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Abstract 

Background:  During the COVID-19 pandemic, the slope of the epidemic curve in Mexico City has been quite unsta‑
ble. Changes in human activity led to changes in epidemic activity, hampering attempts at economic and general 
reactivation of the city.

Methods:  We have predicted that where a fraction of the population above a certain threshold returns to the 
public space, the negative tendency of the epidemic curve will revert. Such predictions were based on modeling 
the reactivation of economic activity after lockdown using an epidemiological model resting upon a contact 
network of Mexico City derived from mobile device co-localization. We modeled scenarios with different propor‑
tions of the population returning to normalcy. Null models were built using the Jornada Nacional de Sana Distan‑
cia (the Mexican model of elective lockdown). There was a mobility reduction of 75% and no mandatory mobility 
restrictions.

Results:  We found that a new peak of cases in the epidemic curve was very likely for scenarios in which more than 
5% of the population rejoined the public space. The return of more than 50% of the population synchronously will 
unleash a magnitude similar to the one predicted with no mitigation strategies. By evaluating the tendencies of the 
epidemic dynamics, the number of new cases registered, hospitalizations, and recent deaths, we consider that reacti‑
vation following only elective measures may not be optimal under this scenario.

Conclusions:  Given the need to resume economic activities, we suggest alternative measures that minimize 
unnecessary contacts among people returning to the public space. We evaluated that “encapsulating” reactivated 
workers (that is, using measures to reduce the number of contacts beyond their influential community in the contact 
network) may allow reactivation of a more significant fraction of the population without compromising the desired 
tendency in the epidemic curve.
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Background
COVID-19, caused by the novel coronavirus SARS-CoV-2, 
first detected in Wuhan, China, in Dec 2020, is a complex 
disease of infectious origins. The SARS-CoV-2 is transmitted 
via aerosols and respiratory droplets [1] and can unleash not 
only the characteristic severe acute respiratory syndrome 
(COVID-19) but also a series of immune and inflammatory 
responses that may lead to pneumonia and sepsis-induced 
systemic failure (SISF) [2]. We still need to understand its 
pathogenesis and transmission. However, current evidence 
shows that the spectrum of COVID-19 ranges from a mild 
respiratory illness to a complex, severe disease with a high 
mortality rate, often requiring critical care.

The enormous burden of COVID-19 has resulted 
from highly interconnected contact networks, causing 
extensive transmission of the SARS-CoV-2 virus. [3]. 
For this reason, it is crucial to understand the dynam-
ics of disease spread in complex human interaction net-
works [4, 5].

A primer on network epidemiology
Network Epidemiology, or Epidemics on Networks 
(EoN), has been defined as the study of the spread of 

disease and risky behaviors among populations founded 
on the tenets of network science [6, 7].

EoN is then concerned with the modelization of dis-
ease spread and contagion and diffusion processes 
happening amidst social (especially public) spaces in 
living systems. This approach has mainly been applied 
to human populations but can also be adapted to deal 
with animal plagues and epidemics on livestock. EoN 
aims to build realistic, mechanistic models to explain 
the spread of human disease by considering individual 
and collective mobility and population and meta-pop-
ulation features influencing the contact between indi-
viduals leading to contagion events.

These models may be used to forecast the spread of 
infectious diseases or risk behaviors. As in clinical and 
social epidemiology, these models allow us to determine 
risks, adopt suitable containment strategies and assess 
the effectiveness of targeted interventions [7].

The default setting of EoN considers the individuals 
in a population as nodes in a network. The interactions 
connecting the individuals (i.e., the links) are seen as 
contact events that lead to the propagation of conta-
gious agents (pathogens). The network structure influ-
ences the pandemic’s dynamic behavior and may offer 
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clues about the mitigation and containment strategies 
required to contain disease spread.

The challenges posed by COVID-19 will undoubtedly 
impact the short, medium, and long term. The appear-
ance of variants of concern has caused new waves of 
infection. Public health experts predict that we will be 
experiencing the emergence of new variants or new 
pathogens in future years and that a complete return to 
pre-pandemic behaviors is improbable as new patho-
gens will emerge. Our study helps provide preventive 
measures in a large metropolis like Mexico City. In this 
study, we compared the impact of reactivation over mag-
nitude, timing, and the likelihood of new COVID-19 
peaks according to two mobilization scenarios (modular 
networking versus constraint-free reactivation) in Mexico 
City and its surrounding metropolitan area after non-
mandatory lockdown.

