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Abstract

Several studies have produced extensive evidence on white matter abnormalities in schizo-

phrenia (SZ). However, optimum consistency and reproducibility have not been achieved,

and reported low white matter tract integrity in patients with SZ varies between studies. A

whole-brain imaging study with a large sample size is needed. This study aimed to investi-

gate white matter integrity in the corpus callosum and connections between regions of inter-

ests (ROIs) in the same hemisphere in 122 patients with SZ and 129 healthy controls with

public neuroimaging data from SchizConnect. For each diffusion-weighted image (DWI),

two-tensor full-brain tractography was performed; DWIs were parcellated by processing and

registering T1 images with FreeSurfer and Advanced Normalization Tools. White matter

query language was used to extract white matter fiber tracts. We evaluated group differ-

ences in means of diffusion measures between the patients and controls, and correlations

of diffusion measures with the severity of clinical symptoms and cognitive impairment in

the patients using the Positive and Negative Syndrome Scale (PANSS), a letter-number

sequencing (LNS) test, vocabulary test, letter fluency test, category fluency test, and trail-

making test, part A. To correct for multiple comparisons, a false discovery rate of q < 0.05

was applied. In patients with SZ, we observed significant radial diffusivity (RD) and trace

(TR) increases in left thalamo-occipital tracts and the right uncinate fascicle, and a signifi-

cant RD increase in the right middle longitudinal fascicle (MDLF) and the right superior longi-

tudinal fascicle ii. Correlations were present between TR of left thalamo-occipital tracts, and

the letter fluency test and the LNS test, and RD in the right MDLF and PANSS positive sub-

scale score. However, these correlations were not significant after correction for multiple

comparisons. These results indicated widespread white matter fiber tract abnormalities in

patients with SZ, contributing to SZ pathophysiology.
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Introduction

Schizophrenia (SZ) is a severe and debilitating disorder characterized by disordered thought

process and impaired emotional responses. The disconnection hypothesis, according to which

compromised functional cerebral integration is implicated in SZ, is a leading SZ pathophysiol-

ogy hypothesis [1, 2]. Structural white matter fiber tract abnormalities may underlie connectiv-

ity abnormalities, resulting in clinical symptoms and cognitive impairments [3]. Structural

white matter abnormalities have been reported in patients with SZ. Consistent findings of

alterations in myelin pathology, neuronal orientation and density, and oligodendrocyte aber-

rations in SZ have been reported [4, 5]. Post-mortem histopathological studies could be infor-

mative, but samples comprising patients of advanced age and possibly with chronic illness are

a significant limitation. These studies are unable to explore white matter alterations at all stages

of SZ.

Diffusion-weighted imaging (DWI) has facilitated in-vivo investigation of white matter

microstructure alterations as well as the association between white matter changes and clinical

symptoms [6, 7]. In 1998, DWI was used for the first time to patients with SZ [8]. Since then, a

large body of evidence on white matter abnormalities in SZ has been produced. However, opti-

mum consistency and reproducibility have not been achieved. Several factors contributing to

the heterogeneity of the literature have been suggested, including methodological differences

between studies, clinical presentation variability of SZ, differences in individual pathogenesis

and pathophysiology, and large differences in covariates such as age, sex, chronicity, and medi-

cation [9].

To address this heterogeneity, multi-site consortia have been created to coordinate large

dataset collections, including the Mind Clinical Imaging Consortium (MCIC) [10], Functional

Biomedical Informatics Research Network [11–13], and North American Prodrome Longitu-

dinal Study Consortium [14]. Due to the challenges in combining data from datasets with dif-

ferent protocols and data structures, these efforts have been partially successful. SchizConnect

(www.schizconnect.org), a virtual database for SZ and related disorders, was built to address

the issue of multiple data repositories [15, 16]. The SchizConnect system provides neuroimag-

ing data in response to user queries, while data remain at the original sources. It mediates data

sources from different studies, and provides the imaging and related data as a uniform, seman-

tically-consistent structure by interpreting database specific terminology. Live data, being

updated at each data source, can be mediated to allow access to existing datasets.

Several methods are available for diffusion tensor imaging (DTI) quantitative measure-

ments, including voxel-based morphometry (VBM), tract-based spatial statistics (TBSS),

and tractography. The VBM and TBSS methods are very popular tools for performing voxel-

based DTI analyses. In these methods, all subjects’ images are co-registered to a common

space, and statistical tests are performed in each co-registered voxel [17]. While these meth-

ods have a strength of allowing for automated and relatively fast analysis of entire subjects,

methodological issues regarding the quality of image registration and the anatomical speci-

ficity have been reported [18, 19]. Tractography can be used to characterize entire white mat-

ter tracts and to examine white matter fascicle architecture. Using this method, white matter

fiber tracts can be extracted and calculated with a measure of fiber integrity averaged over

the extracted tract. Traditional fiber-tracking models cannot provide correct fiber orienta-

tions in regions where fiber bundles intersect each other because of orientation heterogeneity

[20]. Fiber populations with different spatial orientations in a single voxel can cause an

increase in fractional anisotropy (FA), without changes in axonal or myelin integrity

[21]. The fiber-crossing problem has been a challenging issue in tractography because the

proportion of white matter voxels containing crossing fibers is estimated to be ~90% [22].
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Unscented Kalman filter (UKF)-based two-tensor tractography allows for the recovery of

branching and crossing fibers because this tractography models the signal as a mixture of

two tensors [23]. With this algorithm, Rathi et al. revealed a significant group difference in at

least one diffusion measure of 740/1254 fiber bundles between patients with first-episode SZ

and healthy controls (HCs) [23].

