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Abstract  
Melatonin is a pleiotropic molecule that, after a short-term sleep deprivation, promotes the proliferation 
of neural stem cells in the adult hippocampus. However, this effect has not been observed in long-term 
sleep deprivation. The precise mechanism exerted by melatonin on the modulation of neural stem cells is 
not entirely elucidated, but evidence indicates that epigenetic regulators may be involved in this process. 
In this study, we investigated the effect of melatonin treatment during a 96-hour sleep deprivation and 
analyzed the expression of epigenetic modulators predicted by computational text mining and keyword 
clusterization. Our results showed that the administration of melatonin under sleep-deprived conditions 
increased the MECP2 expression and reduced the SIRT1 expression in the dentate gyrus. We observed that 
let-7b, mir-132, and mir-124 were highly expressed in the dentate gyrus after melatonin administration, but 
they were not modified by sleep deprivation. In addition, we found more Sox2+/5-bromo-2′-deoxyuridine 
(BrdU)+ cells in the subgranular zone of the sleep-deprived group treated with melatonin than in the un-
treated group. These findings may support the notion that melatonin modifies the expression of epigenetic 
mediators that, in turn, regulate the proliferation of neural progenitor cells in the adult dentate gyrus under 
long-term sleep-deprived conditions. All procedures performed in this study were approved by the Animal 
Ethics Committee of the University of Guadalajara, Mexico (approval No. CI-16610) on January 2, 2016.
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Introduction 
Sleep deprivation (SD) is a common disorder that frequently 
occurs as a consequence of insomnia, light pollution, sleep 
apnea, and stress (Hall et al., 2000; Raap et al., 2015). SD 
is associated with immunosuppression, production of re-
active oxygen species and cell death (Rechtschaffen et al., 
1989; Everson and Toth, 2000; Hu et al., 2003; Yang et al., 
2008). Sleep deprivation of the rapid eye movement (REM) 
phase alters behavioral and cognitive functions (Gonza-
lez-Castañeda et al., 2016; Soto-Rodriguez et al., 2016) and 
produces long-lasting changes in neural plasticity and cir-
cadian rhythm (Massart et al., 2014; Nilsson et al., 2016), 
which can modify the profile expression of microRNAs in 
the hippocampus (Davis et al., 2007). 

Melatonin (MEL) is a hormone derived from tryptophan 
that regulates nocturnal sleep phases and plays a role as a cir-

cadian zeitgeber. MEL is also a powerful antioxidant (Galano 
et al., 2011; Vishwas et al., 2013) and a modulator of cell pro-
liferation (Jung-Hynes et al., 2011; Cheng et al., 2013) that 
seems to reduce some of the deleterious effects of SD (Muel-
ler et al., 2008, 2011), promotes hippocampal neurogenesis 
(Moriya et al., 2007; Chern et al., 2012), and increases the 
expression of anti-apoptotic peptides (Bcl-xL and Bcl-2) 
(López-Armas et al., 2016). However, the mechanism under-
lying these biological effects is not completely elucidated, but 
recent evidence indicates that some epigenetic mechanisms 
are involved in these events (Sharma et al., 2008; Niles et al., 
2013; Hardeland, 2014).

Epigenetic regulations are heritable changes in the func-
tion of genetic elements without changing the DNA se-
quence (Bird, 2007) and have multiple implications in cell 
proliferation, differentiation, cell fate, brain plasticity, and 
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genomic imprinting (Reik and Walter, 2001; Lee et al., 2006; 
Nelson et al., 2008; Kim et al., 2010; Asuthkar et al., 2012).  
Epigenetic regulations are mediated via RNA interference 
(microRNA –mir-), histone modifications, and DNA methyl-
ation. MicroRNAs are small interfering strands of RNA that 
modify protein translation by binding to mRNA. MicroRNA 
124 (mir-124) and microRNA 9 (mir-9) are associated with 
neural gene expression, which modulates neural-stem-cell 
fate and proliferation (Cheng et al., 2009; Coolen et al., 2013) 
by suppressing RE-1 silencing transcription factor (REST) 
(Ballas and Mandel, 2005). On the other hand, microRNA 
132 modulates cell maturation, circadian rhythmicity, and 
synaptic plasticity (Alvarez-Saavedra et al., 2011; Luikart et 
al., 2011; Clovis et al., 2012).

