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Abstract 

Background:  The identification of risk factors for adverse outcomes and prolonged 
intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, 
determining treatment intensity, and resource allocation. Previous studies have deter‑
mined risk factors on admission only, and included a limited number of predictors. 
Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, 
we developed machine learning models to identify risk factors for ICU mortality, 
ventilator-free days and ICU-free days during the course of invasive mechanical ventila‑
tion (IMV) in COVID-19 patients.

Methods:  The DDW is a growing electronic health record database of critically ill 
COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for 
inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at 
time of data extraction were excluded. Predictors were selected based on the literature, 
and included medication dosage and fluid balance. Multiple algorithms were trained 
and validated on up to three sets of observations per patient on day 1, 7, and 14 using 
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fivefold nested cross-validation, keeping observations from an individual patient in the 
same split.

Results:  A total of 1152 patients were included in the model. XGBoost models per‑
formed best for all outcomes and were used to calculate predictor importance. Using 
Shapley additive explanations (SHAP), age was the most important demographic risk 
factor for the outcomes upon start of IMV and throughout its course. The relative prob‑
ability of death across age values is visualized in Partial Dependence Plots (PDPs), with 
an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving 
pressures demonstrated a higher probability of death. The PDP for driving pressure 
showed a relative probability increase starting at 12 cmH2O.

Conclusion:  Age is the most important demographic risk factor of ICU mortality, 
ICU-free days and ventilator-free days throughout the course of invasive mechanical 
ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should 
be monitored closely over the course of mechanical ventilation as risk factors predic‑
tive of these outcomes.

Keywords:  COVID-19, Mortality prediction, Risk factors, Machine learning

Background
Since December 2019, coronavirus disease 2019 (COVID-19) has quickly spread around 
the world [1]. Many countries have experienced high mortality rates and overburdened 
intensive care units (ICUs) [2]. Although many COVID-19 registries have improved our 
understanding of patient characteristics upon ICU admission [3–5], much remains to be 
elucidated about the predictors of mortality and length of stay in critically ill COVID-19 
patients. In particular, a better understanding of these predictors could aid clinicians in 
the prognosis of critically ill patients and may aid policy-makers and medical profession-
als in optimizing resource allocation. This is of pivotal importance at the time of possible 
ICU admission, but also throughout the entire course of ICU treatment.

Currently, multicenter and ICU-tailored predictive modeling is scarce for COVID-19 
patients. Prognostication in COVID-19 has largely centered around severity of disease, 
ICU admission, need for mechanical ventilation, length of stay and mortality in the gen-
eral hospital population [6–8]. In addition, ICU-specific models often fail to incorporate 
the wide variety of dedicated ICU therapies such as mechanical ventilation or high-risk 
medication. Furthermore, many of these models are single center and are frequently lim-
ited to risk factors at ICU admission, while COVID-19 often requires lengthy intensive 
care stays. Lastly, many prognostication models lacked adherence to established docu-
mentation guidelines and principles of data sharing to improve reproducibility of pre-
dictive studies [6]. Overall, we identified a gap for reproducible, multicenter predictive 
models in the ICU that include ICU-specific predictors over time.

In this study, we aim to identify the risk factors for intensive care mortality, ICU-free 
days and ventilator-free days throughout the duration of invasive mechanical ventilation 
(IMV), focusing on the first, 7th and 14th day after intubation. For these analyses, it is 
essential to capture all available data throughout ICU admission. We therefore relied 
on the Dutch Data Warehouse (DDW), a large, observational, multicenter collabora-
tion uniting 66 out of 81 intensive care units in the Netherlands [9]. Our hypothesis is 
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that ICU treatment characteristics become more important as predictors of outcome 
throughout the course of IMV.

Methods
The Medical Ethics Committee at Amsterdam UMC, location Vrije Universiteit medical 
center (VUmc) waived the need for patient informed consent and approved an opt-out 
procedure for the collection of COVID-19 patient data during the COVID-19 crisis. This 
report follows the transparent reporting of a multivariable prediction model for indi-
vidual prognosis or diagnosis (TRIPOD) guideline [10].

