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Unveiling disulfidptosis‑related 
biomarkers and predicting drugs 
in Alzheimer’s disease
Lei Huang 1, Zhengtai Li 1, Yitong Lv 1, Xinyun Zhang 2, Yifan Li 1, Yingji Li 2* & Changyuan Yu 1*

Alzheimer’s disease is the predominant form of dementia, and disulfidptosis is the latest reported 
mode of cell death that impacts various disease processes. This study used bioinformatics to analyze 
genes associated with disulfidptosis in Alzheimer’s disease comprehensively. Based on the public 
datasets, the differentially expressed genes associated with disulfidptosis were identified, and 
immune cell infiltration was investigated through correlation analysis. Subsequently, hub genes were 
determined by a randomforest model. A prediction model was constructed using logistic regression. 
In addition, the drug-target affinity was predicted by a graph neural network model, and the results 
were validated by molecular docking. Five hub genes (PPEF1, NEUROD6, VIP, NUPR1, and GEM) 
were identified. The gene set showed significant enrichment for AD-related pathways. The logistic 
regression model demonstrated an AUC of 0.952, with AUC values of 0.916 and 0.864 in validated 
datasets. The immune infiltration analysis revealed significant heterogeneity between the Alzheimer’s 
disease and control groups. High-affinity drugs for hub genes were identified. Through our study, a 
disease prediction model was constructed using potential biomarkers, and drugs targeting the genes 
were predicted. These results contribute to further understanding of the molecular mechanisms 
underlying Alzheimer’s disease.
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Alzheimer’s disease (AD) is a chronic neurodegenerative disorder with an insidious onset, characterized by 
neurotic plaques associated with the accumulation of amyloid β protein (Aβ) in brain tissue and neurofilament 
tangles derived from hyperphosphorylation of microtubule-associated tau proteins1, along with synaptic 
dysfunction, neuronal loss, and various other pathological manifestations2. Despite extensive research, a cure 
for this remains elusive. Alzheimer’s disease, which accounts for 50–60% of dementia cases, significantly affects 
cognitive abilities, memory, and independence, posing a substantial challenge to individuals’ lives. The prevalence 
of AD is increasing worldwide due to the aging population, becoming an increasingly globalized health issue3. 
Estimates indicate that 75% of patients with AD remain undiagnosed globally, and this percentage rises to as 
high as 90% in certain underdeveloped regions4. Moreover, in 2019, AD was even ranked as the 6th leading 
cause of death in the United States5. The global burden on public health is immense, as AD poses a significant 
challenge worldwide. Currently, there are four primary hypotheses proposed to elucidate the pathogenesis of 
AD: The Aβ amyloid protein cascade theory6, the tau protein hyperphosphorylation theory7, the mitochondrial 
dysfunction8 and oxidative stress theory9, as well as the neuroinflammatory response10. These hypotheses have 
provided valuable insights into AD’s pathogenesis, and drugs that target removing amyloid plaques from the 
brain are already being utilized in clinical practice11. However, current clinical drugs face challenges in reversing 
the pathological processes of AD and have certain limitations. As a result, traditional Chinese medicines have 
garnered significant attention. Unlike Western medicines that typically target a single pathway, Chinese medicines, 
with their multi-component, multi-target, and multi-pathway efficacies, have demonstrated greater advantages in 
the treatment of AD. To identify more effective herbal medicines for AD, Zhang et al. established the Integrated 
Traditional Chinese Medicine (ITCM) platform, the largest herbal ingredient-based pharmacotranscriptomic 
database12. Alongside this, they developed the COIMMR computational framework13, which facilitates the 
rapid screening of active ingredients in traditional Chinese medicine. This approach significantly enhances 
the efficiency of drug discovery compared to traditional pharmacological experiments. Despite significant 
progress in understanding AD, the complexity of its pathogenesis has led to a limited understanding of its 
specific mechanisms. Therefore, elucidating the molecular mechanisms, identifying biomarkers for diagnosis 
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and treatment, and developing precise diagnostic approaches are imperative for addressing the challenges posed 
by AD.