Histone modification via deacetylation by Sirtuin 1 
(SIRT1) is involved in cell longevity and differentiation via 
a modification of DNA-protein binding in the nucleosome 
(Saharan et al., 2013; Cai et al., 2016). SIRT1 is an NAD+ 

dependent histone and its activity depends on the energy 
and redox state of the cell (Bernstein et al., 2007; Iwahara 
et al., 2009; Caito et al., 2010; Yao and Jin, 2014). Under SD 
conditions, the oxidative state is increased, but changes in 
SIRT1 expression are unknown. DNA methylation can be 
recognized by a series of specific binding proteins, such as 
methyl-CpG-binding protein 2 (MECP2) (Lunyak et al., 
2004; Ballas et al., 2005; Bogdanović and Veenstra, 2009). 
MECP2 and REST/NSFR, which constitute a neural-gene-re-
pression complex (Ballas et al., 2005; Chadwick and Wade, 
2007; Li et al., 2014; Masserdotti et al., 2015) that modifies 
brain-derived neurotrophic factor (BNDF) expression and 
regulates cell proliferation (Zhou et al., 2006; Zocchi and 
Sassone-Corsi, 2012). Altogether, this evidence suggests that 
microRNAs let-7b, mir-124, mir-9, and mir-132, and pro-
teins SIRT1, MECP2, and REST can be modified either by 
SD or MEL treatment. To date, epigenetic effects of SD and 
MEL on neural cell proliferation have not been studied in 
vivo. Therefore, the aim of this study was to evaluate whether 
the MEL administration modifies the expression of epigen-
etic mediators involved in the neural-stem-cell proliferation 
of sleep-deprived mice. 
  
Materials and Methods  
Animal housing
We used 40 BALB/c male (post-natal day 60) mice for this 
study. The mice were kept under normal housing conditions 
and low noise exposure in polycarbonate cages (59 cm × 
38.5 cm × 20 cm). The mice were randomly divided into 
four groups (n = 10 per group): control group (intact ani-
mals), melatonin-treated group (MEL), sleep-deprived plus 
melatonin group (MSD), and the sleep-deprived group (SD). 
Before the SD protocol, animals were kept in a 12/12-hour 
light/dark cycle (lights on at 08:00 a.m.), the room tempera-
ture was set at 25 ± 2°C and humidity of 50 ± 20% with ac-
cess to food and water ad libitum. All procedures used in this 
work were approved by the Animal Ethics Committee of the 
University of Guadalajara (approval No. CI-16610) on Janu-
ary 2, 2016 and performed in accordance with the National 

Institutes of Health Guide for the Care and Use of Laborato-
ry Animals (NIH Publication No. 85-23, revised 1996).

Sleep-deprivation protocol
Twenty mice in the MSD and SD groups were subjected 
to 96-hour SD using the multiple platform method (van 
Hulzen and Coenen, 1981; Lopez-Armas et al., 2016; So-
to-Rodriguez et al., 2016). Briefly, animals were placed in a 
180-cm water tank containing 20 platforms. The water tem-
perature was maintained at 26 ± 2°C throughout the study. 
Each platform was 2.5 cm wide and 20 cm high. Water and 
food were available ad libitum on all the platforms. To avoid 
overcrowding, the platforms outnumbered the animals and 
mice could freely move around on them. All platforms were 
2 cm above the water level; thus, when the animals reached 
the REM phase and lost their muscle tone, they fell into the 
water and had to climb up again to the platform. Control 
animals were housed in their cages, which were allocated in 
the same experimental room to be kept in the same environ-
ment and maintained a normal sleep cycle. 

MEL and 5-bromo-2′-deoxyuridine (BrdU) treatment
The MEL and MSD groups received 10 mg/kg MEL (Sig-
ma-Aldrich, St. Louis, MO, USA) intraperitoneal (i.p.) per 
day dissolved in 1% ethanol (Figure 1) until sacrifice. Addi-
tionally, the mice received a single i.p. injection of 300 mg/kg 
BrdU (Sigma-Aldrich) to label the cell progeny derived from 
primary hippocampal precursor cells (Cameron and Mckay, 
2001).  

Tissue processing
Immediately after the SD, five mice per group were sacrificed 
by decapitation, their brains were dissected out on ice, and 
the hippocampus was extracted and put promptly in cold 
(4°C) RNAlater solution (Ambion Chemicals, Carlsbad, CA, 
USA), and immediately stored at −80°C. The remaining an-
imals (n = 5 per group) were used for immunoflourescence 
and sacrificed with 100 mg/kg pentobarbital followed by the 
transcardial perfusion. The mice were perfused with 0.1M 
phosphate buffered saline (PBS) solution at 37°C, followed 
by 4% paraformaldehyde in 0.1M phosphate buffer, and 
their brains were post-fixed overnight at 4°C in the same 
fixative. Later, the brains were cut at 35 µm using a VT1000E 
vibratome (Leica, Microsystems), starting from the rostral 
Bregma, −1.34 mm, to the caudal Bregma, −2.92 mm (Pax-
inos and Franklin, 2013). Tissue storage was done in PBS 
plus 0.3% sodium azide.

