliphatic index; GRAVY-Grand average of Hydropathy.

Class

Pr. length Mol wt PI PR NR II AI GRAVY

(Range) (Range) (Range) (Range) (Range) (Range) (Range) (Range)

I 801–890 89.1–99.5 6.6–8.7 107–142 111–124 50–57 60.5–65.3 0.13

II 338–1,332 39.1–201.7 4.8–9.2 46–230 42–242 46–75 60.3–74.7 0.48

III 425–2,264 48.7–255.5 6.4–9.5 74–1,339 78–342 39–59 62.7–76.2 0.26

IV 272–363 30.80–40.1 8.7–9.0 41–52 36–45 49–66 74.3–82.0 0.21

V 288–1632 7.5–183.6 5.0–9.1 26–185 32–211 38–63 45.5–88.5 0.72

VII 496–1,247 55.2–140.6 4.6–9.0 48–167 60–213 46–56 78.4–97.8 0.44
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clusters, namely Cluster I and Cluster II. The Cluster I had all the SDG proteins belonging to class VII and SDG2 
proteins (class III) for all the five species including wheat. The Cluster I also contained SDG8 protein (class II) of 
Arabidopsis. The Cluster II contained two sub-clusters IIa and IIb. The sub-cluster IIa contained SDG proteins 
of class IV belonging to all the five species including wheat. Similarly, sub-cluster IIb comprised 13 sub-sub-
clusters, which contained SDG proteins belonging to different orthology groups of four classes, namely classes I 
to III and V for each of the five different species.

In silico expression analysis of TaSDGs. The expression data for 114 of the 130 TaSDGs was available 
in the WheatExp database. The expression of these genes was examined in five different tissues (root, stem, leaf, 
spike and grain) sampled at different growth stages (according to Zadoks growth scale (Z00 to Z95) and under 
conditions of heat and drought. The summary data in terms of level of expression (up-regulation and down-
regulation) is presented in Fig. 3; more details are available in Supplementary Table S15. Following expression 
results were particularly noteworthy: (i) very high expression (FPKM > 55) of TaSDG4b-3D in grain at Z85 stage 
and that of TaSDG51-2B in leaf at Z75 stage; (ii) tissue specific and developmental stage specific high expres-
sion (FPKM > 20) of the following genes: TaSDG4b-3D (grain_Z71/85, leaf_Z71 and root_Z10), TaSDG31e-
2B (spike_Z32/39/65), TaSDG31c-2D (spike_Z32), TaSDG41-6A/B/D (leaf_Z10), TaSDG44-5A (leaf_Z10) and 
TaSDG51-2B (leaf_Z71).

As many as 36 of 114 genes responded to heat and drought stress at the seedling stage and their expression pat-
tern changed by ± twofold under heat/drought (Fig. 4, Supplementary Table S16). Many more genes were down-
regulated (30 genes; range of fold change:-2.0 to -5.39) relative to the number of genes that were up-regulated (6 

Figure 2.  An un-rooted Neighbor-joining phylogenetic tree (created using MEGA version 6.0;66) showing 
relationship of TaSDG proteins with SDG proteins of A. thaliana, O. sativa, Z. mays and S. italica. The tree has 
two main clusters (cluster I and II). The cluster II is further divided into two sub-clusters IIa and IIb. Cluster IIb 
contains 13 sub-sub-clusters.
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genes; range of fold change: 2 to 4.58). Under heat stress, the number of genes showing differential expression 
ranged from 6 genes (one up-regulated and five down-regulated) at 1 h to 13 genes (four up-regulated and nine 
down-regulated) at 6 h; one gene (TaSDG1a-7B) was common under both the treatments. Under drought, the 
number of differentially expressed genes ranged from 2 (both genes showed up-regulation) at 1 h to 3 (all three 
showed down-regulation) at 6 h. The results were opposite under the combined heat and drought stress, so that 
the number of differentially expressed genes included one up-regulated and 23 down-regulated genes at 1 h; 
four genes up-regulated and five genes down-regulated at 6 h (four genes were common under 1 h and 6 h; one 
up-regulated [TaSDG22b-4A] and three down-regulated [TaSDG1a-7B, TaSDG4b-3D and TaSDG25c-5D ]). 
The details of these differentially expressed genes and the levels of expression are shown as heat maps in Fig. 4.