The relationship between white matter alterations and cognitive impairments in patients

with SZ has been investigated with inconsistent results. Reportedly, reduced FA in the unci-

nate and cingulum bundles are correlated with episodic memory and executive function in

chronic SZ, respectively [24]. A study in patients with recent-onset psychosis also revealed

reduced FA in both uncinate fasciculi correlating with worse verbal learning/memory func-

tioning [25]. Conversely, Samartzis et al. reported that only four of the eight studies examining

associations of cognitive variables with DTI measures showed positive findings [26]. Given evi-

dence indicating that cognitive impairments are correlated with poorer functional outcomes

[27, 28], whole-brain imaging studies with larger sample size are needed to elucidate the asso-

ciation between white matter integrity and neurocognitive deficits.

Several studies have examined the relationship between white matter integrity alteration

and clinical symptoms, reporting high variability of findings. Positive symptoms are positively

related to increased FA of the inferior occipitofrontal fasciculus (IOFF), inferior longitudinal

fasciculus (ILF), and superior longitudinal fasciculus (SLF) in drug-naïve first episode SZ

(FES) and chronic patients [29]. However, no significant correlation was found between

positive symptoms and average FA value of any above-mentioned tract in medication-naïve

patients with FES [30]. Lener et al. reported that lower FA in the left ILF is associated with

greater overall and positive symptoms [31]. Reported white matter tracts associated with nega-

tive symptoms vary between studies, including the corpus callosum (CC), uncinate fascicle

(UF), ILF, IOFF, and anterior thalamic radiation [29, 30].

We aimed to investigate differences in diffusion indices of white matter fiber tracts between

patients with SZ and HCs using UKF tractography. The analysis was focused on intra-hemi-

spheric fiber tracts and the CC. We predicted a significant group difference in diffusion mea-

sures of white matter fiber tracts between patients with SZ and HCs. We hypothesized that

clinical symptoms and cognitive impairment in patients with SZ is correlated with diffusion

indices.

Materials and methods

Participants

We obtained three freely available samples [Center of Biomedical Research Excellence

(COBRE), MCIC, and Neuromorphometry by Computer Algorithm Chicago (NMorphCH)]

from SchizConnect, which comprised 140 HCs and 140 patients on the SZ spectrum encom-

passing SZ and schizoaffective disorder. In order to protect participant identity, all data were

fully anonymized prior to our access. Ten schizoaffective patients were excluded from the

140 patients on the SZ spectrum. We visually inspected T1 and DWIs of all 270 subjects and

excluded 19 subjects whose images were not eligible for further analysis. The final data set

comprised 129 HC and 122 patients with SZ. Each study sample was obtained in accordance

with the Declaration of Helsinki and approved by the local institutional review board commit-

tees, with participants’ written informed consent. The capacity of patients to provide informed

consent was confirmed by completing a questionnaire verifying that they understood the

study procedures. Parental consent was not required, as all participants were between the ages

of 20 and 66. The current study was approved by the institutional review board of Asan Medi-

cal Center (IRB File No. S2017-1996-0001).
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Image acquisition

Information on scanners and acquisition parameters of structural T1 and DWIs, by sample,

are summarized in S1 Table.

Image processing

The average motion estimate of each subject was calculated using the RMSDIFF program dis-

tributed with the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software

Library (FSL) (http://www.fmrib.ox.ac.uk/fsl/) [32]. The means of motion estimates in the SZ

and HC groups were compared using a Welch’s test, and the SZ group had significantly higher

motion estimates than that of the HC group (2.340 ± 1.986 vs. 2.010. ± 1.611, respectively;

df = 6969.3, t = 7.894, p =< 0.001). DWIs were corrected for motion and eddy current-

induced distortions, with the affine registration of all gradient volumes, with the first b = 0 vol-

ume (FLIRT: FMRIB Software, Oxford, United Kingdom) [33, 34]. After correction for the

motion and eddy current-induced distortions, all images were visually inspected to eliminate

images which were not eligible for further analyses. We used UKF tractography implemented

in the 3D Slicer (http://www.slicer.org) [35] to perform whole-brain tractography (parameters:

seeds per voxels: 10; number of tensors: two; Qm 0.001; Ql 70; Rs 0.015; record length: 1.7;

step length: 0.3; and seed FA limit: 0.18) [23].