Text mining for detecting targets
To determine which microRNAs to study, we first performed 
text mining operations using the R studio (R Studio, Boston, 
MA, USA) and the Bioconductor and R package (https://
www.bioconductor.org/) pubmed.mineR (Rani et al., 2015). 
PubMed abstracts were downloaded in text from January 
01, 2000 to January 01, 2017. An abstract corpus was created 
using the following keywords “Epigenetic,” “Sleep,” “Neuro-
genesis,” and “Melatonin” (Additional Table 1). Then, the 
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abstract corpus was subjected to word atomization to find 
the most recurring words. The list was consequently filtered 
to only include terms with the prefix mir- or the word mi-
croRNA. Terms that corresponded to MicroRNAs found 
were subjected to word clustering association using the ap-
cluster package (Additional Table 2). After a brief review, 
we chose several key microRNAs after cluster analysis of 
a term matrix using keywords “neurogenesis”, “sleep,” and 
“melatonin.” An exhaustive literature review was performed 
to discard previously described pathways. We repeated this 
process one more time, and instead of filtering the list with 
prefixes “mir-” or the word “microRNA,” a gene filter was 
used. The most frequent terms were filtered based in the 
literature review, also circadian rhythm genes, basic metab-
olism enzymes, and globulin genes were excluded. These 
results were later stored and compared with mir-TAR-BASe. 
Positive targets for previously described microRNAs were 
found and a cluster analysis was run with the cluster analysis 
of a term matrix using keywords “neurogenesis,” “sleep,” and 
“melatonin.” Chosen targets were selected based on the clus-
ter analysis and the literature review.

RNA and protein extraction
Brain samples were immersed and stored with the RNAl-
ater (Ambion Chemicals, Carlsbad, CA, USA). MirVANA 
PARIS Kit (Life Technologies Burlington, Ontario, Canada) 
was used to extract both protein and RNA which employs a 
phenolic extraction of proteins and RNA followed by silica 
column purification (Boom et al., 1990; Kim et al., 2010). 
Tissue samples were processed following the kit instructions 
and employing the included reagents. Briefly, the extraction 
consisted of homogenizing the sample with the kit Cell Lysis 
buffer at 0°C from the MirVANA kit, and then, protein and 
RNA fractions were separated and stored in different vials. 
The RNA was purified via silica-cartridge adhesion and fi-
nally, eluted with RNase-free water also included in the kit. 
Both the protein and total RNA obtained from each sample 
were subsequently stored separately in vials at −80°C.

Quantitative PCR
We amplified and measured microRNA associated with 
neurogenesis. Since many microRNAs are expressed in 
different chromosomes, we evaluated the expression of pri-
mary microRNAs of two expressing alleles. First, the total 
RNA acquired via mirVANA was quantified using a BioTEK 
Synergy Htx (Biotek, Winooski, VT, USA) absorbance 
meter and Take3 (Biotek) 16-well microplate to determine 
the quality and quantity of RNA. Then, 2 µg of RNA was 
retrotranscribed using a RETROScript kit (Invitrogen, Vil-
nus, Lithuania) by utilizing an M-MuLV (Moloney Murine 
Leukemia Virus) reverse transcriptase and RETROScript 
Random Primers (Invitrogen, Vilnus, Lithuania). Retrotran-
scription consisted of 5 minutes of denaturalization at 65°C, 
85 minutes of strand synthesis at 55°C plus 5 minutes of 
inactivation at 85°C. qPCR primers were ordered from IDT 
Technologies (San Diego, CA, USA) for Pri-Mir-124 (Ch 
14), Pri-Mir-124-2 (Ch 3), Pri-Mir132 (Ch 11), Pri-Mir-9-1 