Disulfidptosis, an emerging mode of cell death, is triggered by disulfide stress. It is characterized by the 
accumulation of intracellular disulfides, resulting in the collapse of cytoskeletal proteins and F-actin, as supported 
in recent studies14. Notably, disulfidptosis has been strongly linked to tumor progression and has been implicated 
in various cancers, including bladder cancer15, breast cancer16, and hepatocellular carcinoma17,18, which 
contribute to the identification of new potential therapeutic targets. However, little research has been conducted 
to investigate the potential association between disulfidptosis and neurological disorders, particularly AD. Ma 
et al. explored genes and their subgroups associated with disulfidptosis in AD and constructed a predictive 
model19. Building on this work, we further identified key related genes, developed a model with higher diagnostic 
accuracy, and searched for drugs targeting these genes using an affinity prediction model. Additionally, we 
conducted in-depth studies on these key genes to elucidate their mechanisms of action and evaluate potential 
therapeutic targets. We also performed the immune infiltration analysis to investigate the interactions between 
these hub genes and immune cells, thereby examining the immune characteristics of AD. Figure 1 illustrates the 
flow chart outlining the study.

Methods
Data acquisition and pre‑processing
The Alzheimer’s disease-related datasets were retrieved from the GEO database using the GEOquery package20. 
Three microarray datasets were obtained: GSE3300021, GSE12206322, and GSE528123, along with their 
corresponding gene annotation files. The GSE33000 dataset contains 310 AD samples and 157 control samples, 

Fig. 1.   The workflow of the study. This study analyzed data from GSE33000 and GSE122063 for identifying 
DEGs. Intersecting these DEGs revealed 136 DEGs, 90 of which were associated with disulfidptosis-related 
genes. These 90 DEGs were subjected to enrichment analysis. Five hub genes were identified by randomforest 
for machine learning model construction and validation. A GAT_GCN model predicted affinities, validated by 
molecular docking.
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the GSE122063 dataset contains 28 AD samples and 22 control samples, and the GSE5281 dataset contains 87 
AD samples and 74 control samples. The samples were pre-processed using R, and the non-Alzheimer’s disease 
and abnormal control samples were filtered out24. Additionally, null gene probe counts were eliminated, and 
duplicate probe expression data were averaged. Furthermore, a set of 10 genes highly related to disulfidptosis 
was identified by Liu et al.25, which includes SLC7A11, SLC3A2, RPN1, NCKAP1, NUBPL, NDUFA11, LRPPRC, 
OXSM, NDUFS1, and GYS1.

Identification of disulfidptosis‑related differentially expressed genes (DEGs)
The pre-processed expression data from two datasets, GSE33000 and GSE122063, were analyzed to identify DEGs 
between the AD group and the control group using the limma package26 (version 3.54.2) in R [screening criteria: 
p.adjust < 0.05, |log2fold change (FC)| > 1]. The up-regulated and down-regulated gene groups were intersected 
respectively and visualized in the Venn diagram. The resulting genes with consistent differential trends were 
considered the final DEGs for subsequent analyses. The Spearman correlation analysis was performed to screen 
out the DEGs associated with disulfidptosis (screening criteria: pvalue < 0.05, correlation > 0.75).

Identification of hub genes
The randomforest model is an integrated machine learning algorithm with decision trees based learner that 
provides variable importance scores during data analysis27. In this study, a randomforest model was constructed 
using the Randomforest package (version 4.7-1.1), and the feature importance metrics generated by the model 
were used to identify the hub genes.

Enrichment analysis
To explore the potential functions and biological mechanisms, the DEGs associated with disulfidptosis were 
subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses using the ClusterProfiler package (version 4.6.2)28. The GO analysis encompassed three levels: Biologi-
cal Process (BP), Cellular Component (CC), and Molecular Function (MF). Furthermore, Gene Set Enrichment 
Analysis (GSEA) was performed on the final selected hub genes, using the correlation coefficients between hub 
genes and other genes to form the analysis list. The results of these analyses were visualized through histograms, 
network diagrams, and GSEA plots, where a significance level of p < 0.05 was considered indicative of significant 
enrichment.

Machine learning model construction and independent validation analysis
Logistic regression is a commonly employed statistical method for analyzing associations between diseases and 
causative factors, particularly in dichotomous classification problems29. In this study, a logistic regression model 
was constructed and validated on external datasets. The performance of the model in distinguishing between 
AD and non-AD samples was assessed using receiver operating characteristic (ROC) Curve analysis and by cal-
culating the area under the ROC curve (AUC). The pROC package (version 1.18.0)30 in R was used to perform 
ROC analysis and obtain AUC values.