The Desikan-Killiany atlas of FreeSurfer V. 6.0 [36] was used to parcellate T1-weighted

images into discrete anatomical regions. A T1-weighted image was registered into a b = 0

baseline image of DWIs with a non-linear registration method, part of the Advanced Normali-

zation Tools [37, 38]. FreeSurfer parcellated labels were applied to derive anatomical segmenta-

tions of DWIs using the same registration transformation. Gray matter (GM)/white matter-

transformed parcellated regions of interest (ROIs) on left and right sides were selected; for

each structure, GM and white matter ROIs were combined into one ROI. The left (right) tract

between ROIs in the same hemisphere was extracted with white matter query language [34]

implemented in the 3D Slicer. The CC was also extracted based on previous studies, which

reported that patients with SZ had low white matter integrity in the CC compared to controls

[39, 40]. White matter query language was developed to automatically dissect white matter

tracts from DWI volumes. The operation of white matter query language could be divided

into two steps: (1) sets of streamlines per each anatomical region were defined, including all

streamlines which had the initial or final point in the region, all streamlines traversing the

region, and the streamlines traversing brain areas defined by their relative position to the

region, (2) logical operations and compositions with these sets of streamlines per region were

assigned to define white matter tracts. The extracted tracts (see S2 Table for information on

the anatomical definitions, in white matter query language, used to extract the white matter

fiber tracts) included the arcuate fascicle (AF), cingulum bundle (CB), CC, corticospinal tract

(CST), external capsule (EC), ILF, internal capsule (IC), IOFF, middle longitudinal fascicle

(MDLF), SLF, superior occipitofrontal fascicle, striato-frontal tract, striato-parietal tract,

striato-occipital tract, thalamo-frontal tract, thalamo-parietal tract, thalamo-occipital tract, and

UF. The diffusion measures [FA, axial diffusivity, radial diffusivity (RD), and trace (TR)] were

calculated and averaged over each tract, according to the methods of previous reports [41–43].

Neurocognitive tests and clinical measures

We selected neurocognitive measures that were commonly included in the three samples,

which comprised the letter-number sequencing (LNS) test, vocabulary test, letter fluency test,

category fluency test, and trail-making test (TMT), part A. The LNS test was used to measure

verbal working memory. The LNS subtest of the Wechsler Adult Intelligence Scale–Third
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Edition 16 (WAIS-III) [44] was used in MCIC and NMorphCH samples, whereas the letter-

number span test in the Measurement and Treatment Research to Improve Cognition in

Schizophrenia consensus cognitive battery [45] was used in the COBRE sample. In COBRE

and MCIC samples, general cognitive abilities and achievement were measured using the

vocabulary subtest of WAIS-III, whereas the vocabulary subtest of the Wechsler Abbreviated

Scale of Intelligence [46] was used in the NMorphCH sample. The letter fluency and category

fluency tests assessed executive function [47, 48]. TMT, part A measured the processing speed

during the attention and working memory tasks. Additionally, t-scores on the above five neu-

rocognitive measures were obtained from the COBRE sample.

The Positive and Negative Syndrome Scale (PANSS) [49] scores in the COBRE sample and

the Scale for the Assessment of Positive Symptoms (SAPS) [50] and the Scale for the Assess-

ment of Negative Symptoms (SANS) [51] scores in the MCIC and NMorphCH samples were

used to evaluate the severity of clinical symptoms. We estimated PANSS positive and negative

subscale scores from SAPS and SANS scores using a validated conversion equation [52]. Clini-

cal symptom severity was measured by these converted scores in the MCIC and NMorphCH

samples and the PANSS scores in the COBRE sample.

Statistical analysis

For comparison of continuous and categorical variables in the demographic and clinical char-

acteristic data, a Student t-test (continuous variables with equal variance), a Welch’s test (con-

tinuous variables with unequal variance), and a chi-square test (categorical variables) were

adopted. We calculated the means and standard deviations of the diffusion measures in each

tract in the HC group separately for the three samples. Raw values of the patients’ diffusion

measures were normalized into z-scores using the above means and standard deviations in the

HC group. Outliers were defined as values below the 1.5 interquartile range (IQR) of the first

quartile or above the 1.5 IQR of the third quartile of each diffusion measure in the tracts, and

these were excluded from further analysis. Group differences in the z-scores of diffusion mea-

sures in tracts were compared using the Approximate Monte Carlo Fisher-Pitman Test [53,

54] with a simulation number of 100,000 because z-scores of diffusion measures were not

normally distributed. To correct for multiple comparisons, a false discovery rate of q< 0.05

was applied [55]. Spearman’s rho correlations were applied to evaluate associations between

the diffusion measures, and the neurocognitive measures and clinical symptom severity in

patients. All statistical analyses were performed using R packages (version 3.4.3) [56, 57]. A

two-tailed p< 0.05 was considered significant.

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the participants are presented in Table 1.

Mean age did not differ significantly between the HC and SZ groups (35.8 ± 11.4 vs.

