
I. Introduction

Ultrasonography is often used in the diagnosis of acute ap-
pendicitis in children, particularly in those cases with an 
atypical or equivocal clinical presentation. The role of medi-
cal imaging in clinical decision making can be complex 
because the information provided on imaging referrals may 
lack comprehensive clinical history, leaving sonographers 
and radiologists with an incomplete clinical context [1-4]. 
Clinicians performing ultrasound examinations may glean 
information through discussions with patients and their par-
ent/carer, who may have limited knowledge of clinical data, 
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such as blood test results and vital signs. Advanced integra-
tion of Electronic Health Records (EHRs) and information 
systems can obviate this lack of clinical information and bet-
ter inform radiology findings by enabling consideration of 
the broader clinical picture [5]. As access to EHRs increases, 
large amounts of data now available present clinicians with 
additional challenges regarding optimal integration with 
information obtained during medical imaging. Sonogra-
phers evaluating right lower quadrant pain in children may 
now have access to relevant clinical data that may not have 
previously been provided by referrers. The development of a 
predictive model incorporating traditional sonographic vari-
ables and relevant clinical information will facilitate a clearer 
understanding of the role of ultrasound in the diagnosis of 
appendicitis in children and a more systemic approach to in-
corporating imaging findings into a broader clinical context.
 A Bayesian network (BN) is a directed acyclic graph (DAG) 
that depicts variables as nodes, with relationships between 
nodes indicated by connecting directional arrows or arcs 
that connect them, making visualisation of complex associa-
tions between variables possible [6]. The variables denoted 
by nodes can be continuous, but they are commonly discre-
tised into a smaller number of possible states for network 
and computing simplicity. Care needs to be taken during this 
reduction of states to avoid oversimplification and the loss 
of useful information to the model. The states may represent 
categorical variables (positive/negative), ordered variables (a 
Likert scale), or thresholds of a continuous variable (temper-
ature). The states attributed to each node can be defined by 
automated learning through analysis of a dataset, informa-
tion in publications, standards of practice, and expert opin-
ion, permitting flexibility in BN design [7]. The likelihood 
of a node’s state is quantified by a conditional probability 
table (CPT) that is calculated using existing clinical datasets, 
other data, published studies, and/or expert opinion. The 
condition of a preceding or parent node will influence the 
likelihood of a child node’s state; since the network is acyclic, 
the relationship between nodes can only be in one direction. 
Nodes without parents are known as root nodes, and their 
CPT determined by their prior probability or the probability 
of its various states in the relevant population. These CPTs 
can then be multiplied through the network structure to ob-
tain the overall probability of the outcome of interest. More-
over, quantification of various scenarios can be tested on the 
outcome of interest node through the application of Bayes’ 
theorem to the network node states and their conditional 
probabilities [8].
 Development of a BN as a predictive model for the diagno-

sis of acute appendicitis in children will permit the inclusion 
of important ultrasound variables familiar to sonographers. 
These may be combined with clinical variables made avail-
able through increased access to EHRs. This will provide 
a more complete representation of important variables, 
including ultrasound data, and a graphical depiction of the 
broader clinical context of children with suspected appendi-
citis referred for ultrasound. There is potential to further de-
velop a paediatric appendicitis BN as a platform for machine 
learning and artificial intelligence to make use of available 
EHR data and streamline triage for children with right lower 
quadrant pain by informing the BN with their clinical data 
and identifying patients for whom there is a higher probabil-
ity of requiring urgent treatment.
 Bayesian modelling incorporating medical imaging to in-
form clinical decision support incorporating medical imag-
ing has previously been applied to a variety of clinical areas 
and imaging modalities, such as mammographic diagnosis 
of breast cancer [9], ultrasound diagnosis of thyroid nod-
ules [10], and computed tomography diagnosis of chronic 
obstructive pulmonary disease [11]. Although BNs have 
also previously been used to model the diagnosis of acute 
appendicitis [12], to our knowledge, this study is the first to 
incorporate ultrasonographic variables.