Source of data

The DDW is coordinated by Amsterdam UMC and is supported by the Dutch Society 
for Intensive Care (NVIC) and the Foundation for National Intensive Care Evaluation 
(NICE). The highly granular data warehouse is continuously expanding and currently 
contains over 400 million data points combining electronic health record (EHR) data 
from 25 hospitals on 2382 critically ill COVID-19 patients throughout their ICU treat-
ment. A more detailed description of the DDW, the data ingestion and the data pre-
processing has been published previously [9]. In brief, data were extracted in the highest 
frequency available, routine hourly or bihourly measurements, or at least multiple meas-
urements per day. Data were pseudonymized in the participating hospitals. Because of 
the variation in parameter names between hospitals, each parameter name from a hospi-
tal was mapped to a list of predefined parameter names. Data entry errors were filtered, 
and derived parameters were added. The continuous data validation process included 
checkpoints for correct mapping, source hospital verification and distribution plots of 
all used parameters. The resulting data are available for researchers and clinicians within 
ethical and legal boundaries [11].

Patient population

All adult intensive care patients with COVID-19 on invasive mechanical ventilation from 
the participating hospitals were included in this study. Additional file 1: Fig. S1 outlines 
the patient selection process. Patients were admitted between the beginning of the crisis 
in March 2020 until the 23rd of January 2021. COVID-19 was defined as a positive real-
time reverse transcriptase polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 
or a COVID-19 Reporting and Data System (CO-RADS) score and clinical suspicion 
with no obvious other cause of respiratory distress [12]. Patients still admitted at data 
extraction as well as transfers were excluded since their outcomes are unknown. Admis-
sions lasting less than 24 h were removed because they lack sufficient data for modeling.

Outcomes and predictors

The primary outcomes of the study were intensive care mortality, ICU-free days in 
30 days and ventilator-free days in 30 days [13]. The ICU-free days describe the num-
ber of days a patient is alive and outside of the ICU in the first 30 days after prediction. 
Similarly, ventilator-free days describe the days patients are alive and without invasive 
mechanical ventilation within the first 30 days after prediction. By definition, both out-
comes were set to 0 for patients who died in the ICU within the 30-day time window.
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To streamline the nomenclature from the statistical and machine learning field, all 
independent variables, also known as features, included in the modeling are referred 
to as predictors. All items from the Simplified Acute Physiology Score II (SAPSII) and 
sequential organ failure assessment (SOFA) score were included as predictors [14, 15]. 
For the ventilatory predictors, all variables from the landmark paper relating driving 
pressure to survival by Amato et al. were included [16]. A team of 3 experienced inten-
sive care clinicians reviewed the list and added potentially relevant predictors. These 
included structured comorbidity data routinely collected for the Dutch National Inten-
sive Care Evaluation (NICE), as well as information regarding the patient positioning 
and ventilation characteristics. Notably, fluid balance and the total equivalent dose of 
vasopressors and steroids administered were included. Finally, the length of intubation 
for each observation, in days, was also used as a predictor. A full list of predictors, medi-
cations, comorbidities and their definitions can be found in Additional file 1: Table S1.

Modeling

Up to three observations were constructed for each patient depending on their length 
of stay, averaging the available predictor values in the 24 h preceding 1 day, 7 days, and 
14  days of IMV. This process is illustrated in Additional file  1: Fig.  S2. ICU mortality 
was modeled as a classification problem with a decision tree, logistic regression and 
XGBoost algorithm to investigate the performance of both simple and complex linear 
and non-linear models. Ventilator and ICU-free days were treated as regression prob-
lems with a Lasso and Ridge linear model, as well as an XGBoost regressor. For every 
outcome and every algorithm, a single model was fit on data points from all days.

Overall model performance was evaluated using the area under the receiver operating 
characteristic (AUROC), average precision, calibration loss, and Brier score. A nested 
cross-validation was performed for hyperparameter optimization and to assess perfor-
mance on the whole dataset. This approach first splits the data into five outer holdout 
sets with 20% of the data each. For each holdout set, the remaining 80% of the data were 
used to fit and optimize a model via fivefold cross-validation and a randomized search 
over a predefined range of hyperparameter values. Observations belonging to the same 
patient were always kept in the same set to avoid leakage of information. A graphical 
representation of the process is shown in Additional file 1: Fig. S3.