Evaluating the immune cell infiltration
CIBERSORT employs linear support vector regression to deconvolve the expression matrix of immune cell 
subtypes, which can estimate the abundance of immune cells and their characteristics of different populations31. 
The CIBERSORT package (version 0.1.0) was used to calculate the relative abundance of 22 immune cells in each 
sample of the gene expression matrix.

Drug affinity prediction
Graph Attention Network and Graph Convolutional Network (GAT_GCN) model, a graph neural network-based 
model for drug-target binding affinity prediction32, was applied to predicting the affinity between hub genes and 
drugs. For training the model, the KiBA dataset was used as the baseline dataset. The simplified molecular-input 
line-entry system (SMILES) of the drug compound was derived from the DrugBank database33. The targets were 
transformed into the amino acid sequences of the corresponding proteins, and each SMILES string strand was 
matched with each amino acid sequence to predict their binding affinity.

Molecular docking validation
The protein crystal structures in PDB format were retrieved from UniProt34. The three-dimensional (3D) struc-
tures of the drug compounds were obtained from PubChem. CB-DOCK235 was utilized to predict the binding 
cavity to which the small molecule binds. Global docking of the compounds and targets was performed using 
AutoDock Vina36, and binding energy scores were used to assess the binding ability of the drug-target interac-
tions. 3D docking plots of the docking results were generated using Pymol.

Statistical analysis
All statistical analyses were performed using R version 4.1.2. Spearman’s correlation analysis was used to deter-
mine the correlation between two variables. The Wilcox rank-sum test was utilized to analyze the difference 
between the two groups. Statistical significance was defined as pvalue < 0.05.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20185  | https://doi.org/10.1038/s41598-024-70893-7

www.nature.com/scientificreports/

Results
Identification of the disulfidptosis‑related DEGs in AD
To identify the DEGs associated with AD, differential expression analysis was conducted in the GSE33000 
and GSE122063 datasets following pre-processing. As a result, 377 DEGs were identified in the GSE33000 
dataset, including 187 up-regulated genes and 190 down-regulated genes (Fig. 2A and Supplementary Table 1). 
Similarly, 716 DEGs were identified in the GSE122063 dataset, consisting of 235 up-regulated genes and 481 
down-regulated genes (Fig. 2B and Supplementary Table 2). To visualize the expression patterns of the DEGs, a 
heatmap displaying the expression levels of 20 selected DEGs was generated (Fig. 2C,D). Upon comparing the 

Fig. 2.   Identification of differentially expressed genes (DEGs) in AD. (A) Volcano plot of DEGs in the GSE3300 
dataset. (B) Volcano plot of DEGs in the GSE122063 dataset. (C) Heatmap of selected DEGs in the GSE3300 
dataset. (D) Heatmap of selected DEGs in the GSE122063 dataset. (E) Venn diagram of up-regulated DEGs. (F) 
Venn diagram of down-regulated DEGs.
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two datasets, it was observed that 136 genes exhibited consistent expression trends, including 43 up-regulated 
genes and 93 down-regulated genes (Fig. 2E,F and Supplementary Table 3).

Following that, 90 DEGs that exhibited strong associations with the disulfidptosis-related genes were screened 
by Spearman correlation analysis. The locations of partial genes on the chromosome and the correlations between 
them are displayed in Supplementary Fig. 1.

Functional enrichment analysis of the disulfidptosis‑related DEGs in AD
To explore the potential functional mechanisms of 90 DEGs associated with disulfidptosis, enrichment analyses 
were conducted, including GO analysis at the BP, MF, and CC levels, as well as KEGG enrichment analysis.

The KEGG enrichment results are presented in Fig. 3A, revealing that these genes are primarily enriched in 
pathways such as "Alanine, aspartate, and glutamate metabolism," "GABAergic synapse," "Neuroactive ligand-
receptor interaction," "Retrograde endocannabinoid signaling," and "Taurine and hypotaurine metabolism." 
These pathways play crucial regulatory roles in the nervous system, underscoring their potential significance in 
the processes related to AD.

The GO enrichment results, depicted in Fig. 3B, highlight the top 6 enriched pathways across different levels. 
These pathways include "response to nerve growth factor," "neuropeptide signaling pathway," "neuronal cell 
body," and "neuropeptide receptor binding," among others. They encompass various aspects of neural signaling 
and metabolism, suggesting that their dysregulation may contribute to the onset and progression of neurological 
diseases, holding potential promise for the study of AD.