(Ch3), Pri-Mir-9b (Ch13), and Pri-Let-7b (15), and we used 
SnoRNA234 and RNAU6 as our reference genes with the 
following sequences, which are provided in Table 1. The op-
timal melting temperature was determined with end-point 
PCR (Rychlik et al., 1990)  and later confirmed via Real-time 
qPCR assay (Roche, Mannheim, Germany). It was near 62°C 
for both qPCR and end-point PCR. qPCR was processed 
using previously described primers with FastStart Green Es-
sential Master Kit (Roche, Mannheim, Germany) in a Light 
Cycler 96 system (Roche Mannheim, Germany). This reac-
tion consists of a premix solution with dNTPs, Polymerase, 
MgCl2, and SYBR Green Dye. This mix was poured into a 
vial of 0.2 mL filled with DNA and nuclease-free water by 
using the following standard conditions: (1) Preincubation at 
94°C for 10 minutes, (2) 3 step amplification over 45 cycles at 
95°C for 10 seconds, and then 65°C for 15 seconds, followed 
by 72°C for 14 seconds, and (3) a high-resolution melting 
from 65°C to 97°C in 10 minutes. All melting profiles were 
observed under these assay conditions demonstrating the 
amplification of a single unique product free of primer di-
mers or other anomalous products. Reaction efficiency was 
calculated by a slope using the following equation: Efficiency 
= (−1 + 10(−1/slope)) × 100. Average efficiency was 85%. 
The highest efficiency difference between transcripts was 
not larger than 0.3%. qPCR samples were run in duplicates, 
qPCR was evaluated by a fold change of expression 2ΔΔCt. 

Western blot assay
The total protein concentration was determined using the 
Lowry protein determination (Peterson, 1977) measured in 
a plate and read in BioTek Synergy Htx (Biotek) plate read-
er. Samples were loaded on 10% SDS- polyacrylamide gels, 
separated by electrophoresis, and then, transferred to PVDF 
membranes (Millipore, Darmstadt, Germany). Immunode-
tection was performed with Near InfraRed fluorescence de-

Table 1 Primers used for detecting qPCR transcripts

Sequence 
description

Number 
of bases Sequence 5′–3′

Let-7b 20 CCT CCT CCA GAA CAC GGA CA
Let-7b 21 CCA TTT AGC TTG CTG AGC GGG
mir-9-1 23 AGC GAC TCG AGA CTA CGG AGG T
mir-9-1 24 CTC GGG CTG AGC AAC CTT TGA AGG
mir-9-2 23 AAG TAC CCC GGA GGA CTA CGC TT
mir-9-2 22 TCT TTC CGG AAC GTT CCT CGG T
mir-124-1 20 CCA TCC CCT CCC TTT CTT TC
mir-124-1 22 ACC GCG TGC CTT AAT TGT ATG G
mir-124-2 22 GGA GTA GGG ACT CCA AGC CTA
mir-124-2 20 CTC CGC TCT TGG CAT TCA C
mir-132 20 GTG CTG ACG TCA GCC TGC AA
mir-132 22 TCC TCT TGC TCT GTA TCT GCC C
SnoRNA234 20 GGG GTT AGG ATA GGA CCA AG
SnoRNA234 19 GTC AGC CAG GGC TAT ACA G
Antisense 
RNAU6

21 GAG AAA GAG GCA GGC CT

Sense RNAU6 17 GGC TCT TCT GGC TTT CA
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tection. First, the membranes were blocked with 5% non-fat 
milk for 1 hour and incubated with primary antibodies over-
night at the indicated dilutions: rabbit anti-REST (RE1-si-
lencing factor) (1:200; Millipore, Billerica, MA, USA;  Cat# 
07-579), rabbit anti-MECP2 (Methyl-CpG-binding protein 2) 
(1:100; Boster,  Pleasanton, CA, USA; Cat# CI1103), mouse 
anti-SIRT1 (1:100; Millipore, Billerica, MA, USA; Cat# 04-
1557) and goat anti-β-actin (1:1000; Santa Cruz Biochemi-
cals, Santa Cruz, CA, USA; Cat# SC1616), and with second-
ary antibodies goat (Cat # 925-32211, 925-32210 and 925-
68071)  and donkey (Cat# 925-32213, 925-68024 and 925-
68073) at 1:20,000 (Li-Cor Lincoln, NE, USA) for 2 hours at 
room temperature. Membranes were read on an Odyssey Clx 
reader (Li-Cor, Lincoln, NE, USA) to normalize the signals 
of REST, MECP2, and SIRT1; the corresponding signals of 
β-actin were measured on the same blots. We analyzed the 
densities with ImageJ software (NIH, Madison, WI, USA). 