Network modeling of human interactions using mobile 
devices
Human contact networks exhibit heterogeneous 
connectivity. The properties of this type of network 
are the object of study of Network Science [8]. Such 
heterogeneous connectivity patterns have consequences 
in the epidemiological setting, such as a high variance in 
the individual reproductive number and the dominance 
of the super-spreading events that arise due to the high 
degree nodes [7].

A significant challenge for EoN is the accurate rep-
resentation of contact networks for a given popula-
tion. We used a combination of observational and 
technology-based methods to reconstruct contact net-
works in limited, enclosed settings such as schools [9], 
hospitals [10], or conferences [11]. However, the chal-
lenge of reconstructing a contact network at the scale of a 
city is non-trivial.

Mexico City is the largest city in the country. It has a 
population of over 9 million people. According to the 
most recent census data, it is also the center of the Greater 
Mexico City Metropolitan Area (Zona Metropolitana 
del Valle de Mexico, ZMVM), which houses over 23 
million people, according to the most recent census 
data [12]. Like many other large metropolitan areas, the 
population is highly heterogeneous in income, access to 
services, etc. An important issue is high heterogeneity 
in transportation time, and distances traveled, with a 
subset of the population involved in long daily commutes 
[13]. While these mobility patterns have been described, 
it is unclear whether they lead to close contacts 
through which the SARS-CoV-2 virus can spread (see 
supplementary file 1).A contact network for Mexico City 
was recently reconstructed using anonymized mobile 

device locations throughout a single day [14]. This 
network was released as open data [15].

To run outbreak simulations effectively, we scaled 
down the extensive contact network for Mexico City 
using a methodology based on the original network’s 
stochastic block model (SBM) structure [16, 17]. Briefly, 
we obtained the SBM structure of the most significant 
connected component of the contact network of Mexico 
City and scaled the size of each block to 1/10th of the 
original. Then, we generated a new network using the 
actual SBM edge probability on the scaled-down blocks. 
This new network captures the original topology in 
terms of degree distribution and clustering coefficients, 
which is necessary for the results of an EoN dynamics to 
represent the larger one [7]. These network operations 
were performed using the graph-tool package [18].

Methods
Model fundamentals and assumptions
In this study, we worked under the following set of 
assumptions:

1.	 The disease in Mexico City is transmitted over a 
heterogeneous network reflecting urban systems’ 
highly hierarchical and modular structure.

2.	 Epidemic dynamics are guided, in part, by factors 
intrinsic to the virus, which exhibit stochastic 
behavior as a product of inter-individual biological 
heterogeneity [19].

3.	 Given assumptions 1 and 2, the distribution of the 
number of contagions induced by each infected 
individual exhibits a long tail, giving rise to specific 
nodes acting as contagion hubs, leading to super-
spreading events.

Under these assumptions, we used the previously 
described contact network for Mexico City for our 
modeling purposes. A node in this contact network 
represents an inhabitant of Mexico City. A link represents 
a close-range physical interaction between people; 
considering the resolution reported in the original 
manuscript (less than 2 m), these contacts can potentially 
transmit the infectious agent.

Once we had a reliable model for the human contact 
network structure of Mexico City, we were able to 
consider epidemic processes (namely, COVID-19 
pandemic) happening on top of that network structure. 
The following subsection is devoted to this.

Epidemiological simulation
We performed simulations of the epidemic dynamics 
by using the Epidemics on Network package (EoN) [20] 
to simulate possible trajectories in different economic 
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reactivation scenarios. To do so, we used a stochastic 
Susceptible-Exposed-Infected-Recovered (SEIR) model 
on the Mexico City contact network.

The EoN package uses an implementation of the 
Gillespie algorithm to simulate disease spreading over 
the contact network. In this regard, the Markovian 
nature of the Gillespie algorithm implies individual 
disease transmission events between two nodes in the 
network: necessarily, one infected and one susceptible. 
Each of these pairwise interactions has a (“per-edge”) 
transmission probability, derived from treating each edge 
as a Poisson process with a transmission rate tau(ij).