Identifying hub genes using a randomforest model
To identify the hub DEGs associated with disulfidptosis, a randomforest model was constructed, and the feature 
importance parameters provided by the model were utilized. Figure 4A displays the top 20 genes identified by 
the model. Ultimately, the top 5 genes were selected as hub genes: PPEF1, NEUROD6, VIP, NUPR1, and GEM. 
Additionally, the correlation patterns of these top 20 genes were investigated, revealing significant correlations 
between these five genes and other regulatory factors (Fig. 4B). Among these hub genes, PPEF1, NEUROD6, 
and VIP exhibited low expression levels in AD patients, whereas NUPR1 and GEM displayed high expression 
levels, as depicted in Fig. 4C.

Functional annotation and enrichment analysis of hub genes
To further explore the potential functional mechanism of hub genes, the GSEA was performed. The results, 
depicted in Supplementary Fig. 2A–E, highlight several pathways associated with neurological diseases, includ-
ing: "Alzheimer’s disease," "PI3K-Akt signaling pathway," "JAK-STAT signaling pathway," "GABAergic synapse," 
"Retrograde endocannabinoid signaling," "NF-kappa B signaling pathway," "Notch signaling pathway," "Synaptic 
vesicle cycle," and "Pathways of neurodegeneration-multiple diseases." The results provide valuable insights 
into the potential involvement of these pathways in AD, offering potential targets for further investigation and 
therapeutic interventions.

Immune infiltration
To investigate potential differences in the immune system between the AD group and the non-AD controls, an 
immune infiltration analysis using the CIBERSORT algorithm was conducted. The proportions of 22 immune 
cells in the sample are depicted in Fig. 5A. The results in Fig. 5B reveal significant elevations in B cells naive, B 
cells memory, T cells CD4 memory resting, T cells gamma delta, NK cells resting, Monocytes, Macrophages M0, 
Macrophages M1, Macrophages M2, Dendritic cells activated and Neutrophils in AD patients. Conversely, AD 
patients exhibited significant reductions in Plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 memory 

Fig. 3.   Enrichment analysis of 90 DEGs associated with disulfidptosis. (A) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis results show enriched items. (B) Gene Ontology (GO) enrichment 
analysis results at Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) levels.
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activated, T cells follicular helper, T cells regulatory (Tregs), NK cells activated, Dendritic cells resting, and Mast 
cells resting.

Furthermore, a correlation analysis between the hub genes and immune infiltrating cells was performed. The 
results showed significant correlations between the hub genes and Plasma cells, T cells CD8, T cells CD4 memory 
resting, NK cells activated, Monocytes, Macrophages M2, and Neutrophils (Fig. 5C).

Construction and validation of the predictive model
The ability of the five hub genes (PPEF1, NEUROD6, VIP, NUPR1, and GEM) to distinguish between AD and 
non-AD cases in the GSE33000 dataset was evaluated. The results demonstrated that the AUCs of the five hub 
genes on the GSE33000 dataset were all above 0.9, as shown in Fig. 6A. A logistic regression prediction model 
was constructed using the GSE33000 dataset, which exhibited strong discriminatory power, with an AUC of 
0.952, as depicted in Fig. 6B. The model was further validated on the GSE122063 and GSE5281 datasets, yielding 
AUCs of 0.916 (Fig. 6C) and 0.864 (Fig. 6D). The logistic regression formula used for the prediction model is 
as follows: logit(p) = 0.180 − 0.964 × PPEF1 − 0.487 × NEUROD6 − 0.570 × VIP + 0.040 × NUPR1 + 1.074 × GEM.

Fig. 4.   Identification and analysis of hub genes associated with disulfidptosis. (A) Feature importance ranking 
in the randomforest model. (B) Correlation analysis of the top 20 ranked disulfidptosis-related DEGs. (C) 
Violin plot of the top 20 ranked disulfidptosis-related DEGs expressions (ns: nondifferential; *, **, ***, and **** 
indicates p < 0.05, < 0.01, < 0.001, and < 0.0001, respectively).
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Drug prediction
To investigate potential drugs targeting these hub genes, the GAT_GCN model was used for drug-target affinity 
prediction. The results, presented in Supplementary Table 4, show the top three drug compounds ranked by their 
affinity scores. To gain further insight into these findings, the top 50 drugs targeting each gene were selected to 
construct a network (Fig. 7A). The network depicted genes as substantial nodes and drugs as diminutive nodes, 
with the thickness of the connecting lines representing the level of affinity between them. Subsequently, a total 
of nine drugs that co-targeted these genes were identified (Fig. 7B). To further verify the binding capabilities 
of these drug-target pairs, molecular docking was conducted. The results revealed that all the binding affinities 
were less than − 5.0 kcal/mol, which showed strong interaction (Supplementary Table 5). The conformation of 
the core drug-target is depicted in Fig. 8A–E. Specifically, NEUROD6, VIP, and NUPR1 exhibited good binding 
affinity with Hypericin, PPEF1 showed a favorable binding affinity with Emodin, and GEM displayed a strong 
binding affinity with Rolitetracycline.

