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Abstract

Background

The transmission of malaria is highly variable and depends on a range of climatic and

anthropogenic factors. This study investigates the combined, i.e. direct and indirect, impacts

of climate change on the dynamics of malaria through modifications in: (i) the sporogonic

cycle of Plasmodium induced by air temperature increase, and (ii) the life cycle of Anopheles

vector triggered by changes in natural breeding habitat arising from the altered moisture

dynamics resulting from acclimation responses of vegetation under climate change. The

study is performed for a rural region in Kilifi county, Kenya.

Methods and findings

We use a stochastic lattice-based malaria (SLIM) model to make predictions of changes in

Anopheles vector abundance, the life cycle of Plasmodium parasites, and thus malaria

transmission under projected climate change in the study region. SLIM incorporates a non-

linear temperature-dependence of malaria parasite development to estimate the extrinsic

incubation period of Plasmodium. It is also linked with a spatially distributed eco-hydrologic

modeling framework to capture the impacts of climate change on soil moisture dynamics,

which served as a key determinant for the formation and persistence of mosquito larval habi-

tats on the land surface. Malaria incidence data collected from 2008 to 2013 is used for

SLIM model validation. Projections of climate change and human population for the region

are used to run the models for prediction scenarios.

Under elevated atmospheric CO2 concentration ([CO2]) only, modeled results reveal wet-

ter soil moisture in the root zone due to the suppression of transpiration from vegetation

acclimation, which increases the abundance of Anopheles vectors and the risk of malaria.

When air temperature increases are also considered along with elevated [CO2], the life

cycle of Anopheles vector and the extrinsic incubation period of Plasmodium parasites are

shortened nonlinearly. However, the reduction of soil moisture resulting from higher
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evapotranspiration due to air temperature increase also reduces the larval habitats of the

vector. Our findings show the complicated role of vegetation acclimation under elevated

[CO2] on malaria dynamics and indicate an indirect but ignored impact of air temperature

increase on malaria transmission through reduction in larval habitats and vector density.

Conclusions

Vegetation acclimation triggered by elevated [CO2] under climate change increases the risk

of malaria. In addition, air temperature increase under climate change has opposing effects

on mosquito larval habitats and the life cycles of both Anopheles vectors and Plasmodium

parasites. The indirect impacts of temperature change on soil moisture dynamics are signifi-

cant and should be weighed together with the direct effects of temperature change on the

life cycles of mosquitoes and parasites for future malaria prediction and control.

Introduction

The ecology of malaria is markedly complex, involving two different replication cycles of the

Plasmodium parasite alternating in human hosts and Anopheles vectors [1, 2]. For malaria

intervention, the ability to access health care and efficient vector control measures is critical to

block the transmission and break the life cycle of Plasmodium. For example, the use of insecti-

cide treated nets (ITNs) is one of the most powerful interventions that reduced malaria-related

mortality from all causes among children under fives by 20% for sustained periods in Africa

[3]. Climatic factors especially air temperature and humidity play an important role in malaria

transmission through influence on mosquito abundance, development, biting rate, and sur-

vival as well as parasite survival and extrinsic incubation period (EIP), the time taken by the

parasites to complete their sporogonic cycles [4–6]. Therefore, climate change will likely affect

the dynamics of malaria and other mosquito-borne diseases in the future [7, 8].

The impacts of global warming on malaria transmission, however, remain a subject of

intense debate [9, 10]. A number of studies have shown that observations of global malaria

declined over the 20th century [11, 12] and the local resurgence of this disease in East Africa

highlands were mainly owed to anthropogenic factors, i.e socio-economics and disease surveil-

lance systems, rather than climatic drivers [13–15]. Conversely, other studies have suggested a

close association between changes in malaria incidence and climate variability in East Africa

highlands [5, 16]. Moreover, several works have reported evidence for the increase in the alti-

tude of malaria distributions in warmer years and predictions of widespread increases and

geographical shifts in distribution of malaria in the highlands of Africa and South America

under climate change [17–23]. So far, most studies analyzing malaria-climate change relations

have tended to consider environmental drivers and anthropogenic factors independently [24].

In a recent study, Béguin et at. [25] used statistical modeling to show the opposing effects of

warming climate and socio-economic development on the global distribution of malaria.