At each time step, a set of at risk nodes is identified, 
which contains all susceptible nodes which are neighbors 
to at least one infected node. The infection rate of each 
at risk node is the sum of all pairwise transmission rates, 
A system-wide total infection rate is then defined as the 
sum of all at risk nodes’ infection rates.

The “epidemic growth” on the stochastic simulations 
proceeds by from these at risk nodes with a probability 
defined as the individual infection rate over the total 
infection rate. The sampled nodes then move to the 
exposed state and advance to the infected state at an 
incubation rate ypsilon(i).

Then, each infected node may progress to the recovered 
compartment at a recovery rate gamma(i). The simula-
tion continues until it reaches the maximum simulation 
time.

Model parametrization
To capture the inter-individual variability in terms of 
incubation and recovery times, we used the parameters 
reported for the official Mexico City’s government model 
[21] (see Supplementary Material 1) as base values to 
define per node parameters as follows:

Incubation rate and recovery rates: for each node i, 
ypsilon(i) and gamma(i) are sampled from a uniform dis-
tribution [½*BaseValue, 2*BaseValue].

Transmission rate: Our base transmission rate was derived 
from the definition of R0 = TransmissionRate(average)/
RecoveryRate.To capture the adoption of general hygiene 
measures such as widespread use of face masks, we decided 
to calculate the transmission rate for our model using the 
average reproduction number (Rt) for June, calculated as 
described in [22]. We use this average transmission rate ast 
the mean of a normal distribution, to account for certain 
interactions being more conducive to disease transmission. 
Values for tau(ij) are sampled from this distribution.

Infected and recovered nodes at the start of the 
simulation: We considered the percentage of popu-
lation already infected and recovered at the start of 
the simulation, using official figures from the federal 
government [23]. To address the issue of potential 

subreporting, we used an underreporting estimation 
based on delay-adjusted case fatality ratio [24] which 
led us to a 9-times correction factor for both recovered 
and active cases at the start of the simulation; that is, 
about 2.8% of the city’s population already recovered, 
and about 1.3% active infections.

Risk assessment of reactivation schemes
Mexico’s initial response to the COVID-19 emergency 
was a non-mandatory lockdown known as Jornada 
Nacional de Sana Distancia (JNSD; literally: “Healthy 
Distance National Period”). During this period, non-
essential economic activities were limited.

Based on official figures [25], there was a 75% mobil-
ity reduction within Mexico City. We represent the 
effect of such lockdown in network terms by taking 
the original CDMX network and randomly removing 
75% of its edge set. This network was referred to as the 
JNSD network.

Any economic reactivation following the lockdown 
period implies that part of the city’s population will 
return to regular work activities. Mobilization will lead 
to an increase in contact between people returning to 
the public space. In network terms, this is akin to the 
reemergence of links adjacent to the nodes representing 
increased interactions between people returning to the 
public space; for an schematic representation, see Fig. 1.

The pre-lockdown network has all the (empirically) 
occurring connections between people in the 
non-emergency state. During lockdown, many 
connections are lost; although some of them that 
are not subject to restrictions (ie. family, essential 
workers) remain, leading to a sparser network during 
the lockdown. During the economic reactivation, 
some of the pre-lockdown connections will be 
reactivated (highlighted in yellow) as people return 
to the public space; in addition to the connections 
that prevailed during the lockdown (grey), giving 
way to a new post-lockdown network.
With this in mind, we represented different 
economic reactivation scenarios by reconnecting 
nodes removed in the JNSD network and simulating 
epidemic dynamics with the parameters mentioned 
above. For every system analyzed, we ran 100 
iterations of EoN dynamics and evaluated the 
behavior in terms of:

1.	 Whether a peak in the number of active infections 
occurs is measured as the number of simulations 
where at least one day with more infected nodes than 
day 0 (with a tolerance of 0.1%).
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2.	 Percentage of the infected population at the peak: 
measured as the average magnitude of the peak for all 
simulations.

3.	 Peak time: measured as the average peak time for all 
simulations.

We present the epidemic risk evaluation under different 
reactivation scenarios with these ideas in mind.