qRT-PCR analysis in response to heat, drought and leaf rust. For validating the results of in silico 
expression analysis, seven representative genes were selected and their expression was examined in three pairs 
of contrasting genotypes, one pair for each stress. However, qRT-PCR data was available for all the seven genes 
for heat stress, for six genes under water stress, and for only two genes for leaf rust infection. The results of dif-
ferential expression obtained using qRT-PCR are summarized in Table 4.

Discussion
During the present study, we identified and characterized 166 TaSDGs using reference wheat genome sequence. 
However, complete sequence for SET domain was available in only 130 of these genes. The 166 TaSDGs were 
classified into seven widely known classes (I-VII) following the nomenclature of SDGs initially used in Arabi-
dopsis. The proteins encoded by genes belonging to classes VI and VII in Arabidopsis contain only truncated 
or incomplete SET domain; the genes of class VII have not been given the SDG nomenclature in Arabidopsis 
(except SDG40), but only their IDs are available. The 130 TaSDGs, each encoding protein with complete SET 
domain, belonged to six (I to V and VII) of the seven well-characterized classes of  SDGs23. The SDGs belonging 
to class VI encoded proteins with incomplete SET domain; hence were not analyzed further during the present 
study. However, six genes belonging to class VII encoded proteins, which had complete SET domains (unlike 
Arabidopsis) and therefore were included in detailed study; TaSDG nomenclature was given to these six genes 
belonging to class VII also (Supplementary Table S2).

It may be recalled that during the present study, the number of TaSDGs with full length SET domain in 
hexaploid wheat was 130, which is more than four times the number in each of the following diploid species: 
27 in rice, 39 in maize, 37 in foxtail millet and 31 in Arabidopsis (Supplementary Table S17). Thus the number 
in hexaploid wheat exceeds even the expected three times the number in diploid species maize with the highest 
number of SDGs among the four diploid species examined. This may be attributed to availability of some dupli-
cate genes in wheat, which might have originated during the course of two-step evolution of  wheat37,38, although 
interspersed duplications of SDGs have also been reported in the above diploid  species31,32,36. Particularly, in 
maize, one would expect duplications, since it has been shown to be a tetraploid on the basis of data on reference 
whole genome sequence of  maize39. Other diploid species have also been shown to be palaeo-polyploids, so that 

Figure 3.  Heat map (generated using the online software tool ClustVis; https ://biit.cs.ut.ee/clust vis/) showing in 
silico expression profile of 114 TaSDGs belonging to six classes at different developmental stages of five different 
tissues of wheat. The figures mentioned in parenthesis represent number of genes within a class. For further 
details of genes within each class see Supplementary Table S15.

https://biit.cs.ut.ee/clustvis/
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duplications are common even in diploid species. Origin of duplicate gene is also a widely discussed subject and 
does not deserve any detailed discussion. Most of these duplicate genes in the present study belong to class V, a 
feature that has also been observed in maize and  Arabidopsis22. The evolutionary time-line suggested that the 
tandem duplications (range: 1.88–3.65 MYA) are of more recent origin relative to the interspersed duplications 
(range: 1.65–6.65 MYA). However, Ka/Ks ratio of most of the tandem duplicate gene pairs was > 1 indicating 
positive selection on these genes contributing to molecular  evolution40. The interspersed duplications, on the 
other hand, had Ka/Ks ratio < 1, indicating that these gene pairs are under purifying selection. The duplication 
events are known to give rise to new genes and create functional novelty in any  organism41.

In hexaploid wheat, we expect three homoeologues for each gene, although this is not true for all genes. In the 
present study also, there were 18 TaSDGs, which did not have all the three homoeologues. However, these genes 
with missing homoeologues are available in the diploid (AA and DD) and tetraploid (AABB) wheat progenitors, 
suggesting that the missing genes might have been eliminated during the course of evolution of the hexaploid 
wheat. Otherwise also, gene loss has been reported as a common phenomenon during the course of evolution 
of hexaploid wheat from its diploid  progenitors42.