While malaria risk could be limited by economic growth, changes in climate suitability in poor

areas remain a big challenge for malaria control [24].

At sub-regional scales, biological and mechanistic models are often used to separate out

and investigate the impacts of global warming on malaria risk. Most of these models have

incorporated the relationships between temperature and malaria transmission that are rela-

tively well understood. For instance, air temperature is used to estimate the developmental
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rates of Anopheles mosquitoes in aquatic stages [26, 27] and Plasmodium parasites within the

mosquitoes [28, 29]. Few malaria models have attempted to incorporate the causal relationship

among rainfall, humidity, soil moisture, and mosquito larval habitats [17, 30–33]. The pro-

cesses by which rainfall is partitioned into infiltration and stagnant water pools suitable for

Anopheles breeding are strongly dependent on rainfall patterns, micro-topographic features,

soil characteristics and vegetation cover. Nevertheless, existing models that have been used are

limited in their ability to capture the changes in ecohydrological responses induced by vegeta-

tion acclimation under elevated [CO2] and temperature change [34–38]. These acclimatory

responses have been shown to affect soil moisture and the persistence of ponding through

changes in evapotranspiration (ET) [38–40], and thus habitat structure and distribution for

Anopheles mosquitoes.

The goal of this study is to investigate the combinatorial impacts of climate change on

malaria transmission dynamics through modifications in the: (i) sporogonic cycle of Plasmo-
dium induced by air temperature increase, and (ii) gonotrophic cycle of Anopheles vector trig-

gered by changes in the natural breeding habitat arising from the acclimatory responses of

vegetation under elevated [CO2]. We hypothesize that changes in ecohydrologic fluxes

induced by vegetation acclimation will affect vector habitat structure and distribution, thus

influencing the vector abundance and malaria dynamics. Malaria transmission will be further

complicated by air temperature change that affect moisture fluxes, life cycle of Anopheles vec-

tors, and sporogonic cycle of Plasmodium parasites. Our hypothesis is tested through the use

of a lattice-based malaria model in a coastal area in Kenya, East Africa at sub-regional scales.

We address the uncertainty of malaria transmission in response to climate change in this

region through a meta-population and stochastic modeling approach.

Materials and methods

Model description

We use a stochastic lattice-based integrated malaria (SLIM) model [41, 42] to predict the

dynamics of malaria under climate change. SLIM consists of two time-continuous space-dis-

crete models (S-ELPAs and S-SEIR) that considered the nonlinear relationship between tem-

perature and Plasmodium development inside Anopheles vectors for estimating the EIP [28,

29, 43]. The model incorporates explicit coupling between entomological and parasitological

processes, epidemiological statuses, and hydro-climatic conditions to capture the dynamics of

malaria (See Fig 1). The stochastic entomological model resolves the life cycles in aquatic and

adult phases of Anopheles mosquitoes using the ELPAs (Egg, Larvae, Pupae, and Adults) struc-

ture [44]. The coupled epidemiology-parasitology model simulates stochastically the circula-

tion of Plasmodium parasites in human hosts and adult Anopheles vectors using the well-

known SEIR (Susceptible, Exposed, Infected, and Recovered) approach [45, 46]. These models

are iteratively coupled in discrete space domains through the equality constraint of adult vec-

tor populations. SLIM also incorporates a meta-population approach to describe the spatial

movements of vectors among discrete geographic domains. We refer the reader to original

work [41] for detailed formulation and description of SLIM model.

Climate-driven hydrological changes under global warming are considered explicitly in

SLIM for capturing mosquito’s habitat distribution. Specifically, SLIM is linked with an ecohy-

drologic modeling framework (Dhara, see ref [40]) to incorporate the acclimatory responses

of vegetation on soil moisture and breeding habitat of vectors under climate change. The

Dhara framework includes a well-tested canopy process model (MLCan, see refs [39, 47, 48])

and a benchmarked physically-based surface-subsurface flow model coupler (GCS-flow, see

ref [49]) designed for capturing the coupled dynamics of moisture transport on the land
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surface and in the below-ground systems. It incorporates vegetation acclimation to elevated

[CO2] and the retention of moisture flow dynamics associated with microtopographic variabil-

ity. This integration provides the predictive capability to capture the impacts of environmental

changes on the formation and persistence of breeding habitat.