Immunofluorescence analysis
For immunohistochemical processing, eight 35-µm-thick 
slices were randomly selected from each brain. Tissue sam-
ples were treated with 2 N HCl for 10 minutes at 37°C, fol-
lowed by 0.1 M borate buffer at pH 8.5 for 10 minutes. Brain 
sections were rinsed four times in 0.1 M PBS and incubated 
in the blocking solution (PBS 0.1 M, Triton-X100 0.03% and 
10% fetal bovine serum) for 50 minutes. Subsequently, the 
free-floating samples were incubated overnight with pri-
mary antibodies rat IgG anti-BrdU (Bromodeoxyuridine), 
a marker for cell proliferation (1:500; Bio-Rad, Kidlington, 
UK; Cat# OBT0030) and anti-Sox2, a marker for neural stem 
cells (1:500; Millipore, Billerica, MA, USA; Cat# AB5603) at 
4ºC. Sections were then rinsed 4× with 0.1 M PBS and incu-
bated with the same blocking solution containing the conju-
gated secondary antibodies (1:1000 Alexa Flour 488 anti-rat 
Cat# A-21208, and 1:1000 Alexa Flour 594 anti-rabbit Cat # 
R37117 Thermo-Fisher, Waltham, MA, USA) for 1 hour at 
room temperature. After rinsing (4× with 0.1 M PBS), nu-
clear staining was done with DAPI (Abcam Cambridge, MA, 
USA; Cat# ab104139). The sections were washed with 0.1 M 
PBS and mounted on glass slides and covered using Vecta-
shield mounting media (Vector Laboratories, Burlingame, 
CA, USA; Cat# H-1000).

Cell counting
We assessed eight 35-µm-thick brain sections, 210 µm apart. 
The whole subgranular zone (SGZ) was quantified in all the 
collected slices, ranging from one field in rostral brain sec-
tions (−1.34 mm coordinates from Bregma) to three fields in 
dorsal brain sections (−2.92 mm coordinates from Bregma). 
We quantified manually the number of Sox2+/BrdU+ cells 
located in the SGZ of the dentate gyrus. Double labeling was 
always confirmed and quantified by matching cellular mor-
phologies with clearly discernible nuclei (DAPI+ cells). This 
analysis was done in a Carl Zeiss AxioScope D1 instrument 
(Gottingen, Germany) with a 40× magnification objective 
(field area ≈ 0.15 mm2). Quantitative analysis was performed 
by a subject blinded to the group assignment.

Statistical methods
Data are expressed as the mean ± standard error. To deter-
mine the appropriate statistical test, we did a kurtosis analy-
sis and according to these results, we used a parametric or a 
non-parametric test. Therefore, for multiple comparisons, we 
used the Kruskal-Wallis test and, for comparison between 
pairs, we used the Mann-Whitney U test. In all cases, the P < 
0.05 value was chosen to establish statistically significant dif-
ferences. The sample size used was validated by calculating 
the effect size of each experiment and the respective statis-
tical power. All data were analyzed with Prism 6 (GraphPad 
Software, San Diego, CA, USA) and SPSS v23 (IBM, Ar-
monk, NY, USA). For cell counting, we used Kruskar-Wallis 
test followed by a Mann-Whitney U test. For microRNA 
quantification ΔCt and Western Blot Mean Flourescence 
Ratio, we applied the Kruskal-Wallis test followed by the 
Mann-Whitney U test. In all cases, the significance level was 
set at P < 0.05.

Results
MEL administration maintains the number of Sox2+/
BrdU+ neural progenitor cells in the dentate gyrus
To determine changes in Sox2 expression, we injected MEL 
for 4 days of REM SD and sacrificed animals on day 4 (n = 
5 mice per group) (Figure 2). To label proliferative cells, we 
injected 300 mg/kg of BrdU on day 1. Our data indicated 
that the number of Sox2+BrdU+ cells in the SD group (1.19 
± 0.18 cells /field) were significantly lesser as compared with 
the control group (2.13 ± 0.2 cells/field, P = 0.0023), the 
MSD group (2.66 ± 0.3 cells, P = 0. 003) and the MEL group 
(1.91 ± 0.28 cells/field, P = 0.041) (Figure 3). We did not find 
statistically significant differences between the control group 
and the MEL and MSD groups (P > 0.05). These data suggest 
that the MEL treatment helps preserve the proliferation of 
Sox2+ precursor cells in the dentate gyrus of sleep-deprived 
animals.