For each outer holdout set, data imputation, standardization and automated feature 
selection were performed independently on each train set and then applied to the test 
set. Missing data were imputed using median imputation for simplicity and predictors 
were standardized to have a mean of 0 and a standard deviation of 1. A Lasso regres-
sion was used for automatic feature selection [17], and its L1 regularization term was 
optimized together with the classifiers’ hyperparameters. The best-performing estimator 
from each inner cross-validation was then used to predict the performance on the cor-
responding holdout test set. The overall performance resulted from the average perfor-
mance of all outer folds.
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Predictor importance and interpretation

In order to interpret the models, each algorithm was retrained on the whole dataset 
using the best hyperparameters found by the nested cross-validation. The importance 
of the individual predictors was gauged using the Shapley additive explanation (SHAP) 
framework [18]. SHAP values are state of the art in machine learning explainability and 
represent the marginal contribution of a predictor to the overall prediction. Interven-
tional SHAP values were calculated separately for each observation in the dataset [19], 
and then grouped to find the mean predictor importance on the different days and the 
whole dataset. In addition, Partial Dependence Plots (PDPs) were created for each pre-
dictor [20]. PDPs show the average change in probability of the outcome for all values of 
a predictor, while keeping all other predictors constant. All analyses were performed in 
Python 3.8 (Python Software Foundation).

Role of the funding source

The sponsors had no role in any part of the design of the study, data collection, analysis, 
interpretation of data, the writing of the report nor the decision to submit.

Results
Cohort description

A total of 1152 patients were on invasive mechanical ventilation and included in the 
modeling. 883 of these patients were admitted before the 1st of September 2020 dur-
ing the first wave in the Netherlands, 269 patients were admitted after this date during 
the second wave. Compared to day 1761 patients were mechanically ventilated for more 
than 7 days (66%), and 383 for more than 14 days (33%). Patient demographics, lab val-
ues, and respiratory characteristics are summarized in Table 1 for the different predic-
tion timepoints throughout the course of IMV. For the total cohort on day 1, median 
age was 66 years (IQR 58–72 years), the majority were male (73%), and the median body 
mass index (BMI) was 27.8 (IQR 25.3–31.5 kg/m2).

Interestingly, mortality during ICU admission occurred in 28.8% of patients that 
survived at least 24  h on IMV and only slightly increased throughout the course of 
mechanical ventilation; 32.4% of patients that survived up until day 14 on IMV still died 
afterwards. Median ventilator-free days on day 30 were 15 days (IQR 0–23) for the entire 
cohort and median ICU-free days were 7 days (IQR 0–21). The median C-reactive pro-
tein (CRP) decreased throughout these time points, whereas the leukocytes increased. 
Of note, the ventilatory ratio (minute volume * PCO2/(predicted body weight * 100 * 
37.5)) and the D-dimer increased with longer ICU admission.

Model results

The overall model results and the results on the different days of IMV are presented 
in Table  2 for ICU mortality and ICU and ventilator-free days after 30  days. Addi-
tional performance metrics can be found in Additional file 1: Table S2. The XGBoost 
algorithm yielded the highest performance for each of the outcomes, as well as an 
increase in performance later into the IMV course. Given the performance and ability 
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Table 1  Patient characteristics on day 1, day 7 and day 14 of invasive mechanical ventilation

Patient demographics, lab values and respiratory parameters are shown. All values represent the median with an 
interquartile range unless otherwise specified. The number of observations is included. Respiratory parameters and gas 
exchange indices were shown for patients in a controlled mode only

Patient demographics did not change substantially between the different days on IMV

PC pressure control, PWB predicted body weight, plat pressure plateau pressure, FiO2 fraction of inspired oxygen, PEEP 
positive end expiratory pressure, CRP C-reactive protein
a The recorded static respiratory system compliance or the tidal volume/(plateau pressure—PEEP)
b Gradient between PaO2 and FiO2
c Minute volume * PCO2/(predicted body weight * 100 * 37.5)

Day 1 Day 7 Day 14
(N = 1152) (N = 761) (N = 383)

Male 73% (N = 1139) 74% (N = 756) 76% (N = 380)

Age, years 66 (58–72, N = 1126) 65 (58–72, N = 753) 66 (58–72, N = 381)