Study area

The case study is conducted for a site in rural area northwest of Malindi town (3.22˚S,

40.12˚E), Kilifi county, Kenya (see Fig 2). The region has high levels of malnutrition and inci-

dence rate of P. falciparum parasites in which the An. gambiae s.l. complex are the main vec-

tors (87-95% vector population) [50]. For simplicity, we consider this complex as a single

species and the only vector in the model for simulations. The average daytime temperature

varies between 28˚C and 34˚C and mean annual precipitation is approximately 1180 mm

divided into a long (April—July) and short (November—December) rainy seasons. The domi-

nant livelihood is subsistence farming with 84.5% of the population living below the poverty

line (http://www.crakenya.org/county/kilifi). Maize is the main agricultural crop for a majority

of households in the region. Other crops most commonly inter-cropped with maize include

millet, cassava, and beans [51, 52]. Here, we assume that maize is the dominant vegetation in

each grid point in the ecohydrologic Dhara model. In rural areas, we also assume that natural

water on the ground is the primary habitat of Anopheles mosquitoes. Previous studies [53] and

Ecohydrologic 
Model 

Dhara

Vector 
Dispersal 

Model 

S-ELPAs

Malaria
Transmission

Model 

S-SEIR

CLIMATE CHANGE

Direct impacts

Indirect impacts

Malaria
dynamics

Fig 1. Schematic of SLIM model for predicting malaria dynamics under climate change. SLIM consists of two time-continuous space-discrete models

(S-ELPAs and S-SEIR) that considered the nonlinear relationship between temperature and Plasmodium development inside Anopheles vectors for

estimating the EIP. SLIM is linked with an ecohydrologic modeling framework (Dhara) to incorporate the acclimatory responses of vegetation on soil

moisture and breeding habitat of vectors under climate change. Solid arrows represent direct impacts of temperature increase on malaria. Dash arrows

represent the indirect impacts of ecohydrologic acclimation under climate change on malaria.

https://doi.org/10.1371/journal.pone.0211258.g001
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larval collection in the region have shown that open, natural habitats were the most productive

sites for An. gambiae larvae (see S1 Fig). The domain of simulation covers approximately 440

square kilometers (22 km north to south and 20 km east to west) with a medium to high per-

centage cover of vegetation. We use model parameter sets similar to those used in previous

studies [27, 44, 46] for predicting malaria under climate change.

Data

Malaria. Observations of malaria incidence are collected from three elementary schools

(Burangi, Majahani, and Mumagani) in the study area and obtained from the Malaria Atlas

Project (MAP) from 2008 to 2013 for model validation [54]. Blood samples collected from the

participants are tested for malaria parasites using microscopy or rapid diagnostic tests (RDT).

Meteorological data. Three-hourly meteorological data from ERA-interim global reanal-

ysis [55] by European Centre for Medium-range Weather Forecasts (ECMWF) are obtained

for the study region (http://www.ecmwf.int/research/era). Data collected from 2006 to 2014

are used for baseline scenario simulations.

Ecophysiological data. Leaf area index (LAI) data at an 8-day interval are obtained from

the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images for ecohydro-

logic modeling. Key model parameters in the canopy and root systems of maize crop used for

the model are chosen from a prior study [47].

Topography and soil. Topographic data at 30m × 30m resolution from the Advanced

Spaceborne Thermal Emission and Reflection radiometer (ASTER) global digital elevation

model are used for modeling surface ponding and runoff and belowground soil moisture

Fig 2. Map of study area in Kilifi county, Kenya. (a) Mean annual precipitation gradient map of Africa showing Kenya in red region. (b) Distribution

of P. falciparum incidence rate in Kenya. Areas that have no data are shown in white. The Kilifi county (bottom right, black polygon) is one of the

regions of highest malaria incidence in Kenya. Data is obtained from the Malaria Atlas Project [54]. (c) Map of population density distribution in Kilifi

county, Kenya (Data is adapted from [56]). Simulations are conducted for the area of 440 km2 indicated by the red rectangle. (d) Map of tree cover in

Kilifi, Kenya. Data is obtained from the World Resource Institute (http://www.wri.org).

https://doi.org/10.1371/journal.pone.0211258.g002
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dynamics. The study area elevation varies from 5 to 179 [m] above mean sea level (Fig 3a). Soil

properties and characteristics in the area are obtained from the International Soil Reference

and Information Centre (ISRIC, http://www.isric.org).