II. Methods

Where possible, data used to quantify numerical parameters 
for the nodes were obtained from a prior study conducted in 
an Australian paediatric hospital (Human Research Ethics 
Committee Approval No. HREC/15/QRCH/125) [13]. Chil-
dren up to 16 years of age referred for ultrasound investiga-
tion of the right lower quadrant were recruited with written 
informed consent from their parent/guardian. Data were 
collected on study worksheets by sonographers perform-
ing the 230 eligible ultrasound studies and collated by the 
principal investigator. These data included the following ul-
trasonographic variables: appendix diameter, appearance of 
peri-appendiceal mesentery, appendiceal wall hyperaemia, 
and the presence of an appendicolith. Other variables, in-
cluding clinical history (duration of symptoms, nausea, and 
temperature), and blood test results (C-reactive protein lev-
els, white blood cell, and neutrophil counts), were collected 
through review of enrolled patients’ EHRs by the principal 
investigator. All collected data were stored and coded in a 
spreadsheet.
 Some variables of interest were not captured in this study 
(anorexia, pain migration, and rebound tenderness), and 
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some variables suffered from large amounts of missing data, 
particularly with respect to patient history and availability 
of blood test results. This made automated learning of the 
network structure and parameters impractical; therefore, 
the DAG was designed through a hybrid learning method 
[14,15]. This hybrid approach included an initial manual de-
sign process based on the elicitation of expert opinion as well 
as a review of the relevant literature and published data used 
to define the model structure, sub-models, and variables se-
lected [16,17]. The outcome of interest in the model was the 
likelihood of a child referred for ultrasound of suspected ap-
pendicitis, designated the target node acute appendicitis. The 
target node was influenced by four sub-models: Ultrasound 
Index, Clinical History, Physical Assessment, and Diagnostic 
Tests. Clinical variables not included in the prior study were 
determined via review of appendicitis scoring systems used 
in children including the Paediatric Appendicitis Score (PAS) 
and the Alvarado Score [18,19]. The second design stage 
involved the discretisation and weighting of the identified 
variables, which were calculated using principal components 
analysis where sufficient data were available, which also in-
formed the conditional probability table of nodes. 
 The Ultrasound Index comprised important primary and 
secondary sonographic criteria. The primary sonographic 
criteria consisted of those that necessitated direct visualisa-
tion of the appendix: Appendix Diameter (mean outside 
diameter in mm), ‘Xmod’ and Wall Hyperaemia (absent, pres-
ent), ‘Xwall’. Secondary sonographic signs included Mesentery 
Appearance (echogenic, normal), ‘Xmes’ and Appendicolith 
(present, absent) , ‘Xlith’.
 The Clinical History sub-model was based on prior pub-
lications and important factors identified in the PAS [19]. 
Nodes included Anorexia (present/absent), ‘Xanor’, Nausea 
(present/absent), Pain Migration to the right iliac fossa 
(present/absent), ‘Xmigr’; and Duration of Symptoms, which 
was a continuous variable (hours), ‘Xdur’. The Physical As-
sessment sub-model included a patient’s temperature with a 
binary febrile threshold of 38°C (normal/elevated), ‘Xfeb’ and 
rebound tenderness (absent/present), ‘Xtend’. The Diagnostic 
Tests sub-model included neutrophil count with a threshold 
of 7.5 × 109/L (normal/elevated), ‘Xneut’, white cell count with 
a threshold of 10 × 109/L (normal /elevated), ‘Xwcc’, and C-re-
active protein with a threshold of 3 mg/L (normal/elevated), 
‘Xcrp’ [19-22].
 The CPT values for the four sub-model indices were cal-
culated by analysing their respective contributing parent 
variables using principal components analysis (PCA) for the 
Diagnostic Tests sub-model with only continuous variables 