35.9 ± 11.0, respectively; df = 248.859, t = −0.084, p = 0.933). The SZ group had a larger propor-

tion of males than the HC group (73.8% vs. 66.7%, respectively; X2 = 1.19, p = 0.275), but this

was not statistically significant. Information on the duration of illness (15.5 ± 12.5 years) was

only available from two samples (COBRE and MCIC).

Information on neurocognitive measures was available for 221 of the 251 participants.

There were statistically significant differences in all neurocognitive measures between the two

groups. The SZ group exhibited significantly lower scores on the letter fluency test, category

fluency test, LNS test, and vocabulary test (df = 219, t = 4.707, p< 0.001; df = 207.751,

t = 7.923, p< 0.001; df = 219, t = 6.428, p< 0.001; and df = 168.213, t = 6.620, p< 0.001,
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respectively). The SZ group mean score on TMT, part A was significantly higher than the HC

group mean score (df = 149.488, t = −7.159, p< 0.001). Table 1 presents means of the PANSS

total scores and three subscale scores in the COBRE sample, converted PANSS positive and

negative subscale scores in the MCIC and NMorphCH samples, and olanzapine equivalent

dose [58] of the SZ group in the COBRE sample.

Comparisons of diffusion MRI measures

There were no significant differences in the diffusion measures of the CC between the two

groups (AD: z = −0.946, p = 0.611, FDR corrected; FA: z = −0.103, p = 0.939, FDR corrected;

Table 1. Demographic and clinical characteristics of participants.

Variables Sample Statistical testsa

COBRE MCIC NMorphCH Total

HC SZ HC SZ HC SZ HC SZ t or χ2 df p

Number of participants 74 59 19 23 36 40 129 122

Age, mean (SD), (y) 38.2

(12.0)

38.8

(12.9)

34.8

(11.7)

34.0

(10.2)

31.3

(8.4)

32.6

(6.7)

35.8

(11.4)

35.9

(11.0)

−0.084 248.859 0.933

Male (%) 77.0 76.3 47.4 73.9 55.6 70.0 66.7 73.8 1.19 0.275

Age of onset, mean(SD), (y) 21.1

(8.3)

24.1

(6.7)

NA 22.0

(8.0)

Duration of illness, mean(SD), (y) 17.7

(13.1)

9.9

(9.1)

NA 15.5

(12.5)

Medication dose, mean(SD), (mg/day, olanzapine equivalent dose)b 17.1

(13.2)

NA NA

Neurocognitive testsc, mean(SD)

Trail making test, part A 23.2

(7.1)

38.2

(19.3)

24.7

(7.6)

31.9

(14.2)

27.6

(11.2)

40.8

(15.7)

24.3

(8.3)

37.6

(17.4)

−7.159 149.488 <0.001

Letter fluency test 41.8

(10.7)

33.0

(11.8)

41.6

(9.9)

37.7

(10.5)

41.5

(11.1)

35.1

(12.2)

41.7

(10.6)

34.6

(11.7)

4.707 219 <0.001

Category fluency test 24.3

(4.7)

18.5

(6.5)

25.4

(3.5)

20.0

(5.1)

21.0

(5.1)

16.3

(4.3)

23.8

(4.8)

18.2

(5.7)

7.923 207.751 <0.001

Letter-number sequencing test 15.6

(3.5)

12.7

(4.4)

12.5

(1.7)

10.2

(2.1)

12.3

(2.9)

9.8

(2.9)

14.4

(3.5)

11.3

(3.8)

6.428 219 <0.001

Vocabulary test 61.2

(7.9)

51.4

(13.6)

57.2

(3.8)

45.9

(11.8)

63.0

(8.6)

54.7

(12.7)

60.9

(7.7)

51.2

(13.2)

6.620 168.213 <0.001

PANSSd

Total 59.8

(16.4)

NA NA

Positive 15.4

(5.4)

21.1

(3.7)

27.1

(12.0)

20.3

(9.5)

Negative 14.9

(5.5)

21.8

(3.1)

32.6

(12.1)

22.0

(11.4)

General 29.5

(9.8)

NA NA

Note: COBRE (Center of Biomedical Research Excellence), MCIC (Mind Clinical Imaging Consortium), NMorphCH (Neuromorphometry by Computer Algorithm

Chicago), HC (healthy controls), SZ (patients with schizophrenia), SD (standard deviation), PANSS (Positive and Negative Syndrome Scale), NA (not available).
a Analyzed using a Student t-test (for equal variance), a Welch’s test (for unequal variance), and chi-square tests.
b Antipsychotic medication dose equivalent to olanzapine at MRI scan.
c Information on neurocognitive measures was available from 221 of 251 participants.
d PANSS total and three subscale scores were only obtained from COBRE sample. SAPS and SANS scores in the MCIC and NMorphCH samples were converted to

PANSS positive and negative subscale scores.

https://doi.org/10.1371/journal.pone.0205369.t001
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RD: z = −0.980, p = 0.598, FDR corrected; TR: z = −0.868, p = 0.653, FDR corrected). Group

differences in the diffusion measures of the tracts in the left and right hemispheres between the

two groups are shown in Table 2 (left hemisphere) and Table 3 (right hemisphere). The SZ

group had significantly higher RD and TR of left thalamo-occipital tracts (RD: z = −3.642,

p = 0.016, FDR corrected; TR: z = −3.125, p = 0.043, FDR corrected) and UF (RD: z = −4.081,

p = 0.002, FDR corrected; TR: z = −3.393, p = 0.035, FDR corrected) than the HC group. In the

SZ group, RD of the right MDLF (z = −3.093, p = 0.046, FDR corrected) and the right SLF ii

(z = −3.142, p = 0.043, FDR corrected) were significantly higher than the HC group.