Census data. Human population census data at 100 [m] spatial resolution are obtained

from the population maps for low income nations [56]. The current distribution of human

population in the study domain is shown in Fig 3b. It has been shown that human mobility

may contribute to the infection dynamics of malaria [57–59], especially at scales that exceed

the limits of mosquito dispersal. At sub-regional scale, however, we assume that human mobil-

ity is negligible or hosts are immobile for simulations because Anopheles mosquitoes tend to

actively seek blood meals at nighttime when hosts are sleeping in houses [27, 60]. The annual

population growth rate at 4.6% is applied for future population predictions in 2050 [61].

Mosquito habitat identification

Moisture index in a particular grid cell represents water availability that serves as breeding

habitat for mosquitoes. Previous studies [62, 63] have shown that soil moisture index implicitly

combines multiple weather parameters and anthropogenic features to substantially improve

malaria prediction. However, a large fraction of the breeding habitat is at scales that are not

detectable by currently available topographic data. As a result, there is a probability that pond-

ing exists in small-scale topographic depressions inside a particular non-saturated cell that

hydrologic modeling at 30m × 30m cannot capture. To address this scale mismatch, we incor-

porate the fractal structure found in topographic depressions to the estimation of moisture

index. Specifically, we utilize the result that topographic depressions exist at all sizes on the

landscape and follow a power-law scale [64]. We use available topographic data to find the

scaling relationship of topographic depressions (see ref [41] for details) in the study domain

and assumed that this relationship remains unchanged at smaller scales for estimation of the

moisture index. Topographic depressions and their distribution in the study area are identified

Fig 3. Domain of simulations in the study area. (a) Variation in topographic elevation (source: ASTER DEM). (b) Map of distribution of human population in the

study area (source: [56]). The gray background represents hillshaded topography.

https://doi.org/10.1371/journal.pone.0211258.g003
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using a topographic depression identification (TDI) algorithm (see details in ref [64]). Depres-

sions can be merged or split as water level changes, which alter the level of the depressions.

Specifically, depressions of higher level lm+1 are created when two depressions at level lm and ln
merge (lm> ln).

Climate change scenarios

We run the SLIM model for current climate conditions and contrast with simulations per-

formed under elevated [CO2] and air temperature increases at different magnitudes. Firstly,

reanalysis forcing data obtained from ECMWF with [CO2] set equal to 385 ppm is used to run

the model (S0—baseline). The average ERA-Interim air temperature used in S0 is approxi-

mately 0.8 ± 0.1˚C above the 1720-1800 pre-industrial level [65]. Secondly, [CO2] is set equal

to 550 ppm projected for 2050 in the region [66] but no change in air temperature is assumed

for this scenario (S1). It is unlikely that S1 will happen in the future as elevated [CO2] will be

accompanied by air temperature increase. However, scenario S1 allows us to analyze indepen-

dently the impacts of increasing only [CO2] on malaria dynamics. Finally, increase of air tem-

perature at 1˚C and 2˚C compared to S1 is also considered along with [CO2] set equal to

550 ppm (scenarios S2 & S3, respectively). These scenarios highlighted the joint effects of

expected air temperature change from elevated [CO2] on malaria transmission dynamics.

Summary of climate scenarios for model simulations are shown in Table 1.

Results

Power-law scaling of vector habitat

Moisture index on the land surface is expected to control vector habitat and malaria dynamics.

Characterizing distribution of moisture dynamics associated with topographic depressions is

thus critical to understand the life cycle of Anopheles vectors and the transmission of malaria

under a changing environment. Fig 4 shows the distribution of topographic depressions and

moisture index identified in the study area. We find that topographic depressions are ubiqui-

tous and exist across many sizes in the area (Fig 4a, red polygons). This feature is expected to

result in the heterogeneity of breeding habitat distributions and vector abundance. Fig 4b

shows the exceedance probability on a log-log scale for the surface area A of topographic

depressions found at four different levels in the study area. We fit least square linear regression

lines to these distributions at each level (R2 = 0.93−0.96). The results show that the probability

distribution approximates the power law fits P(X� x)/ x−α with slope α ranging from -2.26

to -2.06. Here, the slope α also represents the likelihood of having smaller size topographic

depressions that are below the resolution observed by topographic data in the area. Water and

material accumulated in these depressions provide potential habitat for mosquito’s breeding,

Table 1. Climate change scenarios for model predictions.