Discussion
The initial symptoms of Alzheimer’s disease are mild and resemble normal age-related decline, making early 
diagnosis and identification notoriously challenging. Despite the growing knowledge and understanding of AD in 
recent years, the complex pathogenesis of the disease has hindered significant breakthroughs. Neurodegenerative 
diseases are characterized by progressive deterioration of neuronal function and structure, primarily attributed 
to the degeneration of synapses and axons, ultimately leading to neuronal cell death37. Therefore, it is crucial to 
identify the specific cell death mechanisms and signaling pathways affected in AD. Disulfidptosis, a novel type of 
cell death induced by intracellular disulfide accumulation due to SLC7A11 overexpression, has been identified.

Fig. 5.   Results of immune infiltration analysis. (A) Percentage of 22 immune cells in AD and normal samples. 
(B) Boxplots illustrating the differences in immune infiltration between AD and Control groups. (C) Heatmap 
of the correlation between hub genes (GEM, NEUROD6, NUPR1, PPEF1, and VIP) and immune infiltrating 
cells (ns: nondifferential; *, **, ***, and **** indicates p < 0.05, < 0.01, < 0.001, and < 0.0001, respectively).



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20185  | https://doi.org/10.1038/s41598-024-70893-7

www.nature.com/scientificreports/

In this study, microarray data from the brain tissues of patients with AD and healthy controls were uti-
lized. Five hub DEGs associated with disulfidptosis, namely PPEF1, NEUROD6, VIP, NUPR1, and GEM, were 
identified by a randomforest model. The PPEF1 gene encodes a member of the serine/threonine protein phos-
phatase with the EF-hand motif family. It is believed to play a role in specific sensory neuron functions and 
development38. It has been shown that serine/threonine-specific protein phosphatase affects the function of 
plasma membrane ion channels in excitable tissues39. Additionally, aberrant phosphorylation of tau proteins, 
which is linked to the pathogenesis of AD, may be influenced by PPEF140. The role of the NEUROD6 gene in AD 
is well-established. It encodes a protein associated with the development and differentiation of the nervous system 
and has been shown to play a crucial role in sustaining the mitochondrial biomass and responding to oxidative 
stress41, both of which are implicated in the pathogenesis of AD42. Bioinformatics studies have demonstrated 
significantly reduced expression of NEUROD6 in Alzheimer’s patients compared to normal subjects, suggesting 
its potential as a biomarker43,44. Vasoactive intestinal peptide (VIP), a neuropeptide that acts as a neuromodulator 
and neurotransmitter, with functions in vasodilation, smooth muscle relaxation, and immunomodulatory45,46, 
plays an essential role in various physiological activities. There is growing evidence linking VIP to the nervous 
system47–49. The neuropeptide exerts an effect on cAMP synthesis in the central nervous system50, and its vari-
ants have been associated with psychiatric disorders51. VIP-containing interneurons have been implicated in 

Fig. 6.   Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) values 
for model accuracy. (A) ROC curves of hub genes in the GSE33000 dataset. (B–D) ROC curves from the 
GSE33000, GSE122063, and GSE5281 datasets, respectively.
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Fig. 7.   Network analysis of gene-drug interactions reveals co-targeted drugs. (A) Gene-drug network: 
exploring affinity and interactions. (B) Identification of co-targeted drugs for the hub genes.