We performed the same analyses with age and sex as covariates and identified the same

group differences in diffusion measures of white matter fiber tracts (left thalamo-occipital

tracts: RD; z = −3.631, p = 0.021, FDR corrected; TR; z = −3.121, p = 0.040, FDR corrected;

right MDLF: RD; z = −2.971, p = 0.049, FDR corrected; right SLF ii: RD; z = −3.132, p = 0.040,

FDR corrected; right UF: RD; z = −4.019, p = 0.007, FDR corrected; and TR; z = −3.383,

p = 0.029, FDR corrected).

Clinical correlates of diffusion MRI measures

We selected diffusion measures of tracts that showed significant group differences, after cor-

rection for multiple comparisons. In the SZ group, correlations between the raw values of the

Table 2. Group differences in the diffusion measures of tracts in the left hemispherea.

Structure Diffusion measure

AD FA RD TR

z pb z pb z pb z pb

left AF 0.313 0.755 0.395 0.693 −1.575 0.116 −0.285 0.776

left CB 0.104 0.918 1.901 0.056 −1.634 0.102 −1.064 0.291

left CST 0.192 0.847 0.515 0.610 −0.403 0.691 0.663 0.508

left EC 0.756 0.451 2.04 0.041 −2.728 0.006 −1.410 0.159

left ILF 0.791 0.427 2.552 0.011 −2.910 0.004 −1.800 0.070

left IC 0.180 0.856 1.749 0.078 -2.030 0.043 -1.155 0.247

left IOFF 0.309 0.762 0.512 0.611 −0.753 0.455 −0.421 0.684

left MDLF 1.261 0.207 2.594 0.009 −2.869 0.004 −1.086 0.281

left SLF i 1.578 0.115 1.681 0.092 −1.863 0.062 −1.525 0.129

left SLF ii −0.263 0.824 2.243 0.023 −2.531 0.008 −1.929 0.053

left SLF iii 1.960 0.049 −0.331 0.745 0.705 0.482 0.422 0.673

left SOFF 0.199 0.843 −0.239 0.811 1.528 0.127 −0.199 0.863

left striato-frontal 0.841 0.401 1.061 0.289 −1.796 0.073 −0.256 0.797

left striato-occipital −0.973 0.334 0.270 0.788 −1.588 0.113 −1.430 0.153

left striato-parietal 1.714 0.088 1.183 0.238 −0.459 0.649 0.677 0.500

left thalamo-frontal 0.854 0.396 −0.641 0.560 −0.499 0.619 0.104 0.920

left thalamo-occipital −1.676 0.094 2.505 0.012 −3.642 <0.001� −3.125 0.001�

left thalamo-parietal 0.145 0.885 0.491 0.624 −0.420 0.677 −0.257 0.797

left UF −1.896 0.058 −0.003 0.998 −1.461 0.143 −1.535 0.125

Note: AF (arcuate fascicle), CB (cingulum bundle), CST (corticospinal tract), EC (external capsule), ILF (inferior longitudinal fascicle), IC (internal capsule), IOFF

(inferior occipitofrontal fascicle), MDLF (middle longitudinal fascicle), SLF (superior longitudinal fascicle), SOFF (superior occipitofrontal fascicle), UF (uncinate

fascicle), AD (axial diffusivity), FA (fractional anisotropy), RD (radial diffusivity), TR (trace).
a Approximate Monte Carlo Fisher–Pitman tests were performed to reveal group differences in the z-scores of the diffusion measures of tracts in the left hemisphere.
b Uncorrected p-values.

� False discovery rate-adjusted p-value less than 0.05.

https://doi.org/10.1371/journal.pone.0205369.t002
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above diffusion measures and the neurocognitive measures were evaluated (Table 4). There

were Spearman’s rho correlations between TR in the left thalamo-occipital tracts, and the letter

fluency test (r = −0.236, uncorrected p = 0.018) and the LNS test (r = −0.198, uncorrected

p = 0.048). However, these two correlations did not survive after correction for multiple

Table 3. Group differences in the diffusion measures of tracts in the right hemispherea.