MEL increases microRNA transcription on specific loci
To identify whether the increased proliferation of Sox2+/
BrdU+ cells in the hippocampus in sleep-deprived animals 
treated with MEL was due to a differential expression of epi-
genetic factors, we investigated several microRNAs involved 
in the cell proliferation of neural precursors. The regulation 
of mir-124, mir-132, let-7b and mir-9 transcripts was ex-
amined by qPCR analysis (n = 5 mice per group). For mir-
124 and mir-9 that have more than one allele, we used two 
different transcripts for amplification, one for each locus, 
and was labeled with a dash and number, i.e. mir-124-2. 
We found that MEL per se increases the expression of some 
microRNAs when compared to the control group (Figure 
4): Let-7b (MEL ΔCt −2.45 ± 0.78 vs. CTRL ΔCt 1.048 ± 
0.30; P = 0.007), Mir 124-2 (MEL ΔCt −1.92 ± 0.39 vs. CTRL 
ΔCt 0.93 ± 0.23; P = 0.007) and mir-132 (MEL ΔCt −0.26 ± 
0.61 vs. CTRL ΔCt 3.38 ± 0.36; P = 0.0079). This indicates 
that administration of MEL induces changes that alter the 
expression of Let7b, Mir 132 and Mir 124-2. However, the 
MEL-induced overexpression was reverted by SD effects as 
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we did find statistically significant differences with the MSD 
group: Let-7b (MEL ΔCt −2.45 ± 0.78 vs. MSD ΔCt 0.79 ± 
0.17, P = 0.007), Mir-124-2 (MEL ΔCt −1.92 ± 0.39 vs. MSD 
ΔCt 0.88 ± 0.14; P = 0.007) and mir-132 (MEL ΔCt −0.26 ± 
0.61 vs. MSD ΔCt 3.24 ± 0.26; P = 0.0079). No statistically 
significant differences were found in the expression of mir-
9-1 and mir 9-2 alleles among all groups.

REM SD reduces SIRT1 expression and MEL increases 
MECP2 expression
We analyzed SIRT1, REST and MECP2 in the dentate gyrus 
on day 4 (n = 5 mice per group). Our results showed that SD 
significantly reduces the expression of SIRT1 (5.51 ± 0.61 
fluorescence ratio) in comparison with the control group 
(163.9 ± 77.71 fluorescence ratio; P = 0.015) and this decre-
ment was partially reversed by the effect of MEL as observed 
in the MSD group (12.65 ± 0.033 fluorescence ratio). We 
found that the administration of MEL during SD significant-
ly increases MECP2 expression (4.1 ± 1 fluorescence ratio) 
when compared to the control group (1.582 ± 0.22 fluores-
cence ratio; P = 0.031) and the SD group (1.407 ± 0.032 flu-
orescence ratio; P = 0.016). We also did not find significant 
differences in MECP2 expression between the MEL group 
(4.325 ± 1.381 fluorescence ratio) and the MSD group (4.101 
± 1 fluorescence ratio; P = 0.9) (Figure 5). These data suggest 
that MEL treatment restores the MECP2 level under both 
physiological and SD conditions. In the analysis of REST, 
we did not find statistically significant differences in REST 
expression among all the groups analyzed: controls (3.949 ± 
0.15 fluorescence ratio), MEL (4.206 ± 0.56 fluorescence ra-
tio), SD (3.945 ± 0.25 fluorescence ratio) or MSD (4.51 ± 0.2 
fluorescence ratio) with (P = 0.29). These findings indicate 
that the REST expression is not modified by the MEL treat-
ment or sleep deprivation.

Discussion
To the best of our knowledge, this is the first study that 
shows an epigenetic regulation in the adult hippocampus 
after the administration of MEL in vivo under SD condi-
tions.  Our results showed that the acute administration of 
MEL during the SD phase help recover the proliferation of 
neural precursor cells (Sox2+/BrdU+ cells). Sleep fragmenta-
tion and deprivation impair hippocampal proliferation and 
increase oxidative stress (Silva et al., 2004; Guzman-Marin 
et al., 2005; Mueller et al., 2008; Sportiche et al., 2010). How-
ever, it was unknown whether the administration of MEL 
during SD modifies cell proliferation of neural precursors in 
the dentate gyrus. Sox2 is an HMG-box transcription factor 
that is expressed by neural stem cells and is widely used to 
identify neural stem cells in the SGZ (Ellis et al., 2004; Suh et 
al., 2007; von Bohlen und Halbach, 2011). Previous findings 
have reported that MEL also increases the proliferation of 
nestin+ progenitor cells in the dentate gyrus (Lopez-Armas 
et al., 2016). This evidence suggests that MEL can efficiently 
modulate the hippocampal neurogenic niche. Several mech-
anisms could explain the increase in cell proliferation, and 
we propose that the cell expansion could be associated with 

changes in the expression of MECP2 and SIRT1 that, in turn, 
can modify the proliferation of neural progenitor cells. MEL 
may also promote changes in cell survival and proliferation 
via MT1 and MT2 receptors that activate the MAPK/ERK 
transduction pathway (Tocharus et al., 2014). This activa-
tion of the MAPK/ERK pathway triggers the transcription 
factor CREB that promotes cell survival by increasing the 
expression of the anti-apoptotic proteins Bcl-2, Bcl-xL and 
Bcl-1 (Luchetti et al., 2009). Interestingly, the administration 
of MEL in vivo increases the expression of Bcl-2 and Bcl-xL 
that may preserve the hippocampal neurogenesis affected by 
sleep deprivation (Lopez-Armas et al., 2016). 