Another interesting feature of the present study is the absence of some wheat homologues of Arabidopsis 
 SDGs19 including the following: (i) MEA gene (class I-OG1); (ii) SDG24 (class II-OG1), (iii) SDG30 (class 
III-OG1), (iv) SDG14 (class III-OG2) and (v) SDG15 (class IV-OG1) (for details see Supplementary Table S2). 

Figure 4.  Heat map (generated using the online software tool ClustVis; https ://biit.cs.ut.ee/clust vis/) showing 
in silico expression profile of TaSDGs (fold change ± 2) under heat, drought and combined stress of heat and 
drought.

Table 4.  A summary of the results of qRT-PCR analysis for seven TaSDGs in two contrasting wheat cultivars 
each under water stress and heat stress and in a pair of NILs for leaf rust gene Lr28. T: tolerant; S: sensitive/
susceptible; R: resistant; 96hai: 96 h after inoculation; ↑: 2.14 to 8.68 fold upregulation; ↓: 2.13 to 31.42 fold 
downregulation; NS: non-significant expression; -: despite repeated attempts qRT-PCR was not successful.

Description of TaSDG

Water stress 1 h Water stress 6 h Heat stress Leaf rust (96hai)

HD2967 (S) C306 (T) HD2967 (S) C306 (T) HD2329 (S) HD2985 (T) HD2329 (S) HD2329 + Lr28 (R)

TaSDG1a−7A (class I; H3K27) NS NS ↑(2.14) NS ↓ (− 3.87) ↓ (− 3.16) ↓ (− 31.42) ↑ (8.68)

TaSDG16-3A (class III; H3K4) NS ↓ (− 2.33) NS NS NS NS – –

TaSDG22a-1D (class V; H3K9) NS ↓ (− 5.06) NS ↓ (− 3.82) NS NS – –

TaSDG20-3D (class V; H3K9) NS NS ↓(− 2.46) NS ↑ (2.85) ↑ (2.24) ↓ (− 6.46) ↑ (2.63)

TaSDG25c-5D (class V; H3K9) – – – – ↓ (− 3.78) ↓ (− 2.4) – –

TaSDG44-5A (class VII; methylation of non-histone 
proteins) NS NS NS NS ↓ (− 3.62) NS – –

TaSDG51-2B (class VII; methylation of non-histone 
proteins) NS ↑ (4.17) NS ↓ (− 2.13) ↓(− 2.64) NS – –

https://biit.cs.ut.ee/clustvis/
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Similar results were also reported in some other monocots including rice, maize and foxtail  millet31–33. It might 
be possible that the functional diversification of homologs of SET domain genes occurred after the divergence 
of monocots and dicots ~ 200  MYA32. Some of the missing homologs in the monocots (wheat, rice, maize and 
foxtail millet) were perhaps lost after their divergence from other dicots like Arabidopsis. Future studies may 
provide answer to this problem.