 < 60 33% 33% 33%

 60–70 35% 36% 35%

 70–80 30% 29% 31%

 > 80 2% 2% 2%

BMI, kg/m2 27.8 (25.3–31.5, N = 988) 28.4 (25.5–31.9, N = 670) 28.1 (25.6–31.7, N = 328)

 < 25 23% 22% 23%

 25–30 44% 43% 44%

 30–35 21% 22% 20%

 > 35 12% 13% 13%

ICU mortality 28.8% (N = 1152) 30.4% (N = 761) 32.4% (N = 383)

ICU-free days 7 (0–21, N = 1152) 6 (0–21, N = 761) 3 (0–16, N = 383)

Ventilator-free days 15 (0–23, N = 1152) 16 (0–24, N = 761) 18 (0–25, N = 383)

Laboratory

CRP, mg/L 18 (104–267, N = 999) 171 (82–266, N = 718) 126 (60–196, N = 364)

Creatinine, micromol/L 83 (65–119, N = 1068) 89 (64–148, N = 732) 93 (61–156, N = 364)

D-dimer, ng/mL 1522 (893–3423, N = 354) 2600 (1509–4976, N = 417) 3120 (1900–4770, N = 241)

Lactate, mmol/L 1.2 (1.0–1.6, N = 1005) 1.2 (0.9–1.6, N = 692) 1.2 (0.9–1.4, N = 348)

Leukocytes, 109/L 9.7 (7.2–12.8, N = 1071) 10.5 (7.9–13.9, N = 743) 12.2 (9.7–15.5, N = 373)

pH 7.37 (7.32–7.41, N = 1105) 7.41 (7.35–7.46, N = 742) 7.4 (7.33–7.46, N = 369)

Thrombocytes, 109/L 251 (189–325, N = 1093) 309 (225–397, N = 748) 383 (281–507, N = 376)

Respiratory parameters

Respiratory rate, /min 22 (20–26, N = 846) 24 (20–28, N = 618) 25 (22–28, N = 324)

FiO2, % 45 (40–55, N = 1124) 46 (40–58, N = 754) 45 (36–60, N = 382)

PEEP, cmH2O 12 (10–14, N = 1121) 12 (10–14, N = 758) 10 (8–13, N = 383)

Pressure control:

 Set pressure, cmH2O 12 (10–15, N = 816) 12 (8–16, N = 655) 12 (8–16, N = 346)

Volume control:

 Plat pressure, cmH2O 24 (21–27, N = 528) 25 (22–29, N = 481) 25 (21–29, N = 276)

Tidal volume, mL/kg PBW 6.6 (6.1–7.6, N = 1085) 6.8 (6.1–7.8, N = 729) 6.9 (6.1–8.0, N = 362)

Static compliancea, ml/
cmH2O

38 (30–52, N = 911) 37 (28–57, N = 671) 37 (26–60, N = 341)

Driving pressure, cmH2O 12 (9–14, N = 937) 12 (8–16, N = 684) 13 (9–16, N = 352)

P/F-ratiob 167 (130–210, N = 1110) 152 (122–193, N = 756) 161 (120–203, N = 380)

Ventilatory ratioc 1.7 (1.3–2.2, N = 1046) 2.1 (1.7–2.7, N = 718) 2.3 (1.8–2.9, N = 357)
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of the XGBoost algorithm to encode the interaction between possibly non-linear pre-
dictors, the predictor importance was produced with this model.

Predictor importance

The most important predictors per time point based on the SHAP values are pre-
sented in Fig. 1; for ventilatory-free days these plots can be found in Additional file 1: 
Fig. S4. Furthermore, an unregularized linear model was trained to identify statisti-
cally significant relationships between the predictors and each outcome, shown in 
Additional file  1: Table  S3. These predictors largely overlapped with the predictors 
identified with the SHAP values. Lastly, strongly correlated predictors removed dur-
ing the data preparation are listed in Additional file 1: Table S4.

Overall, age was the most important demographic predictor of all three outcomes. 
The PDP shows the relative increase of ICU mortality probability with age, displaying 
an increase starting at 54 years relative to the median and the steepest increase around 
the median age of 64 years (Fig. 2). None of the comorbidities showed up as important 
predictors. Besides age, mechanical ventilation parameters were the most important 
predictors for all outcomes. Interestingly, fluid balance and medication were neither sig-
nificantly correlated with outcome, nor among the most important predictors based on 
their SHAP values. However, medication dosage was unavailable for several hospitals 
(11 out of 25).