Our data indicate that MEL administration enhanced the 
expression of Let-7b, mir-132 and mir-124-2. The exogenous 
administration of mir-132 reduces the duration of NREM 
sleep, reduces the slow-wave activity and increases the du-
ration of REM sleep (Davis et al., 2011), indicating that mir-
132 could be involved in sleep regulation and phase change. 
Let-7 is a family of microRNAs that modulate neural matu-
ration, cell fate, and apoptosis of neural stem cells (Shimizu 
et al., 2010; Zhao et al., 2010; Cimadamore et al., 2013). 
Under physiological conditions, mir-9, mir-132, mir-124, 
and let-7 are associated with epigenetic changes that regulate 
the proliferation and maturation of neural stem cells. Hence, 
this evidence suggests that MEL can be a strong regulator of 
these molecules in vivo.

Sleep deprivation modifies the expression of microRNAs 
in the hippocampus and the forebrain (Davis et al., 2007). 
We hypothesize that the microRNA changes that we found 
in the present study can be attributed to pleiotropic actions 
of MEL. In this study, we found that the MEL group showed 
a higher expression of mir-132 than the control group.  Mi-
croRNA 132 is part of a feedback loop involving BNDF and 
MECP2 (Klein et al., 2007). Mir-132 is a well-known circadi-
an regulator that reduces the MECP2 and JARID1A expres-
sion (Alvarez-Saavedra et al., 2011). Therefore, we inferred 
that interactions between MEL, MECP2, and mir-132 are 
dependent on the circadian network regulation as suggested 
by other authors (Tsuchiya et al., 2015). We also found that 
the animals treated with MEL without REM SD exposure 
show an increase in the microRNA expression of mir-124-2 
and Let-7b. These data indicate that REM SD may reduce the 
expression of these microRNA due to several factors, such as 
high ROS production (Mathangi et al., 2012) and changes in 
synaptic plasticity (Massart et al., 2014) and long-term po-
tentiation (Romcy-Pereira and Pavlides, 2004). Yet, further 
miRNA characterization and long-term studies are required 
to support this hypothesis. 

Our findings showed a partial increase in the expression 
of SIRT1 in the MSD group when compared to the SD 
group. The mild increase in SIRT1 levels induced by MEL 
treatment may be a compensatory mechanism against the 
oxidative stress that occurs during SD conditions.  SIRT1 is 
a protein that modifies circadian clock, regulates cell longev-
ity (Nakahata et al., 2009; Salminen and Kaarniranta, 2009) 
and maintains the metabolic homeostasis and the neuronal 
plasticity (Chang et al., 2009). SIRT1-mediated deacetyla-
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Figure 1 Experimental protocol scheme.
On the first day of the protocol, BrdU was injected (300 
mg/kg, i.p) to all groups, and only the SD and MSD 
groups received SD. Melatonin was administered daily 
(10 mg/kg i.p.) at 8:00 a.m. After 96 hours (h) of SD, all 
groups are sacrificed for proper tissue processing. BrdU: 
5-Bromo-2′-deoxyuridine; SD: sleep deprivation; MSD: 
melatonin; I.P. or i.p.: intraperitoneal.
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Figure 2 Quantitative analysis of Sox2+/BrdU+ cells in the subgranular zone of the 
dentate gyrus.
Melatonin-treated animals preserved the number of Sox2+/BrdU+ cells after the sleep 
deprivation exposure. Bars show the mean ± SEM (n = 5 mice per group). *P < 0.05, 
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mo-2′-deoxyuridine.