Scenario [CO2] (ppm) ΔT(˚C)�

S0—baseline† 385 0.0

S1—projected 550 0.0

S2—projected 550 1.0

S3—projected 550 2.0

�ΔT represents air temperature increase compared to S0.
†Mean temperature is 0.8 ± 0.1˚C above the 1720-1800 pre-industrial level [65].

https://doi.org/10.1371/journal.pone.0211258.t001
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thus affecting vector population. The mean α is used for moisture index estimation in the

SLIM model (see details in ref [41]).

Model validation

We perform simulations for the SLIM model under the present climate condition (S0—base-

line) in the study area using reanalysis data from 2006 to 2014. Comparisons of modeled and

observed mean monthly malaria incidence rates (%) demonstrate the ability of the SLIM

model to capture the dynamics of malaria transmission (Fig 5). We find that modeled results

are in good agreement with observations measured in September 2008 and October 2013.

Although a large difference is found between modeled (1.62%) and observed (3.8%) mean

monthly malaria incidence rates in October 2008, modeled results remain within the range of

variation of observed data.

Ecohydrologic dynamics

We compare the mean annual ET of the study area for the [CO2] condition at 385 ppm (S0)

with elevated [CO2] at 550 ppm associated with additional increase of mean annual air temper-

ature at ΔTa = 0˚C (S1), ΔTa = 1˚C (S2), and ΔTa = 2˚C (S3) conditions, respectively. The box-

plots showing the statistics and variability of mean annual ET for all scenarios obtained from

model simulations are presented in Fig 6. The mean annual ET found in the present condition

S0 is 541.1 ± 130.5 mm. We observe significant changes of annual ET, a key driver of soil mois-

ture and ponding persistence, under all projected climate change scenarios. In S1, the decrease

of annual ET (442.3 ± 100.7 mm) is attributed to the increase of vegetation water-use efficiency
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Fig 4. Estimation of power-law scaling of topographic depression. (a) Map of topographic depression (red polygons) identified from digital elevation

model using TDI model [64]. The gray background represents hillshaded topography. (b) Scaling law relationship of topographic depressions at

different ponding levels. Lines are fitted to the distributions using least square linear regression. R2, α, β represent the coefficient of determination,

intercept, and slope, respectively, for each curve.

https://doi.org/10.1371/journal.pone.0211258.g004
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under the elevated [CO2] condition [67–69]. In S2, the mean annual ET is quite similar to that

in S0. In S3, however, we find that mean annual ET is higher than in S0. These increases are

directly dependent on the increases of air temperature at different magnitudes, offsetting the

benefits of improving water-use efficiency under the enrichment of [CO2] condition. These

changes in ET are expected to affect soil moisture and ponding persistence which control the

habitat for Anopheles mosquitoes.

Malaria transmission

Fig 7 shows the variation of total aquatic and adult mosquito populations in the vector dis-

persal model (S-ELPAs) in log scales. The results show that the variation of the mosquito pop-

ulation in both aquatic and adult stages are highly dependent on climatic factors. The largest

and smallest total mosquito population during the years are found corresponding to the

Fig 5. Comparison of malaria incidence rate modeled by SLIM and observed data. Vertical line represents ± standard deviation. Malaria incidence

data are collected in 3 elementary schools in the area and from the Malaria Atlas Project. The high uncertainty of observed incidence in Oct 2008 comes

from the variability and small sample size of the data collection.

https://doi.org/10.1371/journal.pone.0211258.g005
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highest and lowest air temperature and rainy seasons, respectively. In the aquatic stage, the

sensitivity of larvae development to air temperature change is found much lower than of egg

and pupae which are shown in previous studies [26]. Fig 7c implies that the mortality rate of

mosquitoes subjected to environmental risks are high. The total population of Anopheles eggs