(Xwcc, Xneut, and Xcrp). Categorical principal components 
analyses (CATPCA) were conducted for the remaining sub-
models [23,24]. The CPT of the target acute appendicitis 
node was calculated by allocating equal importance to each 
of the four parent nodes and a 90% diagnostic accuracy 
considering a possible 5% false-positive and false-negative 
error rate [25]. GeNIe Modeler version 2.2 software (Bayes-
Fusion LLC, Pittsburgh, PA, USA) was used to create a DAG 
that visually represents the BN. All statistical analysis was 
performed with IBM SPSS Statistics version 22 (IBM Corp., 
Armonk, NY, USA).
 Confidence in model validity was considered, with BN 
structure, parameterisation, and network behaviour evalu-
ated to ensure they were appropriate for the scope of the 
model [26]. The model was then assessed for the following: 
nomological validity (the model fits in the broader topic 
domain in the literature), face validity (the model structure, 
node discretisation, and parameters fit with expert opin-
ion), content validity (the model consists of relevant factors 
and relationships and reflects all known possibilities from 
experts and the literature), concurrent validity (the BN or a 
sub-section may behave in an identical way to part of anoth-
er network), convergent validity (similarities exist between 
models that are in similar domains), discriminant validity 
(differences exist between models of very different domains), 
and predictive validity (predictive behaviour of the model is 
similar to that of the system that it is modelling) [26]. Op-
portunities for potential applications and adaptations of the 
model were then considered for future projects.
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Figure 1.  Two-dimensional biplot of the Ultrasound Index sub-
model CATPCA components and their loadings that 
informed the conditional probability table of that node 
in the Bayesian network. CATPCA: categorical principal 
components analysis, MOD: mean outside diameter.
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III. Results

To determine the CPT for the Ultrasound Index sub-model, 
a CATPCA was performed using data collected for the four 
identified primary and secondary ultrasound examination 
variables. Using varimax rotation and Kaiser normalisation, 
the first component of the two-dimensional model had an 
internal consistency coefficient (Cronbach’s alpha) of 0.783 
and yielded an eigenvalue of 2.372, indicating that 59.30% 
of the variance was accounted for by this component. The 
second component had an internal consistency coefficient of 
0.352 and an eigenvalue of 1.158, accounting for 28.95% of 
variance. Together, the two components explained 88.25% of 
variance (Figure 1). The appendix diameter variable (Xmod) 
was discretised from a continuous variable into five catego-
ries: <2.5 mm, 2.7–5.0 mm, 5.2–7.4 mm, 7.5–10 mm, and 
10.4–19.0 mm. To improve the face and content validity of 
the discretisation, these were rounded to the nearest mil-
limetre to reflect empirical values in the BN node (<3 mm, 
3–6 mm, 6–8 mm, 8–10 mm, >10 mm). Component load-
ings from the two CATPCA components were used to cal-

culate the CPT values for the Ultrasound Index sub-model = 
0.74 (0.820Xwall + 0.940Xmes + 0.555Xlith + 0.864Xmod) + 0.26 
(–0.230Xwall – 0.203Xmes + 0.892Xlith – 0.131Xmod).
 The CPT for the Clinical History sub-model was deter-
mined using published literature. Duration of symptoms 
(Xdur) was considered a binary variable using a cut-off at 36 
hours, with the relatively brief timeframe of appendicitis 
pathogenesis in children and the risk of perforation increas-
ing after that time period [19,27-30]. Other nodes were in-
formed through the PAS scoring system [19]. They included 
anorexia (present/absent), ‘Xanor’, nausea (present/absent), 
‘Xnaus’, and pain migration to the right iliac fossa (present/
absent), ‘Xmig’ [25]. Their respective positive and negative 
predictive values (PPV and NPV) from the literature were 
used to determine the latent probability of each variable to 
calculate CPT for the sub-model = log[CHppv(0.94Xnaus + 
0.69Xdur + 0.70Xmigr + 0.88Xanor) – CHnpv(0.73Xnaus + 0.13Xdur + 
0.97Xmigr + 0.89Xanor) + 4]. 
 The CPT for the Physical Assessment sub-model was calcu-
lated by running a CATPCA on the two identified variables, 
Xtend and Xfeb. The first component of the two-dimensional 
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Figure 2.  The structure of the Bayesian network used to model the likelihood of acute appendicitis in children referred for ultrasound 
examination—with conditional probabilities set to standard conditions.
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Table 1. Examples of possible clinical scenarios and the associated probabilities of key nodes in the network