Structural analysis of TaSDGs also revealed some interesting features including the following: (i) Enormous 
variation in the length of individual TaSDGs (867–22,640 bp), which is also reflected in the lengths of correspond-
ing proteins (272aa to 2264aa). This is not surprising, since the length (22.64 kb) of the longest wheat gene TaS-
DG7a-5B is still smaller than the longest SDG reported in maize (44.5 kb)32 and that the length of SDG proteins 
also varied in several diploid species [foxtail millet (301–2267aa), rice (298-2257aa), maize (173-1815aa) and 
Arabidopsis (203–2,351 aa)]23,31–33. The variation in the length of SDGs is mainly due to the number of introns 
and their relative lengths, and not due to number of exons, suggesting the occurrence of same coding potential 
in different SDGs in wheat and other species; the codons also appear to be conserved, as apparent from high 
frequency of intron phase 0 (58.4%)43. The variation in translation products, however seems to result from vari-
ation in the number of splice variants (2–6) and alternate  splicing44–46. (ii) Presence of YDG domain in TaSDGs 
belonging to class V-OGs 1, 2, 3, and 5; (iii) Absence of introns except for the five genes (belonging to class V), 
namely TaSDG33a-3A/B/D and TaSDG33b-1A/D (each containing 14–15 introns; for details see Supplementary 
Fig. S1e), which were homologs of Arabidopsis gene SDG33 with four introns. The observed absence of introns 
in most of the class V SDGs in wheat, maize and Arabidopsis might be due to an ancient retro-transposition-
like event that occurred before the divergence of monocots like wheat and maize and dicots like  Arabidopsis22; 
(iv) Presence of complete SET domain in six TaSDG proteins derived from class VII genes (TaSDG41-6A/B/D, 
TaSDG44-5A, TaSDG45-3B and TaSDG51-2B); the proteins derived from class VII SET domain genes generally 
carry truncated SET domain in Arabidopis and other species. Surprisingly, in the diploid and tetraploid pro-
genitors of wheat also, five of the six TaSDGs (except TaSDG45-3B, which had complete SET domain) lacked 
complete SET domain. Therefore, it appears that the evolution of the above complete SET domain containing 
TaSDGs occurred after the evolution of the hexaploid wheat. Some of these SDGs are believed to be involved in 
the methylation of non-histone proteins. For instance, the genes TaSDG41-6A/B/D and TaSDG44-5A encode 
Rubisco small sub-unit methyltransferases (RSSMT) and Rubisco large sub-unit methyltransferases (RLSMT), 
respectively. The RLSMT is known to methylate lysine 14 in the large subunit of Rubisco protein while the RSSMT 
is known to methylate the methionine in the small subunit of Rubisco  protein47.

Other interesting features of TaSDGs recorded in the present study include occurrence of SSRs, transposon 
elements (TE), target sites for some miRNAs and genes (complete or part thereof) for lncRNAs; these will be 
briefly discussed one-by-one. First, the presence of SSRs can lead to phenotypic variation, since SSRs affect several 
processes including transcription, translation, mRNA splicing, export to cytoplasm, and loss of  function48; poly-
morphism in SSRs may also be used for molecular breeding, once we know the association of specific SSRs to the 
target traits. Second, the TE including En/Spm, Copia, Gypsy and SINE, which occur in 20% TaSDGs, may help 
in bringing about epigenetic changes during heat stress, as shown in Arabidopsis mutant for suvh2/SDG18 gene 
(deficient in H3K9 methyltransferase activity)49. Third, a number of TaSDGs have been shown to be the targets 
of miRNAs. From among 18 miRNAs for which target sites were available in TaSDGs during the present study, 
miR1135 and miR5049-3p are known to occur in Brachypodium and miR5049-3p occurs in Saccharum. The 
target sites of different miRNAs obviously differed. For instance, different miRNA differ for regions of the target 
genes (3′UTR, 5′UTR, promoter) with which they interact; miR1137a shows interaction with UTR of TaSDG22b-
4D and tae-miR1127a shows interaction with promoter of TaSDG22c-3D; this information is important because 
binding of miRNAs to 5′UTR is known to have silencing  effects50,51, whereas miRNA interaction with promoter 
region is known to induce  transcription52. Interaction of miRNAs with 3′UTR of their target mRNAs (resulting 
in translational repression and mRNA deadenylation and decapping) has also been reported, in several earlier 
 studies53,54. However, functions of some of the miRNAs, namely miR1120c-5p, tae-miR1130b-3p, tae-miR1120b-
3p and tae-miR5049-3p having TaSDGs as their targets are known to regulate transcription leading to their effect 
on flower development and pollen  recognition55; this information, along with other information about miRNAs, 
may be utilized in designing strategies for using miRNA for wheat improvement. Future experiments may also 
be designed to understand the mechanism of action of miRNAs. Fourth, the 122 lncRNAs, for which genes were 
available in 49 TaSDGs provide useful information for further detailed study, since a number of lncRNAs are 
known to mediate epigenetic changes by recruiting chromatin-remodeling complex to specific genomic loci. 
For instance, COOLAIR and COLDAIR lncRNAs are necessary for recruiting PHD-PRC2 complex to enable 
histone modifications of FLC (a key regulator of flowering time) in Arabidopsis, which acts as a repressor to 
inhibit flowering under cold  temperature56.