(E) could be approximately 7 and 50 times higher than the larval (L) and pupal (P) populations,

respectively. The population of adult Anopheles mosquitoes is also sensitive to climatic condi-

tions (Fig 7d). We find that the fraction of host seeking mosquitoes (Ah) in the adult stage is

high, consisting of * 70−80% of the total adult population. The sub-population of oviposition

site searching mosquitoes (Ao) or gravid females are usually 2−3 times larger than the resting

mosquitoes (Ar). The high numbers of eggs deposited by female Anopheles during reproduc-

tion are likely a key factor for the high density of the vector in the aquatic environment. The

total number of adult mosquitoes is equal to the vector population in the Malaria Transmis-

sion Model (S-SEIR) model and play a key role in the dynamics of the disease. Simulations of

malaria dynamics in present climate (S0) conditions are used to compare with results obtained

from simulations under climate change scenarios discussed in the next sections.

The dynamics of malaria in host and mosquito populations in the study area are presented

in Fig 8. The results show that, similar to the vector population, the variation of malaria inci-

dence, including both exposed and infected cases, in the region is sensitive to climatic factors

as it is directly dependent on vector density. The transmission of malaria in the study region is

year-round. The largest values of exposed human cases (Eh) are usually found after the start of

the rainy season and when air temperature is high. The peaks of Eh are also followed after sev-

eral days by the largest values of infected human cases (Ih, see Fig 8c). During the peaks and

troughs of the season, the rates of infected cases are about 2.5% and 1.0%, respectively. These

Fig 6. Mean annual evapotranspiration of the study region obtained from model simulations for each climate

scenario. Box plots display 25th, 50th, and 75th percentiles. Color squares represent modeled data, and black dots

represent the mean value of annual ET.

https://doi.org/10.1371/journal.pone.0211258.g006
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results are in agreement with observations of P. falciparum incidence in Kilifi district shown in

previous work [70].

Impacts of climate change on malaria transmission

Stochastic simulations are performed to investigate the uncertainty of climate change impacts

on malaria transmission. Fig 9 shows the comparison of malaria incidence (exposed and

infected) between simulations under present [CO2] conditions (S0) and future climate change

projections (S1, S2, and S3). Under the elevated [CO2] condition (S1), we find that the increase

of soil moisture due to the changes in water-use efficiency of vegetation resulting in lowered

evapotranspiration led to a higher habitat index for Anopheles vectors. As a result, we generally

observe an increasing trend of both exposed and infected cases under S1 scenarios (ΔE� 5%,

ΔI� 4.5%).

Under the elevated [CO2] condition and air temperature increase at ΔTa = 1˚C (S2), while

increasing air temperature shortened the life cycle of both Anopheles and Plasmodium, the

Fig 7. Key meteorological forcing data and variations of mosquito populations in scenario S0). (a) Daily precipitation; (b) Mean daily air

temperature; (c) Population dynamics of mosquitoes in three aquatic phases (egg E, larval L, and pupal P) in the S-ELPAs model; and (d) Population

dynamics of mosquitoes in three adult stages (host seeking Ah, resting Ar, and oviposition site searching Ao) in the S-ELPAs model. Atotal represents the

sum of adult mosquitoes in all phases.

https://doi.org/10.1371/journal.pone.0211258.g007
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decrease of soil moisture and associated habitat index reduced vector abundance, thus alleviat-

ing the increase of malaria as a result of global warming. Consequently, in the S2 scenario, we

generally find a small increasing trend of malaria incidence (� 2−3%) in comparison with

present climate conditions (ΔE� 2%, ΔI� 3%, See Fig 9c and 9d).

In the S3 scenario, a larger increase of air temperature at 2˚C leads to further reduction of

soil moisture, thus causing a decrease in the habitat index for Anopheles mosquitoes. However,

we find an increasing trend of malaria incidence under this scenario (ΔE� 11%, ΔI� 8%).

The increase of malaria incidence found in S3 is attributed to the non-linear effects of air tem-

perature on the life cycles of malaria vectors and parasites. In all scenarios, we find similar

changing patterns in both exposed and infected cases in human population.