The following pseudocode describes how each of this 
magnitudes is calculated:

For each ensemble of simulations S:
For each simulation s:
Imax = max(I) # maximum value of I (infected 
percentage) at any time in s.
tmax = t(max(I) ) # timepoint in which I equals max(I).
Peak = TrueiffImax > I(t = 0)+ 0.1 # whether the 

dynamics leads to an actual peak, or just decays from the 
initial infected nodes

AverageInfectionPeakMagnitude(S) = mean(Imax(s))

Averagepeaktime(S) = mean(tmax(s))

rePeaklikelihood(S) = mean(rePeak(s))

Minimum and maximum contact scenarios—JNSD 
and CDMX networks
The minimum level happened during the lockdown and 
is represented by the JNSD network. On the other side 
of the spectrum, the maximum level of communication is 
represented by the CDMX network, which captures the 
usual contact patterns of the city without the constraints 
induced by the pandemic.

Scenarios of constraint‑free reactivation
As we previously mentioned, economic reactivation 
involves reintegrating a fraction of the population 
back into the public space. This renewed activity can 
be represented as a reconnection of contacts removed 
during the lockdown.

Without any constraint and no additional informa-
tion, we assumed that the workforce is evenly distributed 
within the population represented in the contact net-
work [22]. Therefore, the reactivation of any fraction of 
the people will be akin to randomly sampling the contact 
network nodes and reconnecting the links lost during 
the lockdown. Our models were based on conservative 
assumptions due to scarce sociodemographic and spa-
tial information. We evaluated this scenario using the 

Fig. 1  Schematic representation of the changes in contact networks induced by lockdowns and economic reactivation. In this figure, we show a 
simplified contact network, in which nodes represent people, and links show contacts between them
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following algorithm for different population fractions 
ranging from 5 to 50%.

For each fraction F of reactivated population

1.	 We selected F nodes of the Mexico City contact 
network

2.	 We considered that all links adjacent to other nodes 
were reactivated without restrictions.

3.	 We considered that the rest of the nodes in F (those 
with no correspondence to links in F) were the 
ones in the network as modeled under lockdown 
conditions as given by the JNSD network.

We used the resulting network to run an EoN dynamic 
using the parameters described previously.

Scenarios of modular reactivation
An alternative approach to economic reactivation 
consists of leveraging network properties to impose limits 
on the epidemic dynamic. The concept of modularity 
in complex networks [24] is loosely defined as a set of 
nodes (individuals) with a higher number of connections 
among members of the group than with other nodes of 
the network, i.e., there are more connections within a 
module than between modules. An essential property of 
modular networks is that dynamic phenomena (such as a 
random walk or pathogen propagation) remain inside a 
module longer before spreading outside the module.

Instead of reactivating nodes spread throughout the 
network in our proposed modular reactivation, whole 
modules are reactivated until the desired fraction of 
the population is reactivated. All edges adjacent to the 
reactivated nodes are reconnected, including links within 
a given module and a smaller subset of connections 
beyond the module’s boundaries.

Figure 2 illustrates and contrasts a constraint-free and 
modular reactivation strategy.

In the top panel, the contacts of the red nodes may 
include job and non-job related contacts with similar 
probabilities. This way, by being randomly distributed 
in the network, contacts are reactivated both with 
other essential workers (red) and with the rest of the 
population (black nodes), which in principle must remain 
under confinement (as during the lockdown).

The lower panel depicts a scenario in which red nodes 
form a module; hence, it is more likely to connect to 
other essential workers (red nodes). In case of infection 
within the module, the general population is, to an extent, 
shielded since the outbreak has a greater probability of 
keeping spreading within the module. Hence the attack 
will become contained more easily.

Leveraging inter‑module connectivity to optimize modular 
reactivation
While modular reactivation can be accomplished by arbi-
trarily activating modules, the interconnection between 
modules can also further refine the modular reactivation. 
Dynamic processes will remain within a modular struc-
ture; therefore, reactivating smaller, topologically distant 
modules in the network will further encapsulate the epi-
demic phenomena and minimize its spread. See Fig. 3 for a 
visual representation of such strategy.