The pH, P/F ratio and driving pressure were the most important mechanical ventila-
tion predictors for all outcomes; acidaemic conditions, low P/F-ratios, and high driv-
ing pressures were associated with a higher probability of mortality. The magnitude 
and direction of all predictors’ effect can be observed in the SHAP plots in Additional 
file  1: Figs.  S5, S6, and S7. pH was strongly correlated with pCO2, while no corre-
lation was found with creatinine, AKI stage, or lactate. The median pH in the PDP 
falls within the normal range for pH. The course of pH between survivors and non-
survivors can be observed in Fig. 3 and shows higher pH in survivors, albeit close to 

Table 2  Model performance for the different outcomes and day of IMV

Model performance is shown for ICU mortality, ventilator-free days at day 30, and ICU-free days at day 30 across the days of 
IMV

AUROC area under the receiver operating characteristic

Overall Day 1 Day 7 Day 14

ICU mortality (AUROC ± 95% confidence interval)

Decision tree 0.695 ± 0.027 0.668 ± 0.042 0.718 ± 0.013 0.739 ± 0.051

Logistic regression 0.744 ± 0.023 0.710 ± 0.035 0.766 ± 0.024 0.782 ± 0.028

XGBoost 0.774 ± 0.023 0.732 ± 0.04 0.806 ± 0.025 0.817 ± 0.013

ICU-free days (R2 ± 95% confidence interval)

Lasso 0.118 ± 0.009 0.086 ± 0.024 0.147 ± 0.016 0.067 ± 0.100

Ridge 0.179 ± 0.050 0.140 ± 0.065 0.196 ± 0.071 0.229 ± 0.081

XGBoost 0.212 ± 0.028 0.148 ± 0.029 0.267 ± 0.090 0.263 ± 0.077

Ventilator-free days (R2 ± 95% confidence interval)

Lasso 0.169 ± 0.015 0.112 ± 0.012 0.209 ± 0.050 0.231 ± 0.024

Ridge 0.217 ± 0.038 0.147 ± 0.018 0.263 ± 0.108 0.303 ± 0.039

XGBoost 0.250 ± 0.033 0.160 ± 0.019 0.319 ± 0.080 0.352 ± 0.038
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the normal range of pH. Conversely, the average applied driving pressure increased in 
non-survivors compared to survivors throughout the course of IMV. The PDP shows 
that probability of ICU mortality increases with the mean driving pressure value in 
the last 24 h at 1, 7, and 14 days. The PDPs of the other predictors can be found in 
Additional file 1: Fig. S8.

Discussion
This study identifies risk factors for ICU mortality, ICU-free days and ventilator-
free days throughout the course of invasive mechanical ventilation for critically 
ill COVID-19 patients. Even though demographics of the COVID-19 population 
remained similar throughout the first 14 days of IMV, age was consistently the most 
important demographic risk factor of outcome. pH and respiratory characteristics 
became increasingly important risk factors throughout the course of IMV.

Risk factors of poor ICU outcome are important to gauge prognosis for a group of 
patients, in order to scientifically underpin the larger debate of resource allocation in 
the COVID-19 crisis, and to generate hypotheses to improve our understanding of the 
disease. Although the exact pathophysiology remains unknown [21], previous work has 

Fig. 1  Importance of the top 10 predictors for the prediction of ICU mortality and ICU free days, as well as 
the difference for predictors over time. A ICU mortality. B ICU-free days
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Fig. 2  Partial dependence plots. PDP for age, pH, and driving pressure. The median value of all observations 
is indicated with a red vertical line
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linked age on admission to poor prognosis in critically ill COVID-19 patients [3, 22]. We 
now show that increasing age is a consistent risk factor for ICU mortality throughout the 
course of IMV, with an increase in the relative probability of death starting at 54 years. In 
addition, age is the most important demographic predictor for ventilator-free days and 
ICU-free days.