Scenario

Sub-model node positive probability (%)
Acute appendicitis 

probability (%)
Ultrasound 

Index

Clinical

History

Physical  

Assessment

Diagnostic

Test

Non-specific abdominal pain: appendix not seen, normal 
   mesentery, normal bloods, afebrile, rebound tenderness, 
   no pain migration, nausea, no anorexia, 4 hours of symptoms

30 36 45 1 32

Bowel inflammation (i.e., ileitis): appendix 5 mm, 
   hyperaemia, inflamed mesentery, raised CRP, normal
   WCC/neutrophils, anorexia, febrile, no pain migration, 
   4 days of symptoms

42 39 55 26 45

Normal appendix: appendix 3 mm, normal mesentery, 
   nausea, no pain migration, afebrile, normal bloods, 
   rebound tenderness, no pain migration, 6 hours of 
   symptoms

15 31 45 1 25

Acute appendix: appendix 11 mm, appendicolith, wall
   hyperaemia, echogenic mesentery, abnormal bloods, 
   pain migration, febrile, rebound tenderness, anorexic, 
   48 hours of symptoms

96 95 99 99 97

CPR: C-reactive protein, WCC: white blood cell.
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Figure 3.  Bayesian network with evidence input to set conditional probabilities to reflect a patient with a low probability of having 
appendicitis.
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model had an internal consistency coefficient (Cronbach’s 
alpha) of 0.324 and yielded an eigenvalue of 1.046, indicating 
that 52.30% of the variance was accounted for by this com-
ponent. The second component had an internal consistency 
coefficient of 0.095 and an eigenvalue of 0.954, accounting 
for 47.70% of variance. Component loadings from the two 
CATPCA components were used to calculate the CPT val-
ues for the sub-model = 0.52 (1.092Xfeb – 0.019Xtender) + 0.48 
(0.018Xfeb + 1.024Xtender).
 For the Diagnostic Tests sub-model, the suitability of PCA 
was assessed prior to analysis. Inspection of the correlation 
matrix demonstrated that all of the variables had at least one 
correlation coefficient greater than 0.3. The overall Kaiser-
Meyer-Olkin measure was 0.584 and Bartlett's test of sphe-
ricity was statistically significant (p < 0.001), indicating that 
the data was likely factorizable. PCA revealed that the com-
ponents explained 75.43% (Xwcc), 23.41% (Xneut), and 1.16% 
(Xcrp) of the total variance respectively, and cumulatively 
explained 100% of the total variance. Component load-
ings were used to calculate CPT values for the sub-model = 
0.959Xwcc + 0.955Xneut + 0.657Xcrp.
 A DAG incorporating the variables and their respective 

CPT values was designed (Figure 2). Nodes were con-
nected via directed arrows or arcs based on literature and 
the opinions of experts, including a specialist paediatric 
radiology consultant, a specialist paediatric sonographer, a 
senior paediatric emergency medical officer, and a professor 
in statistics, who were able to inform the face and content 
validity. The BN was evaluated with scenarios to test confi-
dence in predictive validity in cases (Table 1). This involved 
setting the node states to reflect common clinical scenarios 
in this patient cohort: general abdominal pain; diffuse bowel 
inflammation, such as ileitis or colitis; a low probability of 
appendicitis (Figure 3); and a high probability of appendici-
tis with all nodes in the network set to states for an optimal 
positive outcome (Figure 4). No models with integration of 
ultrasound variables were identified in the literature, making 
assessment of concurrent and convergent validity difficult. 
However, a BN without imaging variables consisting of 10 
nodes was identified and found to have a similar structure 
and behaviour to the BN described in this manuscript, with eight 
nomologically identical nodes found in both networks [12].
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Figure 4.    Bayesian network with evidence input to set conditional probabilities to reflect a patient with a high probability of having 
appendicitis, more influential nodes are emphasized by increased directional arrow thickness.
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IV. Discussion