Structure Diffusion measure

AD FA RD TR

z pb z pb z pb z pb

right AF -0.192 0.846 0.162 0.872 -1.246 0.213 -0.898 0.373

right CB 1.819 0.068 0.466 0.680 -1.409 0.158 0.430 0.670

right CST -0.062 0.950 0.861 0.390 -1.276 0.201 -0.334 0.739

right EC -0.140 0.890 0.521 0.604 -1.785 0.074 -1.120 0.264

right ILF 0.528 0.598 2.177 0.029 -2.259 0.024 -1.697 0.090

right IC 0.782 0.436 1.407 0.159 -0.952 0.343 -0.280 0.781

right IOFF -0.912 0.364 0.458 0.656 -2.568 0.010 -1.619 0.105

right MDLF 1.079 0.280 2.66 0.007 -3.093 0.002� -2.210 0.026

right SLF i 0.526 0.603 1.255 0.211 -1.540 0.124 -1.405 0.164

right SLF ii 1.292 0.197 1.894 0.056 -3.142 0.001� -1.583 0.114

right SLF iii 1.226 0.220 2.585 0.010 -1.814 0.070 -0.862 0.392

right SOFF 0.435 0.666 1.124 0.269 -1.295 0.198 -1.246 0.213

right striato-frontal 1.756 0.078 1.421 0.156 -1.106 0.270 0.292 0.770

right striato-occipital 0.332 0.741 -0.341 0.732 0.352 0.724 0.464 0.647

right striato-parietal 1.242 0.215 2.341 0.019 -1.608 0.109 -1.168 0.245

right thalamo-frontal 0.836 0.404 0.745 0.525 -2.218 0.025 -1.439 0.081

right thalamo-occipital 0.577 0.574 1.882 0.059 -2.006 0.043 -1.007 0.328

right thalamo-parietal -0.694 0.485 0.694 0.488 -1.293 0.196 -0.827 0.407

right UF 0.029 0.977 2.633 0.008 -4.081 <0.001� -3.393 0.001�

Note: AF (arcuate fascicle), CB (cingulum bundle), CST (corticospinal tract), EC (external capsule), ILF (inferior longitudinal fascicle), IC (internal capsule), IOFF

(inferior occipitofrontal fascicle), MDLF (middle longitudinal fascicle), SLF (superior longitudinal fascicle), SOFF (superior occipitofrontal fascicle), UF (uncinate

fascicle), AD (axial diffusivity), FA (fractional anisotropy), RD (radial diffusivity), TR (trace).
a Approximate Monte Carlo Fisher–Pitman tests were performed to reveal group differences in the z-scores of the diffusion measures of tracts in the right hemisphere.
b Uncorrected p-values.

� False discovery rate-adjusted p-value less than 0.05.

https://doi.org/10.1371/journal.pone.0205369.t003

Table 4. Correlations between the diffusion measures and neurocognitive characteristics of the participantsa.

Structure Diffusion measure Trail making test,

part A

Letter fluency test Category fluency test Letter number

sequencing test

Vocabulary test

r p� r p� r p� r p� r p�

left thalamo-occipital RD −0.013 0.894 −0.162 0.107 −0.027 0.788 −0.194 0.053 −0.135 0.18

left thalamo-occipital TR 0.037 0.711 −0.236 0.018 −0.066 0.516 −0.198 0.048 −0.137 0.176

right MDLF RD −0.103 0.307 −0.149 0.138 −0.144 0.152 −0.146 0.146 −0.174 0.082

right SLF ii RD −0.076 0.447 −0.154 0.123 −0.023 0.818 −0.101 0.311 −0.103 0.301

right UF RD 0.01 0.921 −0.156 0.12 −0.077 0.444 −0.005 0.964 −0.171 0.088

right UF TR −0.056 0.578 −0.128 0.201 −0.019 0.848 −0.025 0.805 −0.17 0.09

Note: MDLF (middle longitudinal fascicle), SLF (superior longitudinal fascicle), UF (uncinate fascicle), RD (radial diffusivity), TR (trace).
a Spearman’s rho correlations were conducted to evaluate associations between the raw values of the diffusion measures and neurocognitive characteristics.

� Uncorrected p-values.

https://doi.org/10.1371/journal.pone.0205369.t004
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comparisons. Using the COBRE sample, we evaluated t-score associations of the neurocogni-

tive measures with the diffusion measures. We observed correlation between RD in the right

UF and TMT, part A scores (r = −0.326, uncorrected p = 0.019), which did not remain signifi-

cant after correction for multiple comparisons. There was an association between RD in the

right MDLF and PANSS positive subscale score (r = 0.212, uncorrected p = 0.023), which did

not reach statistical significance after correction for multiple comparisons. With information

about medication dose at the MRI scan in COBRE sample, we examined associations of olan-

zapine equivalent dose with diffusion measures. Associations of olanzapine equivalent dose,

and RD in the right MDLF and SLF ii (r = 0.285, uncorrected p = 0.030; r = 0.294, uncorrected

p = 0.026, respectively) did not remain significant after correction for multiple comparisons.