In addition to the widely known structure of SET domain proteins including the presence of SET domain 
and their function as HMTases, these proteins may perform other important functions including those due to a 
number of other domains (detected during the present study) including PHD and PWWP  domains57,58. These 
other functions can be resolved only through a study of their high resolution structure, which needs availability 
of these genes in crystalline form. Unfortunately, all TaSDG proteins are unstable and hydrophilic in nature 
(except TaSDG25b-7D and TaSDG31b-U), as evident from the values of their aliphatic indices (45.5– 97.8)59,60 
and GRAVY values (− 0.16 to − 0.811). A detailed study of all TaSDG proteins is therefore necessary to make 
full use of these genes in wheat improvement programmes.

The results of phylogeny also provide some interesting feature, although evolutionary patterns appear to be 
largely conserved. It may be seen from the results that Cluster I included SDG2 proteins of class III (for all species 
examined), including the three SDG2 proteins of wheat (TaSDG2-7A/7B/7D); these were however grouped with 
proteins from class VII TaSDGs, which may be attributed to high similarity of TaSDG2-7A/7B/7D with class VII 
SDG proteins (including presence of no other domain except SET domain). Since contrary to expectation, class 



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14624  | https://doi.org/10.1038/s41598-020-71526-5

www.nature.com/scientificreports/

VII TaSDGs carried complete SET domain, we were expecting that the clustering pattern of TaSDG proteins 
may also show some other important differences from those in Arabidopsis, rice, maize and foxtail millet. How-
ever, no such difference was observed in the clustering pattern of SDG proteins in the present study and earlier 
studies in a number of dicots and monocots (including Arabidopsis, foxtail millet, maize, rice, mustard/turnip 
and diploid wild cotton)21,31–34,36. Further investigations may help to find out the reason for the occurrence of 
complete SET domain in class VII wheat SDG proteins, and that of incomplete SET domain in class VII SDG 
proteins of other species.

Expression of TaSDGs in time (development stages) and space (different tissues) also provided some interest-
ing results, particularly when expression results were examined along with information about the occurrence of 
some regulatory cis-elements in TaSDGs. This was necessary since SDGs are known to play a major role in plant 
development and also in response to different biotic and abiotic stresses including hormonal  treatments13,31,33,61. 
In the present study, cis-elements were found to be present in almost all wheat TaSDGs with some exceptions 
(TaSDG31c-2B, TaSDG6-6B and TaSDG29-3A). These cis-elements include those, which are the binding sites 
for some important transcription factors and thus also respond to biotic and abiotic stresses (GARE and TC rich 
elements for biotic stresses; ARE, ABRE, P-box, CCATT, LTR, MBS, GARE, GC and TCA for abiotic stresses). 
Perhaps these regulatory cis-elements respond to different developmental cues and stresses through expression 
of these TaSDGs in the form of HTMases, which bring about histone methylation as also mentioned in the 
 Introduction62. The expression of these TaSDGs in response to biotic and abiotic stresses is mediated through 
activation of a number of transcription factors (mentioned in “Results”), for which binding sites occur in these 
TaSDGs. It may also be recalled that under stress, as many as 30 TaSDGs were down-regulated, but only six 
were up-regulated in different plant organs such spike, grain, leaf, stem and roots. The six up-regulating genes 
(TaSDG19b-1A,-1B,-1D, TaSDG23b-1B, TaSDG22b-4A and TaSDG22b-4D) belong to class V and are known 
to be involved in methylation of H3K9. This epigenetic mark is likely to repress the expression of genes that 
positively respond to heat (TaSDG19b-1A), drought (TaSDG23b-1BI) and heat + drought (TaSDG19b-1B,-1D, 
TaSDG22b-4A and TaSDG22b-4D).