To our knowledge this is the first time a BN model integrat-
ing ultrasound variables has been created for the diagnosis 
of paediatric acute appendicitis integrating ultrasound vari-
ables. Through careful variable selection and design using 
dimension reduction techniques, PCA and CATPCA, this 
model provides a representation of important factors in this 
patient cohort. The pervasiveness of EHRs and information 
sharing presents an opportunity for information about a 
patient’s broader clinical context to be made more available 
to those who may be involved in their clinical pathway. The 
availability of large volumes of clinical data may present 
problems. It can be time consuming and impractical for each 
clinician to continually re-evaluate the information available 
to them as test results are returned and clinical assessments 
are made or revised. The potential to evaluate this infor-
mation constantly through the application of a BN model 
developed into an online tool may permit patients who have 
higher probability of having appendicitis to be seen more 
quickly at triage or at other stages of their clinical journey.
 Much of the information related to the nodes within this 
BN is already available, but it is often fragmented and not 
easily accessible. Patients and families may be asked for 
clinical history information by emergency clinicians that 
is not provided on an imaging referral. Sonographers may 
repeat these questions and use that information to tailor 
their examination, yet the information may not be passed 
onto a radiologist who would find it valuable in formulating 
a conclusion to a report. The structure of the proposed BN 
permits it to be employed as a tool to prompt consideration 
of important variables by sonographers and radiologists. 
Although this model is limited in scope for application to 
children referred for ultrasound of suspected appendicitis, 
it provides a potential platform for a broader model encom-
passing a greater number of variables, such as surgical or 
medication related considerations. Limitations of this study 
included the difficulty of conducting automated learning of 
network structure and parametrisation due to the sparse da-
taset available from our prior study and a lack of open access 
data to use for this purpose. Moreover, the paucity of pub-
lished BNs in the same or similar clinical domains, if pres-
ent, may have increased confidence in validation of our BN. 
Notwithstanding this, as discussed, the model construction 
approach adopted in this paper is well established. 
 The use of a visual representation of a decision-making 
model like a DAG in a BN is an elegant means to enable ap-
preciation of a broader clinical picture. A recent survey of so-

nographers who perform paediatric appendicitis ultrasound 
in Australasia highlighted that they often feel removed from 
clinical decision-making considerations, and a better appre-
ciation of the degree of suspicion of children to have appen-
dicitis would assist them in performing their examinations 
[31]. Appendiceal sonography may require dedicated time 
and focus that can conflict with demands for activity and 
efficiency [32]. If sonographers and radiologists reporting 
these examinations were better informed of clinical covari-
ates and their influence on the probability of appendicitis, 
they could better target their time and resources to cases that 
are more likely to be positive and therefore expedite surgical 
review. 
 The BN is able to accommodate missing data through the 
use of prior probabilities assigned to nodes informing the 
overall network. This feature of the network expands the 
scope of potential utilisation to clinicians outside hospital-
based practice where pathology services may not be readily 
available, and the rate of sonographic visualisation of the 
appendix is known to be lower than in dedicated paediatric 
centres [33,34]. Therefore, children who present for ultra-
sound without blood test information, and in whom the 
appendix cannot be identified sonographically, can still have 
their probability of appendicitis determined by the network. 
This probability would be based on evidence from patients 
in prior studies and the literature (node prior probabilities), 
considered along with the data available at the time of their 
examination (clinical history, physical assessment, and sono-
graphic mesentery appearance), to personalise the diagnos-
tic outcome. For example, if the appendix was not identified 
and could not be measured or assessed for hyperaemia, the 
only nodes that would be updated with new information and 
potentially a defined state would be Xmes and Xlith. Changing 
the state of these nodes would then influence the Ultrasound 
Index CPT accordingly. The latent probabilities of Xmod and 
Xwall would not change their influence on the Ultrasound 
Index CPT would remain unchanged and based on the prior 
probabilities that determined their weighting.
 Potential future applications may see this model integrated 
with an EHR or radiology information system (RIS) to pro-
vide alerts to clinicians when a diagnosis probability rises 
above certain thresholds. More efficient triage may be pos-
sible if patients and families are able to answer clinical his-
tory questions through an interactive device at reception or 
triage; their responses could begin to prepopulate the values 
in the BN to prioritise assessment or ordering of diagnostic 
or imaging examinations that may be useful. An online tool 
based on this BN will be developed in collaboration with 
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emergency clinicians and surgeons. Future work is planned 
to evaluate the BN in a prospective study that will improve 
validation and permit refinement of the model.
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