Figure 5 Expression of SIRT1 and MECP2 protein. 
(A, B) Mean fluorescence intensity of SIRT1 and MECP2. Bars show 
the mean ± SEM. *P < 0.05 (Mann-Whitney U test, n = 5 mice per 
group). CTRL: Control group; SD: sleep-deprived group; MEL: mela-
tonin group; MSD: melatonin + sleep deprivation.
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tion contributes to maintaining the Sox2 expression that, in 
turn, helps preserve self-renewal and multipotency in mes-
enchymal stem cells (Yoon et al., 2014). Our data indicated 
that MEL treatment preserved the number of Sox2+BrdU+ 
cells in the adult dentate gyrus. MECP2 and REST/NSFR are 
neural gene repressors that modify the nucleosome binding 
architecture or inhibit the transcription factor union (Ballas 
et al., 2005; Chadwick and Wade, 2007; Li et al., 2014; Mas-
serdotti et al., 2015), which alter the BNDF expression and 
regulates cell proliferation (Zhou et al., 2006; Zocchi and 
Sassone-Corsi, 2012). Therefore, our findings suggest that 
the regulation of neural-progenitors induced by MEL in vivo 
requires SIRT1 (Brunet et al., 2004), MECP2 deacetylation, 
and BDNF expression (Zocchi and Sassone-Corsi, 2012). 
The phosphorylation of MECP2 induces the proliferation 
of neural stem cells and reduces the differentiation of new-
born neurons (Kishi and Macklis, 2004; Zhong et al., 2018). 
Therefore, our data suggest that MEL regulates the pool of 
Sox2+ neural progenitor cells through SIRT1 and MECP2 
modulation in the adult hippocampus.

We also analyzed the expression of REST, but we did not 
find statistically significant changes among groups. As pre-
viously mentioned, we found that the MEL administration 
increased the expression of mir-124-2, a well-known REST 
repressor (Visvanathan et al., 2007). REST/NSFR constitutes 
a neural-gene-repression complex that modifies the BNDF 
expression and regulates cell proliferation (Zhou et al., 2006; 
Zocchi and Sassone-Corsi, 2012). Hence, this evidence sug-

gests that other pathways that do not involve REST may play 
a role in regulating the proliferation of neural progenitors of 
the adult brain. 

Conclusion
MEL treatment administered during SD preserves the num-
ber of Sox2+/BrdU+ cells in the dentate gyrus, promotes the 
overexpression of Let-7b, mir-132, mir-124-2 transcripts, re-
duces the levels of SIRT1, and increases MECP2 expression. 
Taken together, this evidence indicates that, under SD con-
ditions, MEL exerts a significant epigenetic modulation that, 
in turn, regulates the proliferation of neural precursor cells 
in the adult dentate gyrus of the adult hippocampus in vivo. 
Yet, the epigenetic role of MEL in the differentiation process 
of neural progenitor cells under sleep-deprived conditions 
remains to be elucidated.
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Additional Table 1 Total abstracts analyzed and filtered with the appropriate keywords 

 

 

 

 

 

 

 

 

 

Word searched Number of abstracts 

Total of abstracts searched about “epigenetics” 55178 

Abstracts containing “microRNA” 3056 

Abstracts containing “neurogenesis” 345 

Abstracts containing “sleep” 188 

Abstracts containing “melatonin” 74 

Abstracts containing wild cards of these words 721 

Total containing all these keywords 4384 



2 

Additional Table 2 Number of gene incidences after keyword filtering 

Gene Symbol Name Frequency 

EZH2 enhancer of zeste homolog 2 (Drosophila) 265 

T T, brachyury homolog (mouse) 261 

GC group-specific component (vitamin D binding protein) 161 

PTEN phosphatase and tensin homolog 131 

DNMT1 DNA (cytosine-5-)-methyltransferase 1 129 

SIRT1 sirtuin 1 77 

REST RE1-silencing transcription factor 67 

STAT3 signal transducer and activator of transcription 3 (acute-phase 

response factor) 

67 

AR androgen receptor 62 

BDNF brain-derived neurotrophic factor 59 

DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta 44 

MYC v-myc myelocytomatosis viral oncogene homolog (avian) 41 

VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 41 

IGF2 insulin-like growth factor 2 (somatomedin A) 38 

YY1 YY1 transcription factor 37 

HDAC1 histone deacetylase 1 34 

KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 32 

CTCF CCCTC-binding factor (zinc finger protein) 31 

HDAC3 histone deacetylase 3 31 

TET1 tet methylcytosine dioxygenase 1 31 

BRAF v-raf murine sarcoma viral oncogene homolog B1 30 

EGFR epidermal growth factor receptor 29 

HDAC2 histone deacetylase 2 28 

TP53 tumor protein p53 28 

HDAC4 histone deacetylase 4 27 

MECP2 methyl CpG binding protein 2 (Rett syndrome) 26 

 

The frequency indicates the number of occurrences of a gene in the total abstracts analyzed and filtered 