The results of in silico expression analysis could be validated through qRT-PCR at least for some genes (Sup-
plementary Table S16, Table 4). Five of the seven genes used for qRT-PCR are involved in methylation of H3K4, 9 
and 27 and the remaining two genes (TaSDG44-5A and TaSDG51-2B) are involved in methylation of non-histone 
protein (Table 4). Following are some important conclusions involving differential expression of TaSDGs, which 
may be involved in methylation of specific lysine residues of H3 protein and may respond to water stress, heat 
stress and leaf rust: (i) Under water stress, TaSDG1a-7A is up-regulated in sensitive cultivar HD2967; (ii) Under 
heat stress, TaSDG20-3D is up-regulated in both the sensitive (HD2329) and tolerant (HD2985) cultivars; (iii) 
During leaf rust infection, two genes (TaSDG1a-7A and TaSDG20-3D) showed significant up-regulation in resist-
ant NIL (HD2329 + Lr28) 96 h after inoculation with leaf rust. The genes TaSDG1a-7A (class I) and TaSDG20-3D 
(class V) respond to all the three stresses including water stress, heat stress and leaf rust resistance due to Lr28. 
Since it is known that SDGs belonging to class I and V are involved in methylation of H3K9 and  H3K2723, and 
that both these epigenetic histone marks suppress gene expression, it appears that the expression of these two 
genes is induced by these abiotic and biotic stresses which may indirectly be involved in downregulation of 
genes providing tolerance to these stresses. Therefore, the genes TaSDG1a-7A and TaSDG20-3D with their cis-
regulatory elements may prove useful for improvement of stress tolerance in wheat. This received support from 
the results of our other studies, where a set of genes carrying domains of bHLH TF, auxin response factor, F-box, 
etc. were associated with high affinity differential binding sites of H3K27me3 (a repressor mark) in resistant NIL 
(HD2329 + Lr28). This binding perhaps acts as negative regulators of leaf rust  resistance63.

Materials and methods
Identification of SET domain genes in wheat and their homologs in other plant species. Fol-
lowing different approaches were used to identify putative SET domain genes (SDGs) from wheat: (i) BLASTP 
search against wheat proteome (https ://plant s.ensem bl.org/Triti cum_aesti vum/Tools /Blast ?db=core) containing 
amino acid sequences of wheat proteins; these were downloaded from Pfam database using Pfam ID (PF00856) 
of SET domain; (ii) tBLASTx search against the wheat genome (https ://plant s.ensem bl.org/Triti cum_aesti vum/ 
Tools/Blast?db = core) using known CDS sequences of SDGs of rice, maize, Arabidopsis and Setaria (containing 
nucleotide sequences corresponding to SET domain); (iii) Keyword search using ‘SET domain’, conducted in 
EnsemblPlants and, (iv) HMMER tool (available at EnsemblPlants) used to retrieve additional genes. The hits 
retrieved from the above methods were examined for the presence of SET domain using conserved domain data-
base (CDD) batch search tool at NCBI (https ://www.ncbi.nlm.nih.gov/Struc ture/bwrps b/bwrps b.cgi).

Wheat SDGs (TaSDGs) identified as above were checked for their homologs in rice, maize, Arabidopsis and 
Setaria. The sequences having complete SET domains were then used as query in TblastN against EnsemblPlants 
to retrieve all the information (gene, transcript, splice variants, cDNA, CDS and protein) related to correspond-
ing SDGs in wheat. Homoeologous relationships between SDGs of wheat were established on the basis of their 
chromosome assignment and percentage of protein sequence identity (> 90%). TaSDGs were named following 
the classification of SDGs in  Arabidopsis23.