Discussion

We examined the integrity of CC and white matter fiber tracts connecting ROIs within the

same hemisphere in patients with SZ. We used UKF tractography to extract white matter fiber

tracts with public neuroimaging data from SchizConnect. To the best of our knowledge, this is

the first study to investigate white matter fiber tracts in patients with SZ using public neuroim-

aging data from multiple data repositories. We found significant RD and TR increases in left

thalamo-occipital tracts and the right UF, and a significant RD increase in the right MDLF and

right SLF ii in patients with SZ. There were correlations between TR of left thalamo-occipital

tracts, and the letter fluency test and the LNS test, and RD in the right MDLF and PANSS posi-

tive subscale score. However, these correlations were not statistically significant after correc-

tion for multiple comparisons.

FA is an index derived from DTI for evaluating anisotropy in white matter. FA abnormali-

ties in patients with demyelinating disease were reported in early DTI studies [59]. Therefore,

FA was considered a proxy for myelin integrity. Although myelination contributes to FA,

other factors, including the axon itself and tract geometry, can influence FA [21, 60]. Relatively

pure deficits in myelin can cause a modest increase in RD, with anisotropy preservation [21].

RD may be a more useful diffusion index than FA to reflect subtle impairment of myelin integ-

rity and for examining white matter fiber integrity in early-course SZ. TR, as an index of the

magnitude of water diffusion, has been used to quantify white matter abnormalities in previ-

ous DTI studies [42]. While RD change is reported to be associated with myelin neuropathol-

ogy [61], TR increase has been attributed to general microstructural white matter pathologies.

Our results showed RD and/or TR increases in patients with SZ, with no significant FA

decreases. A previous study suggested RD as a demyelination surrogate [62]. However, a study

with simulated data demonstrated that a simplistic biological RD interpretation should be

avoided because of inter-individual variation in underlying tissue and interactions between

anatomical and scanning parameters [63]. Neurobiological correlates of RD abnormality with

SZ need to be studied further.

We showed that RD and TR of the left thalamo-occipital tract in the SZ group were signifi-

cantly increased compared with the HC group. Contrary to our findings, several studies on

the connectivity of thalamo-cortical networks in patients with SZ have reported that patients

with SZ show no significant differences in functional or structural connectivity of the occipital

cortex with the thalamus compared with HCs [64–66]. Conversely, patients with SZ display

significantly decreased FA in optic radiations compared with HCs [67, 68]. Optic radiation

structure and correlations of structure measures with visual masking performance in patients

with SZ were investigated [69]. Although there are no significant differences in diffusion indi-

ces or tract volume between the patients and HCs, a correlation between the tract volume

of optic radiations and visual masking performance is found in patients with SZ. Visual
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perception dysfunction in patients with SZ has been well-characterized in several studies [70–

72]. Our findings suggest that impairment of the integrity of optic radiations and structural

thalamo-occipital connectivity contributes visual perception dysfunction neural bases in

patients with SZ.

MDLF was initially defined as a long association fiber tract connecting the superior tempo-

ral gyrus and temporal pole with the angular gyrus [73]. Patients with chronic SZ have a signif-

icant mean FA decrease in MDLF of both hemispheres compared with HCs [74]. Consistent

with these results, we showed that the SZ group had significantly higher RD of the right MDLF

than the HC group. Although the function of MDLF remains unclear, MDLF may be associ-

ated with attention, language [75], and functions connected with high-level auditory [76] and

visual processing [77]. Six major fiber connections of MDLF, including temporo-parietal and

temporo-occipital connections, were reported, expanding the human MDLF classification

[77]. Given the extensive connectivity of the human MDLF to various cortical structures, it is

possible that MDLF is implicated in SZ pathophysiology.

Impaired white matter integrity within the prefrontal, temporal, and parietal lobes in

patients with SZ has been reported, along with abnormalities within fiber bundles such as UF

and SLF that are connecting these regions [6, 9]. UF and SLF abnormalities have been reported

in patients with FES, chronic SZ, and drug-naïve SZ [9, 26, 78, 79]. Our study adds to this liter-

ature by showing impaired white matter integrity of the right UF and SLF in patients with SZ.

Verbal fluency is consistently impaired over time and is related to these patients’ clinical

and functional outcomes [80]. Verbal fluency tests are used to measure executive function; the

performance of a patient with SZ on these tests can be predicted by their working memory or

processing speed, depending on cognitive impairment severity [81]. Working memory deficit,

as a core neurocognitive impairment, has been extensively reported and studied in patients

with SZ [82–84]. The LNS test is used to measure executive function working memory, and it

requires transient working memory as well as additional mental manipulation of the informa-

tion [85]. Here the association between verbal fluency, the LNS test, and the diffusion mea-

sures did not reach statistical significance. It may be possible that various functions required

for verbal fluency and the LNS test are related to the integrity of several white matter fiber

tracts, rather than a specific white matter fiber tract. Further studies concerning the entire

brain connectivity may be needed to address associations of structural measures with neuro-

cognitive variables.