A note on vaccination
Our current work does not consider the effect of a 
vaccination campaign on the evolution of the COVID-
19 epidemic in Mexico City. We have decided to exclude 
this from our simulations based on the following 
considerations: 1) while there are reports that vaccines 
reduce SARS-CoV-2 transmission  [26, 27], the initial 
notion was that they would provide protection, but not 
necessarily reduce the number of infected individuals; 2) 
while Mexico has an ongoing vaccination program, it has 
not reached the percentages of vaccination seen in other, 

Fig. 2  Modular interconnections and contact structure. Left: constraint-free reactivation; reactivated nodes are randomly selected from the 
network. Right: modular reactivation; reactivated nodes all belong to selected modules. Nodes to be reactivated are highlighted in red; the rest are 
black
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more developed countries; 3) we consider that our model, 
while implemented with COVID-19 in mind, could be of 
use for other pandemic responses in the future, in which 
non-pharmaceutical interventions may again be the only 
available option, particularly for underdeveloped nations.

Results
This section will present the effects of several reactivation 
interventions on the trajectory of the COVID-19 
epidemic in Mexico City. We report epidemic curves as 
a percentage of the population to avoid ecological biases.

Constraint‑free reactivation quickly approaches 
the behavior of a full reactivation
One initial, non-surprising result is that unconstrained 
reactivation of increasing fractions of the population, 
with no use of knowledge about the human contact net-
work structure of Mexico City, rapidly approaches the 
epidemic conditions of full reactivation (Fig. 4).

Table 1 summarizes the results of the simulations under 
different scenarios; as the fraction of the population 
returning to the open public spaces increases, distribution 
approaches full reactivation (high peaks, longer growth 
curves, and higher likelihood of outbreaks).

Reactivation strategies in a randomly distributed popu-
lation allow only a tiny fraction of the people to be reac-
tivated without a high risk of resurgence of cases. We 

observe that any fraction beyond 5% of the population 
rejoining the public space leads to an increased risk of a 
new wave of infections. The system is quite fragile; The 
shadowed areas in Fig.  5, representing all the simulated 
trajectories, becomes narrower, and also sharper around 
the peak area, as random reactivation increases – indica-
tive of less variability in the possible trajectories. Further-
more, a reactivation of 50% of the population is virtually 
indistinguishable from a full reactivation in terms of the 
magnitude, timing, and likelihood of a new peak.

Modular reactivation is better tolerated in terms of peak 
magnitude and time.
A second, less dramatic scenario occurs whenever we 
make use of some knowledge about the human contact 
network structure of Mexico City, namely its modu-
lar character. The height and duration of the peaks, as 
shown in Fig. 6, are diminished (for similar percentages 
of returning population) concerning the epidemic curves 
in the unconstrained case (Fig. 6).

A glance at the summary statistics presented in Table 2 
compared to Table 1 also reveals that this is the case.

Economic reactivation strategies using the modu-
lar structure of contact networks limit the spread of the 
infectious agent. We can observe that up to 25% of the 
population reactivation can be achieved with a slight 
deviation from the complete lockdown in magnitude, 

Fig. 3  Modular projection of the CDMX contact network. These networks are aggregates of the original contact network; the nodes in these 
networks represent a full module in the original contact network; these modules are connected to other modules if there are connections between 
their member nodes in the original contact network.If we consider the number of nodes that belongs to each module, each of these modules 
contains a fraction of the original nodes in the network (that is, a fraction of the population of the network). In these figures, we select roughly 20% 
of the contact network’s population using two different strategies: in the top panel, we select (highlighted in red) the six largest modules; whereas 
in the bottom panel, we select 33 modules with a smaller fraction of the population, such that the sum of these is again roughly 20% of the total 
contact network’s population.
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timing, and the likelihood of a new peak. In the case of 
a 50% modular reactivation, subsequent peaks are likely 
to emerge. However, it is essential to note that the mag-
nitude of these peaks is less than that observed in a com-
plete reactivation scenario.

Modular reactivation is thus a better alternative in allow-
ing the incorporation of higher percentages of the popula-
tion without the risk of massive outbreaks. However, as we 
can see, later on, there are still better alternatives nurtured 
by the use of deep knowledge of the topological parameters 
of the human contact network of Mexico City.