Physical map of TaSDGs and identification of duplicate genes. Information regarding chromo-
some location and the coordinates for individual SDG of wheat was obtained from EnsemblPlants database 
(https ://mar20 16pla nts.ensem bl.org/Triti cum_aesti vum/Info/Index ). Physical map of TaSDGs was prepared 
using MapInspect software (https ://www.plant breed ing.wur.nl/UK/ software_map-inspect.html). In order 
to identify gene duplications, CDS sequences of TaSDGs were blasted against each other and the genes hav-

https://plants.ensembl.org/Triticum_aestivum/Tools/Blast?db=core
https://plants.ensembl.org/Triticum_aestivum/
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://mar2016plants.ensembl.org/Triticum_aestivum/Info/Index
https://www.plantbreeding.wur.nl/UK/
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ing > 90% identity were accepted as  duplications64. If two or more than two genes were found to be located on the 
same chromosome adjacent to each other, these genes were treated as tandem  duplications65.

Ka/Ks analysis. Synonymous substitutions (Ks) and non-synonymous substitutions (Ka) were calculated 
for duplicated gene pairs using MEGA 6.066 software. Ka/Ks ratio of < 1 suggested purifying selection, Ka/Ks 
ratio of > 1 suggested positive selection and Ka/Ks ratio was used to infer neutral selection. The time of duplica-
tion and divergence in terms of million years ago (Mya) for each duplicate gene pair was also calculated using a 
synonymous mutation rate of λ substitutions per synonymous site per year as (T) = Ks/2λ × 10−6 (λ = 6.1 × 10–9).

Analysis of TaSDG nucleotide sequences. In order to analyse the structure of TaSDGs, the full length 
CDSs of TaSDGs were compared with their corresponding genomic sequences; Gene Structure Display Server 
(GSDS) v2.0 (https ://gsds.cbi.pku.edu.cn/) was used for this  purpose67. Identification of intron phases (0, 1, 2) 
was done using criteria that were used in our earlier  studies68,69. The presence of cis-regulatory response elements 
was checked in one kb genomic region 5′ upstream of the translation start site (ATG) (i.e. promoter region) of 
each gene using PlantCARE database (https ://bioin forma tics.psb.ugent .be/webto ols/plant care/html/)70 follow-
ing the criteria used by us in our earlier  studies71,72. Transcription factor binding sites (TFBS) in the promoter 
region of each gene were predicted using PlantRegMap (https ://plant tfdb.cbi.pku. edu.cn/prediction.php)73. 
BatchPrimer3v1.0 (https ://probe s.pw.usda.gov/ batchprimer3/) was used to identify simple sequence repeats 
(SSRs) and transposable elements (TEs) within the gene sequences. The miRNAs and their targets in TaSDGs 
and their promoters were predicted employing web-based psRNATarget server (https ://plant grn.noble .org/
psRNA Targe t/)74 using default parameters; the range of e-value was 0–2. The TaSDGs were also analysed for the 
presence of sites for lncRNAs using IWGSC database (https ://urgi.versa illes .inra.fr/jbrow seiwg sc/gmod_jbrow 
se/?data=myDat a%2FIWG SC_RefSe q_v1.0).

Analysis of TaSDG protein sequences. The physicochemical properties of TaSDG proteins were stud-
ied using ExPASy ProtParam tool (https ://web.expas y.org/protp aram/). Major domains in the predicted protein 
sequences were identified through PROSITE (https ://prosi te.expas y.org/) and conserved domain (CD)-search 
program of conserved domain database (CDD) at NCBI (https ://www.ncbi.nlm.nih.gov/Struc ture/bwrps b/
bwrps b.cgi). Common motifs in proteins of individual class (I-V and VII) were identified using online motif 
finding tool MEME (Multiple Expectation Maximization for Motif Elicitation, v3.5.454) (https ://meme-suite 
.org/tools /meme)75, using the option of 0 or 1 for a specific motif, and setting the upper limit of the number of 
motifs as 20, with an optimum length of each motif set at 6–50 amino acids. All identified motifs were annotated 
using InterProScan database (https ://www.ebi.ac.uk/Tools /pfa/iprsc an/). The TaSDGs were functionally anno-
tated using BioMart available at EnsemblPlants. Gene ontology (GO) terms were classified into the following 
three well known classes: cellular component, molecular function and biological process.