Discussion

The elevated [CO2] condition and air temperature increase are expected to affect ecohydrolo-

gical dynamics [38, 39] and nutritional quality of leaf litter that serve as food for mosquito

Fig 8. Key meteorological forcing data and the variations of malaria in scenario S0. (a) Daily precipitation and (b) Mean daily air temperature (both

are the same as in Fig 6); (c) Variation of exposed (Eh) and infectious (Ih) host populations modeled in the S-SEIR model; and (d) Variation of vector

populations (susceptible Sv, exposed Ev, and infectious Iv) modeled in the S-SEIR model. Nv represents the total adult vectors. The S-SEIR represents

different states of adult vectors shown in S-ELPAs.

https://doi.org/10.1371/journal.pone.0211258.g008
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larvae [71, 72]. Characterizing such alterations is important to understand the impacts of

global warming on malaria transmission. A number of studies have shown the relationships

between air temperature and precipitation changes on the dynamics of malaria [17–23]. In this

work, our model incorporating the acclimatory mechanisms of vegetation under climate

change is used to predict the transmission dynamics of malaria. Model results indicate the

opposing effects of elevated [CO2] and air temperature increase on the dynamics of malaria.

Given the complexity of malaria transmission under environmental disturbances, these effects

would play an important role to better understand how malaria will be likely altered under cli-

mate change, thus contributing to the intervention of this disease.

Simulations obtained from projected climate scenarios show that the elevated [CO2] condi-

tion increases the habitat index for mosquito reproduction, which leads to higher density of

vectors and an increase in malaria incidence. Unlike the elevated [CO2] condition, the increase

of air temperature has two distinct effects on malaria dynamics. First, higher air temperature

reduces soil moisture, thus decreasing the habitat index for the anopheline vector. Second, it

Fig 9. Comparison of exposed (Eh) and infected (Ih) malaria cases under climate change scenarios. Left column: One-to-one comparison between cases under

present (S0—current) and elevated [CO2] (S1—future) conditions. Middle column: One-to-one comparison between cases under present (S0—current) and elevated

[CO2] (S2—future) conditions. Right column: One-to-one comparison between cases under present (S0—current) and elevated [CO2] (S3—future) conditions. The

inset boxplots show the difference between cases in current and future conditions. Top row shows the values of exposed cases, bottom row shows the values of infected

cases. Black dots represent the mean values.

https://doi.org/10.1371/journal.pone.0211258.g009
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also nonlinearly shortens the life cycles of Anopheles and Plasmodium. Under low air tempera-

ture increase, the effects of air temperature change on these life cycles are not much stronger

than the impacts of soil moisture decrease on vector abundance. As a result, the trend of

increasing malaria incidence is small. However, under high air temperature increase, nonlin-

ear effects of air temperature are stronger than the impacts of soil moisture decrease on vector

abundance, resulting in larger changes of malaria incidence.

The main findings from this study may shed light on better understanding the linkage

between climate change and the infection dynamics of malaria. The results demonstrates that

the proposed modeling approach is robust and can also be used to investigate how other

changes in the natural environment affect malaria transmission. Moreover, this work can be

applied to analyze the impacts of environmental changes on other mosquito-borne diseases in

particular and vector-borne diseases in general.

We conclude by acknowledging several limitations of this study. First, habitat index esti-

mated only from open topographic depressions limits the applicability of the proposed model

in non-rural areas. In fact, man-made water containers and stagnant water less exposed to ET

are also potential habitats for mosquitoes. However, the model can be extended using statisti-

cal techniques to analyze the uncertainty and impacts of small-size anthropogenic factors on

the dynamics of malaria in urban environments. Second, the dynamics of malaria caused by

multi-species vectors are not considered. Although An. gambiae s.l. is the main vector in the

present study area, malaria transmission in many other places is influenced by population

dynamics of several vector species. Finally, human hosts are assumed immobile in our model.

It has been shown that human mobility may contributes to the infection dynamics of malaria

[57–59], especially at scales that exceed the limits of mosquito dispersal. Further work should

incorporate the dynamics of multi-species vectors and human mobility to better capture the

infection dynamics of malaria.

Supporting information

S1 Fig. Anopheles larval samples collected at different habitat types in Kilifi district during

the 2006-2012 period. A large fraction of the samples was found in open habitats (TIF).
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