Topology‑guided smart selection further mitigates 
epidemic dynamics
By taking into account not only the global topological 
modularity of the human contact network of Mexico 

Fig. 4  Ensemble visualization of epidemic simulations on networks. The colored line is traced to the average infected population percentage for 
each time point. The shadowed area represents ± 1 standard deviation. Panel A is from the simulation using the JNSD network, meaning a complete 
lockdown; panels B through G represent network dynamics with reactivation of 5% through 50% of the population, sampled without constraints 
from the network. Panel H represents the dynamics of a fully reactivated network

Table 1  Summary statistics for constraint-free reactivation 
strategies

Reactivation 
scenario

Average 
Infection Peak
Magnitude 
(%population)

Average Peak 
time (days)

Peak likelihood

0% 2.560421 5.43640 31%

5% 3.085227 4.66820 34%

10% 6.983370 12.70559 77%

15% 9.493764 15.40302 97%

20% 9.570953 14.99723 97%

25% 9.802384 15.31128 97%

50% 11.986835 18.73304 100%

100% 12.282289 18.42075 100%
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City but also the way the modules are connected (in the 
down-scaled version), we have been able to develop an 
optimized set of reactivation strategies, as is presented in 
Fig. 7 and Table 3.

If the population to be reactivated is spread throughout 
several (more minor) modules, it is possible to control the 
epidemic dynamics. Even in the case of a 50% population 
reactivation, this "smarter" modular strategy decreases 
the magnitude of subsequent possible peaks.

Hence, by considering the contact network’s global 
and local modularity structure and simulating epidemic 
dynamics compliant with these, we have devised an 
optimized progressive de-containment strategy.

Discussion
Epidemic spread of infectious diseases occurs via chains 
of transmission, which are dynamic processes shaped by 
different human behaviors. In the case of COVID-19, the 
condition is spread through close human interactions 
[28], which can be modeled as contact networks.

Human interactions [28] can be modeled as contact 
networks. The contact networks of huge metropolitan 

urban environments present unique challenges for epi-
demic network modelization due to their intricate modu-
lar structure and size. Computationally efficient methods 
to scale down the actual (extensive) contact networks to 
manageable yet still descriptive sizes, capturing the rele-
vant aspects of the modular structure of the original net-
works, are needed to perform epidemic dynamic models 
representative of the actual populations.

Using these scaled contact networks and a stochastic 
dynamics on networks approach, we captured the 
essentials of epidemic spread in Mexico City. We used 
the knowledge of said spreading patterns to model 
de-confinement scenarios to evaluate reactivation 
strategies after a lockdown in Mexico City. Although 
these networks exhibit a dynamic dimension, using a 
representative network as a baseline on which different 
lockdown and reactivation strategies can be modeled 
provides an efficient tool to explore different scenarios.

Since human contact networks in large urban environ-
ments tend to exhibit a modular structure, this invis-
ible compartmentalization is one feature that shapes 
the transmission chains of an epidemic phenomenon. 

Fig. 5  A network with 7216 vertices and 86,775 edges, representative of the close contact dynamics in Mexico City. The color of each node 
represents its “community,” a module of nodes that are more closely connected. We call this the CDMX network
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By optimizing the modular structure of the re-entrant 
essential worker population, we have proposed schemes 
that allow for a significant percentage of the popula-
tion to return to public space without leading to massive 
outbreaks.

This work finds that economic reactivation is feasible 
without necessarily resulting in a new outbreak. How-
ever, for this to work, reactivation must occur within 
contact communities. Optimally, these modules should 
be small and exhibit minimal connections to limit the 
spread of the disease. A set of behavioral and regulatory 
actions are needed to constrain this contact dynamics 
tightly, as the alternative shows that even a small fraction 
of the population being arbitrarily reactivated leads to 
an epidemic behavior similar to that of implementing no 
lockdown at all.