Besides demographics, the presented models are unique in the variety of clinical char-
acteristics incorporated as predictors. From these parameters, pH, P/F ratio, and driving 
pressure demonstrate increasing importance over the course of IMV. Studies investigat-
ing the role of these predictors in critically ill COVID-19 patients are limited, but did 
identify pH as an important predictor [23]. No studies are available looking at the role 
of these predictors throughout the course of ICU admission. In the current study pH is 
correlated with pCO2, while no significant correlation is found with renal function or 
lactate. Persisting low pH may therefore reflect continued protective ventilation with 
permissive hypercapnia and serve as a proxy for severity of respiratory illness. Likewise, 
driving pressure and P/F ratio may reflect the state of the lung. Whether maintaining a 
lower pH or high driving pressure may have adverse effects on the body throughout the 
course of IMV directly remains to be investigated.

Observational data and future perspectives

While the risk factors identified in this work provide important prognostic insight for 
clinicians and policy-makers, relationships provide associations rather than causal 
effects. For causal modeling, however, a thorough understanding of causal pathways is 
essential. Predictors associated with outcome and intervention under study need to be 
understood to improve causal inference. In addition, as with any observational dataset, 
not all relevant predictors may be captured, potentially leading to confounding. This 
work sheds light on important predictors and fuels the discussion on potential con-
founders and standardization across EHRs. Lastly, this work generates important insight 
in relevant predictors that require further study. In line with the lung protective strategy, 

Fig. 3  Course of pH and driving pressure. Plots show the course of pH and driving pressure only for patients 
intubated at least 7 (left) or 14 (right) days, respectively
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including acceptance of low pH and high pCO2, driving pressure has previously been 
causally related to outcome [16]. This work elaborates that such a relationship extends 
beyond the first 24 h of IMV, but remains to be researched further.

Model performance

Identification of risk factors depends on the goodness of fit of the model, and we show 
that model performance for ICU mortality [24], as well as for ventilator and ICU days 
[25], is consistent with the pre-COVID-19 literature. We observe an increase in model 
performance later throughout the course of IMV, which may indicate that the clinical 
characteristics better reflect the state of the patient, or the predictors more uniformly 
relate to the outcome. Ideally, prediction models would be integrated in the EHR and 
provide clinicians with a personalized mortality prediction at any given time at the bed-
side. Further investigations are needed to optimize individual predictions to be reliable 
for clinical decisions with irreversible consequences.

Strengths and limitations

This paper has several strengths. First of all, this study is unique in both the variety of 
predictors available per patient and the time-course data included in the models. More-
over, the multicenter data reflect practice differences between centers and improves 
external validity. Finally, data and code used in this study are available to clinicians and 
researchers within legal and ethical boundaries [11]. Data sharing is essential to replicate 
and verify results, compare underlying data and collaborate to foster the understanding 
of COVID-19.

The present study also comes with limitations. Firstly, removing transferred patients 
may have introduced bias in the dataset. Transferals may represent a healthier cohort 
of patients that are fit for transport or a sicker cohort transferred for specialized care 
such as extracorporeal life support (ECLS). Nonetheless, whenever data from the refer-
ring and receiving hospital were available, patient data were connected to limit the 
number of exclusions. In addition, previous analyses have shown that on admission, 
transferred patients are similar to non-transferred patients [9]. The DDW represents a 
relatively unselected sample of patients since all COVID-19 patients from the participat-
ing ICUs were included, limiting selection bias. Secondly, observations throughout the 
time course of IMV may be correlated in the same patient. To prevent leakage of cor-
related information, however, we keep observations of the same patient in the same split. 
In addition, predictors may be correlated with each other in the same observation. For 
this, we removed correlated predictors and we trained decision trees, which are robust 
to correlations. Moreover, medication dosage was still missing for certain hospitals. 
When unavailable, values were imputed with the median daily dosage in the training set. 
Nonetheless, we expect steroids to converge to similar doses in the beginning of admis-
sion due to the latest evidence.
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Conclusion
This study trained a set of machine learning algorithms on a large, full-admission cohort 
of COVID-19 patients to identify the risk factors for ICU mortality, and ventilation- and 
ICU-free days throughout the course of invasive mechanical ventilation. Consistently, 
age was the most important demographic risk factor, with an increase in the relative 
probability of death starting at 54 years. Nonetheless, pH, P/F ratio, and driving pressure 
provided increasingly important risk factors over time. These results can be used for 
prognostication and to provide insight for the debate on resource allocation. In addition, 
the results of this research serve as a stepping stone for causal inference and individual-
ized predictions research.
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