Phylogenetic analysis of SET domain containing proteins in wheat. Based on amino acid 
sequences of SET domain containing proteins, an un-rooted phylogenetic tree was constructed using MEGA 
version 6.066 employing Neighbor-joining method of distance matrix, with a bootstrap involving 1,000 iterations 
using p-distance substitution model. The phylogenetic tree involved SET domain containing proteins from the 
following plant systems: wheat (130), rice (27), maize (38), Arabidopsis (33) and foxtail millet (37). All these 
protein sequences were aligned by multiple sequence alignment (MSA) tool available in MEGA version 6.0; the 
aligned files were used to generate a phylogenetic tree.

In silico expression analysis of TaSDGs. The in silico expression analysis of TaSDGs in five different 
tissues (grain, leaf, root, spike and stem) each sampled at three developmental stages and during major abiotic 
stresses (heat, drought and heat + drought [1 h and 6 h stress]) was carried out using publicly available tran-
scriptome data at wheat expression database (https ://wheat .pw.usda.gov/Wheat Exp/). The online software tool 
ClustVis (https ://biit.cs.ut.ee/clust vis/) was used to generate the heat maps. For this purpose, normalized gene 
expression values which are expressed as the number of fragments per kilobase of exon per million fragments 
mapped (FPKM), were transformed using  log2.

qRT-PCR for validation of in silico expression of TaSDGs. Expression of seven representative TaS-
DGs using qRT-PCR was also examined at the seedling stage in pairs of contrasting genotypes in response to 
abiotic stresses (water and heat) and biotic stress (leaf rust). The genes were selected on the basis of results of in 
silico expression analysis during water and heat stresses. However, although in silico expression data was not 
available for leaf rust, qRT-PCR was also conducted for leaf rust, to find out the role of TaSDGs during leaf rust 
infection. The seven genes included the following: TaSDG1a-7A (class I), TaSDG16-3A (class III), TaSDG22a-
1D, TaSDG20-3D, and TaSDG25c-5D (class V) and TaSDG44-5A and TaSDG51-2B (class VII). Primers for these 
selected genes were designed using Primer3 software (Supplementary Table S1). The analysis was conducted 
using the material and methods that were used in our earlier  study72. Briefly, following three pairs of contrast-
ing genotypes were utilized and were subjected to three different stresses as follows: (i) For water stress, samples 
were taken from seedlings of a pair of genotypes (tolerant cv. C306 and sensitive cv. HD2967) that were subjected 
to 1 h and 6 h of water stress. (ii) For heat stress, samples were taken from tolerant cv. HD2985 and sensitive cv. 
HD2329 that were subjected to 2 h of heat stress. (iii) For leaf rust, samples were collected at 0 h before inocula-
tion (0hbi) and 96 h after inoculation (96hai) from a pair of NILs including susceptible cultivar HD2329 and its 
resistant NIL HD2329 + Lr28 that were inoculated with virulent race of the pathogen (77–5). The material for 

https://gsds.cbi.pku.edu.cn/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://planttfdb.cbi.pku
https://probes.pw.usda.gov/
https://plantgrn.noble.org/psRNATarget/
https://plantgrn.noble.org/psRNATarget/
https://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse/?data=myData%2FIWGSC_RefSeq_v1.0
https://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse/?data=myData%2FIWGSC_RefSeq_v1.0
https://web.expasy.org/protparam/
https://prosite.expasy.org/
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://meme-suite.org/tools/meme
https://meme-suite.org/tools/meme
https://www.ebi.ac.uk/Tools/pfa/iprscan/
https://wheat.pw.usda.gov/WheatExp/
https://biit.cs.ut.ee/clustvis/
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three qRT-PCR experiments were collected as described in an earlier  study72. Water stress was given by transfer-
ring the seedlings to modified Hoagland’s solution containing 20% PEG 8,000. Similarly, heat stress given by 
exposing 7 days old normal wheat seedlings to 42 °C for 2 h; The heat stress was given in a sinusoidal mode by 
increasing 1 °C temperature per 10 min till the temperature reached 42 °C, which was maintained for 2 h; seed-
lings at 22 °C were used as control. For leaf rust, the material was collected as described in an earlier  study72. For 
each treatment in each experiment, two replications were used.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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