From the whiteboard to public policy: how to translate
Our findings might be helpful to provide feedback to 
public health policies [29]. In clinical fields, as is the case 
of medicine and nursing, a similar void is found between 
scientific discovery and health policy application. Sev-
eral authors have suggested that establishing a program 
involving community participation, considering time-
efficient approaches, ongoing training, and solid organi-
zational values on evidence-based practice is necessary 

Fig. 6  Ensemble visualization of epidemic simulations on networks. The colored line is traced to the average infected population percentage for 
each time point. The shadowed area represents ± 1 standard deviation. Panel A is from the simulation using the JNSD network, meaning a total 
lockdown; panels B through G represent dynamics on networks with reactivation of 5% through 50% of the population, achieved through the 
reactivation of modules in the contact network. Panel H represents the dynamics of a fully reactivated network

Table 2  Summary statistics of modular reactivation. ∗ Exhibits 
more than one peak the first peak is described

Reactivation 
scenario

Average 
Infection Peak
Magnitude 
(%population)

Average Peak 
time (days)

Peak likelihood

0% 2.560421 5.43640 31%

5% 2.599640 5.51050 31%

10% 2.560560 5.40828 31%

15% 2.589800 5.52702 31%

20% 3.046286 7.43976 31%

25% 3.047949 7.72372 31%

50% 2.720205 * 11.197762 27%

100% 12.282289 18.42075 100%
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to disseminate scientific findings effectively. Further-
more, implementing a research discovery among govern-
ment health organizations, clinical practice groups, and 
the general population is not immediate but is expected 
to proceed in stages. The decision to adopt, accept, and 
utilize an innovation is not an instantaneous act but more 
often a process [30].

The studies just referred have provided us with the fol-
lowing intuitions regarding modularization of the human 
contact structure in urban environments such as the one 
in Mexico City:

1.	 Residential proximity induces communities (people 
go to the same shops, etc.).

2.	 Non-public facing workspaces induce communities.
3.	 Commuting induces inter-module connections 

(intermixing in public transportation, recreational 
outings, etc.).

4.	 Public-facing jobs induce intermodule connections.

Based on our results, we have concluded that modular 
reactivation is a better alternative in allowing the 
incorporation of higher percentages of the population 

Fig. 7  Ensemble visualization of epidemic simulations on networks. The colored line is traced to the average infected population percentage for 
each time point. The shadowed area represents ± one standard deviation. Panel A and B represent the dynamics with 20% population reactivation 
using a modular strategy. For panel A, reactivation is achieved by reactivating six modules. In contrast, the same population fraction was spread 
in 33 modules for panel B. Panels C and D show the same distinction, this time for 50% of the population, distributed in 164 and 247 modules, 
respectively. Notice that by spreading the reactivation in several smaller modules, the height of new peaks is reduced

Table 3  Summary statistics of modular reactivation. * Exhibits more than one peak; the first peak is described

Reactivation scenario Average Infection Peak Magnitude 
(%population)

Average Peak time (days) Peak likelihood

20%—6 modules 2.560421 5.43640 31%

20%—33 modules 2.560560 5.40828 31%

50%—164 modules 2.589800 * 5.527020 31% *

50%—247 modules 3.046286 * 7.439762 31% *
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without the risk of massive outbreaks. If the population 
to be reactivated spreads through smaller modules, it is 
possible to control the epidemic dynamics. Therefore, 
we consider that we may formulate the following 
recommendations:

Interleaved reactivation: different, physically distant 
neighborhoods every day.

Delay the return of workers that require long commutes.
Authorities can enforce modularity by closing public 

transportation needed for intermodular connections; 
however, leaders should avoid costly penalties to the 
population. Effective strategies involve a significant 
degree of logistic complexity (beyond the scope of the 
paper) that the competent authorities must resolve.

Public health authorities must consider logistic com-
plexities to translate the findings of this study into action-
able policy. In this regard, measures that must encourage 
modularity reactivation are presented in Table 4.

Limitations of our model and other considerations.
Mathematical modeling implies simplification of the 

"real world." An aspect that we have not considered 
is mobility data. This factor shows a large number of 
long commutes within the city, which, as previously 
mentioned, could be a factor driving inter-module 
communication. Understanding these commute patterns 
as a function of residence could be an essential next 
step or the implementation of directed interventions to 
reduce inter-module connectivity; the main proposal 
of the current manuscript. This issue is discussed in 
the Supplementary Material. A limitation of our study 
is that the model we are proposing has not been tested. 
However, we consider it feasible based on mobility 
studies that have been conducted in Mexico City and 
surrounding metropolitan areas. Previous studies 
show most trips originating in municipalities on the 
periphery of Mexico City and the surrounding metro 
area have destinations in the central parts of the same 
municipalities. Therefore, modular networking would 
not significantly alter pre-pandemic mobility.