The relationship of white matter alterations and clinical symptoms in SZ has been exam-

ined with inconsistent evidence. Viher et al. reported that negative symptoms are related to

white matter microstructure of the prefrontal and right temporal lobes, but no association of

white matter microstructure and positive symptoms was found [86]. Conversely, Lener et al.

showed that lower FA in the genu is associated with greater positive symptom and none of the

correlations with negative symptoms are significant [31]. We found the correlation of RD in

the right MDLF and PANSS positive subscale score; however, the correlation did not survive

after correction for multiple comparisons. The reason for this negative finding may be hetero-

geneity in illness duration of the SZ group, medication effects on symptom severity, and differ-

ent scales for measuring symptom severity in the three samples.

The present study has several methodological limitations. First, we did not separate the

patients into FES and chronic SZ groups. There are different patterns of white matter

impairment among individuals at high clinical risk of psychosis, those with FES, and those

with chronic SZ [9]. Particularly, there is disruption in the integrity of the white matter fiber

tracts in the right hemisphere of patients with FES, but not chronic SZ [87, 88]. Although this

separation may have revealed different patterns of disruption in white matter fiber tracts

between patients with FES and chronic SZ, a smaller sample size derived by dividing the
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patients into FES and chronic groups may have reduced the statistical power of this study. Sec-

ond, antipsychotics use was not considered because information about medication use was not

available in all three samples. Findings on the effects of antipsychotics on diffusion measures

in patients with SZ remain inconclusive. Specifically, while a few studies have shown no associ-

ation between antipsychotics use and changes in diffusion measures [89, 90], other studies

have revealed such effects [91–93]. Further studies are needed to investigate this association.

Third, changes within the white matter of patients with SZ may be confounded by age and sex.

Accelerated FA decline with age in patients with SZ has been reported [94]; this effect is more

prominent in specific tracts that mature later in life [95]. A relationship between neurodeve-

lopmental changes in white matter and age has been suggested [96]. Although, in the present

study, all the group differences in diffusion measures remained significant after adjustment for

age and sex, the effect of age and sex on diffusion measures could not be entirely disregarded.

Fourth, three different samples were included. Although the raw values of the patients’ diffu-

sion measures were normalized, it was not possible to entirely disregard the effect of different

protocol parameters on the calculated diffusion measures. A certain sample may have influ-

enced the positive findings of this study. We conducted the same analyses separately for the

three samples, and there were no significant group differences in any diffusion measure of

tracts after correction for multiple comparisons (see S3 Table for details on the group differ-

ences in the diffusion measures, by sample). We also performed analyses to compare the

means of the diffusion measures among the three samples in the SZ and HC groups. The diffu-

sion measures of some fiber tracts had significant sample-differences among three samples in

the SZ group; however, the diffusion measures which showed significant group-differences

between the SZ and HC groups did not have significant sample-differences in the SZ group. A

larger sample size, achieved by combining the three samples, provided greater statistical power

that contributed to this study’s positive findings. Fifth, the angular resolution of DWI acquired

in the MCIC sample was relatively low. DWI data having low angular resolution may lead to

inaccurate fitting during extraction of white matter fiber tracts with a two-tensor model [97].

To account for this problem, the MCIC sample was excluded, and the same analyses were per-

formed again. The results showed that the SZ group had significantly higher RD of left tha-

lamo-occipital tracts (RD: z = −3.280, p = 0.034, FDR corrected) and RD and TR of right UF

(RD: z = −3.740, p = 0.018, FDR corrected; TR: z = −3.513, p = 0.029, FDR corrected) than

the HC group. Three of the six significant diffusion measures remained significant. Future

research that considers the effect of low angular resolution in the two-tensor model is needed

to verify the significance of findings in this study. Sixth, we did not account for the effect of

motion artifacts on the diffusion measures. A previous study [98] reported that artifacts from

even small head motion can induce spurious group differences in the diffusion measures. We

conducted the same analyses with covariates of age, sex, and motion estimate. The results

showed no significant group differences in the diffusion measures after correcting for multiple

comparisons (left thalamo-occipital tracts: RD; z = 1.932, uncorrected p = 0.052, TR; z = 1.934,

uncorrected p = 0.054, right MDLF: RD; z = 1.783, uncorrected p = 0.074, right SLF ii: RD; z =

−2.115, uncorrected p = 0.034, right UF: RD; z = −2.183, uncorrected p = 0.029, TR; z = 2.099,

uncorrected p = 0.036). This linear regression approach is somewhat arbitrary because the dif-

fusion measures are not linear with respect to motion parameters [98]. The motion estimates

used in our study were skewed, therefore a statistic, instead of mean and standard deviation,

was required to reflect central tendency and dispersion of the motion estimates. Other motion

measures which can capture within-volume motion were also needed to comprehensively

reflect motion artifacts, however, we were not able to obtain such motion measures in this

study. Future research that comprehensively evaluates the influence of motion artifacts on the

diffusion measures is needed to validate our significant findings.
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Disruption of the white matter integrity in patients with SZ is seen in the left thalamo-

occipital tracts, right MDLF, right SLF ii, and right UF. These results indicate widespread

white matter fiber tract abnormalities in patients with SZ, which is consistent with the discon-

nection hypothesis of SZ. Further studies are needed to elucidate the association between diffu-

sion measures and clinical symptoms of SZ.
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