Fig. 8.   Molecular docking analysis of drug-target binding interactions. (A) Interaction of PPEF1 with Emodin. 
(B) Interaction of NEUROD6 with Hypericin. (C) Interaction of VIP with Hypericin. (D) Interaction of NUPR1 
with Hypericin. (E) Interaction of GEM with Rolitetracycline.
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the pathology and treatment of neurological disorders, such as Alzheimer’s disease49, Parkinson’s disease52, and 
autism spectrum disorders53, among others. NUPR1 is a transcriptional regulator involved in various processes, 
including cell cycle regulation and apoptosis. It has been shown to play an important role in the progression of 
malignant tumors such as breast and ovarian cancers54. Relevant studies have also shown the involvement of 
NUPR1 in METH-induced neuronal apoptosis and autophagy55. GEM is a small GTP-binding protein in the Ras 
superfamily, and some studies have shown its role in neuronal morphological differentiation56. Less attention 
has been paid to the relevance of PPEF1, NUPR1, and GEM to AD as possible therapeutic targets, and further 
research is needed to determine their potential roles in the treatment.

To further explore the potential functions of the identified hub genes, the GSEA was performed to predict 
their associated signaling pathways. It has been suggested that altered signaling of 2-Arachidonoyl glycerol, an 
endocannabinoid, may contribute to synaptic silencing in AD57. Alterations in GABAergic circuits may also 
promote AD by disrupting overall neuronal network function58. Increased inflammatory signaling leads to 
upregulation of the transcription factor NF-kappa B, which plays a crucial role in AD pathogenesis by regulat-
ing the different disease molecules responsible for the promotion of AD59. These suggest that the identified hub 
genes could potentially serve as markers for therapeutic interventions in AD.

Our studies on immune infiltration analysis indicated that the activity of multiple immune cell types under-
goes alterations during the onset and progression of AD. Increased levels of B cells and T cells align with previous 
findings suggesting that resident cells in the AD brain produce cytokines, reactive oxygen species (ROS), and 
inducible nitric oxide synthase (iNOS), thereby inducing a parenchymal neuroinflammatory response that leads 
to the infiltration of T cells into the brain60. Moreover, the upregulation of macrophages61 and neutrophils62 may 
also contribute to the neuroinflammatory response and neuronal damage process in AD, where due to the dys-
regulation of the brain microenvironment, microglial cells lose their functionality and release pro-inflammatory 
factors63, triggering neuroinflammation64, which influences the progression of AD.

Moreover, a disease prediction model constructed using these five hub genes based on logistic regression 
exhibited excellent performance on the test set (AUC = 0.952) and accurately predicted AD in two additional 
datasets (AUCs of 0.916 and 0.864, respectively), highlighting the potential value of these hub genes.

Finally, the drugs targeting the identified hub genes were predicted using the GAT_GCN model, and 
their binding affinity was verified through molecular docking. The results of molecular docking revealed that 
Hypericin, Emodin, and Rolitetracycline exhibited the strongest affinity for their respective targets among the 
tested drugs. Hypericin, a natural compound in Hypericum perforatum, possesses antitumor, antiviral, and anti-
depressant activities and induces apoptosis65. It has been shown to inhibit inflammatory responses induced by 
oligomeric amyloid β42 in microglia66 and is considered a potent anti-AD component. Emodin, an anthraquinone 
derivative, possesses antibacterial and anti-inflammatory properties67. Additionally, it exhibits potential antiviral 
activity68. A study has shown that it exerts neuroprotection against Alzheimer’s disease through Nrf2 signaling in 
U251 cells and APP/PS1 mice69. Its ability to inhibit aggregation of amyloid-β peptide 1–42 makes it a promising 
candidate for AD treatment70. Rolitetracycline, a broad-spectrum tetracycline antibiotic, has been demonstrated 
to inhibit the formation of Aβ protofibrils71, thereby reducing the deposition of beta-amyloid peptide, which is 
one of the main pathological features of AD. These drugs hold promise as potential therapeutic agents for AD. 
However, it is important to note that further research and clinical trials are necessary to fully evaluate their safety 
and efficacy in treating the disease.

Conclusion
In conclusion, the genes associated with disulfidptosis were studied using bioinformatics, and the biological 
functions of these genes were explored. Potential biomarkers were identified in the study, and drugs targeting 
these biomarkers were predicted, shedding light on novel avenues for the treatment of Alzheimer’s disease. 
Furthermore, the association between disulfidptosis and AD may provide valuable insights for the exploration 
of new therapeutic targets, opening up possibilities for innovative treatment strategies to be developed.

Data availability
The microarray data are sourced from the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The drug 
compounds are derived from the DrugBank database (https://​go.​drugb​ank.​com/).
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