Mobility metrics have been used as an input for other 
COVID-19 models. The rationale is that for people to 

gather and have contacts, they must leave their houses 
for the public space. However, this is not sufficient: peo-
ple may enter the public sphere but avoid interacting 
with other people, therefore having low risk of disease 
spread; importantly, in populations like Mexico City, 
where some populations (particularly those in low soci-
oeconomic situations) may live in overcrowded spaces, 
high, long distance mobility may not even be necessary 
for disease spreading. In this regard, we consider that our 
approach, which is based on co-localization contact net-
works rather than mobility metrics, is better to capture 
the possible paths through which the virus may spread.

A central question at this stage of the pandemic 
is the role of vaccines in preventing transmission, 
which remains an open question [31], with only the 
mRNA-based vaccines having preliminary evidence 
of preventing transmission [32]. Vaccines that prevent 
viral transmission could be modeled as effectively 
disconnecting vaccinated individuals from the contact 
network; since these would no longer contribute to 
disease transmission. Therefore, vaccination modules act 
as hubs connecting other modules in a mesoscale sense. 
However, at this stage, the evidence can only confirm the 
protective effects of vaccines. In this regard, the effects 
of vaccination (reducing the risk of complications) and 
modularization (declining transmission) could be seen 
as an additive in terms of reducing public health strain 
(that is, reducing hospitalizations and deaths). The 
model described in this work is focused only on disease 
transmission and does not consider compartments for 
hospitalizations or deaths. However, future directions 
may assess the impact of concurrent vaccination and 
modularization strategies on hospital occupation and 
fatalities.

Conclusions
By considering mechanisms for the reactivation of 
economic activities in Mexico City, we have evaluated 
the risk that the negative slope of the epidemic curve may 
be reversed by incorporating a fraction of the population 
into the public space.

Table 4  Some examples of policies to encourage/enforce modular reactivation

Policy Government actionable Citizenship 
actionable

Expected adoption

Encouraging local trade consumption 
habits

Suggested Yes Heterogeneous

Phased workplace reactivation Suggested or mandatory No Suggested: Heterogeneous Mandatory: High

Turned of the workforce by residential 
address location

Suggested or mandatory Yes Suggested: Heterogeneous Mandatory: High

Partial transportation shutdown Complete Shutdown or Turned 
over schedule of a fraction of public 
transportation spots/hubs

No Mandatory: High if combined with 
complementary policies
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As null models, we ran the epidemic dynamics on 
the contact network of Mexico City with no mobility 
restrictions, representing a return to the connectivity 
prevailing before the start of the pandemic. The second 
null model considered was the network corresponding 
to the JNSD network, a subgraph of the Mexico City 
contact network with just 25% of active links, capturing 
the effect of the reported mobility reduction. In these 
models, reactivated nodes are randomly distributed 
on the network, which is a conservative assumption 
due to the lack of further information on the sociode-
mographic and spatial distribution of the individuals 
involved in the activities that will be reactivated. The 
model we propose is a component of epidemiologic 
surveillance that should include timely detection of 
active cases and hotspots. In addition, it has the advan-
tage of providing a rapid response to prevent further 
transmission and inform containment and mitigation 
measures.

We consider that the concept of modularity in net-
work theory may support reactivation economic 
activities.

A module in a complex network is loosely defined 
as a set of nodes (individuals) with a higher number of 
connections among members of the set than with other 
nodes of the network, i.e., there are more connections 
within a module than between modules. An essential 
property of modular networks is that dynamic 
phenomena (such as a random walk or pathogen 
propagation) remain inside a module for longer before 
spreading outside the module.

By translating the findings of network-based 
analytics and epidemiological models into actionable 
public policy measures, it is possible to advance into 
incorporating predicted risks into the assessment 
portfolio for reactivation large urban conglomerates 
such as Mexico City after a lockdown in the face of the 
still ongoing Covid-19 pandemic.
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