doi: 10.1111/ajt.13970

Screening of Living Kidney Donors for Genetic Diseases Using a Comprehensive Genetic Testing Strategy

C. P. Thomas^{1,2,3,*}, M. A. Mansilla⁴, R. Sompallae⁴, S. O. Mason⁴, C. J. Nishimura⁴, M. J. Kimble⁴, C. A. Campbell^{1,4}, A. E. Kwitek^{4,5}, B. W. Darbro^{2,6,7}, Z. A. Stewart⁸ and R. J. H. Smith^{1,2,4,6,9,*}

¹Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA ²Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA ³VA Medical Center, Iowa City, IA ⁴lowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA ⁵Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA ⁶Interdisciplinary Program in Genetics, University of lowa, Iowa City, IA ⁷The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA ⁸Department of Śurgery, Division of Transplant Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA

⁹Department of Otorhinolaryngology, Carver College of Medicine, University of Iowa, Iowa City, IA *Corresponding authors: Christie P. Thomas and Richard J. H. Smith, christie-thomas@uiowa.edu and richard-smith@uiowa.edu

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Related living kidney donors (LKDs) are at higher risk of end-stage renal disease (ESRD) compared with unrelated LKDs. A genetic panel was developed to screen 115 genes associated with renal diseases. We used this panel to screen six negative controls, four transplant candidates with presumed genetic renal disease and six related LKDs. After removing common variants, pathogenicity was predicted using six algorithms to score genetic variants based on conservation and function. All variants were evaluated in the context of patient phenotype and clinical data. We identified causal variants in three of the four transplant candidates. Two patients with a family history of autosomal dominant polycystic kidney disease segregated variants in *PKD1*. These findings excluded genetic risk in three of four relatives accepted as potential LKDs. A third patient with an atypical history for Alport syndrome had a splice site mutation in *COL4A5*. This pathogenic variant was excluded in a sibling accepted as an LKD. In another patient with a strong family history of ESRD, a negative genetic screen combined with negative comparative genomic hybridization in the recipient facilitated counseling of the related donor. This genetic renal disease panel will allow rapid, efficient and cost-effective evaluation of related LKDs.

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; CAKUT, congenital anomaly of the kidney and urinary tract; CKD, chronic kidney disease; ESRD, end-stage renal disease; FSGS, focal segmental glomerulosclerosis; HNF1B, hepatocyte nuclear factor 1 β ; LKD, living kidney donor; MAF, minor allele frequency; MPS, massively parallel sequencing; MRI, magnetic resonance imaging; NGS, next-generation sequencing; PCR, polymerase chain reaction; VUS, variant of unknown significance; WES, whole-exome sequencing

Received 24 April 2016, revised 20 June 2016 and accepted for publication 12 July 2016

Introduction

Kidney transplantation is superior to long-term dialysis for the management of end-stage renal disease (ESRD) because it provides greater long-term survival and better quality of life. Nevertheless, there is an ever-increasing gap between the need for transplantation and the availability of donor kidneys, with >120 000 patients currently on the deceased donor waitlist in the United States alone. This has resulted in an increasing push to encourage living donation, and today there are almost as many living donors as deceased donors annually in the United States (1). Living kidney donor (LKD) transplants, for those fortunate to receive one, bypass the long waiting time, reduce the likelihood of death while waiting and provide better long-term allograft and recipient survival compared with deceased donor kidneys (2,3). In some parts of the world, LKDs are the principal or only source of transplanted organs, and where long-term dialysis is prohibitively expensive or unavailable, LKD transplants provide the only available therapy for ESRD.

Living donor nephrectomy is generally considered acceptable medical practice, even though there are real risks for the donor, including death, serious injury and failure of the remaining kidney. Recent retrospective studies examining long-term outcomes of living donation compared with matched nondonor cohorts reported an increased 15-year and lifetime risk of ESRD for LKDs (4,5). Although the absolute risk is arguably small, the relative risk is 30 per 10 000 over 15 years and 90 per 10 000 over a lifetime compared with four per 10 000 and 14 per 10 000 in matched controls. Within subpopulations, black men have a 15-year risk of 90 per 10 000 compared with just nine per 10 000 for white women (4). Although not statistically significant, there is a twofold increased risk of ESRD among biologically related LKDs compared with unrelated LKDs (4). The increased risk may reflect shared inheritance of genetic variants that are deleterious or a common environmental exposure that increases susceptibility to kidney disease.

In the United States, 40% of all LKDs are biologically related to their recipients (1). Many are siblings or adult children of patients with ESRD and are in their third and fourth decades of life, making it difficult to predict future risk of kidney disease. In addition, to guide focused genetic testing of related family members for a specific inherited disease, the transplant recipient's cause of ESRD must be known. Together, diabetes and hypertension are the two most important reported causes of ESRD and account for 60% of the waitlist (1,6). Most patients with diabetes and/or hypertension and chronic kidney disease (CKD) do not receive a kidney biopsy to verify the diagnosis, and recent studies estimated that as many as 35% of patients with presumed diabetic or hypertensive nephropathy may actually have an alternative diagnosis (7-9).

Traditionally, establishing and/or confirming the diagnosis of a presumed genetic disease has required Sanger sequencing of the suspected gene for pathogenic variants (10). When candidate genes are large, like *COL4A5*, sequencing is costly and time consuming. When the disease is heterogeneous, like focal segmental glomerulosclerosis (FSGS), serial gene-by-gene screening approaches are inefficient and impractical. These constraints can be largely overcome by using high-throughput approaches to DNA sequencing (i.e. next-generation sequencing [NGS] or massively parallel sequencing [MPS]) to sequence a large number of genes simultaneously. Targeted NGS panels have been developed to evaluate patients with a single phenotype, such as steroid-resistant nephrotic syndrome, FSGS and some ciliopathies (11–14).

We developed a targeted renal panel that includes 115 genes implicated in a variety of kidney diseases to

facilitate a diagnosis in patients with suspected genetic renal disease. We validated this panel for the evaluation of selected LKDs in whom the related transplant recipient's phenotype raised suspicion of or clearly indicated an inherited renal disease. We reported our findings from a pilot study of six controls, four transplant candidates and their six related donors.

Methods

Patient selection

Renal transplant candidates referred to the Organ Transplant Center at the University of Iowa were recruited to the study if they had a known or suspected genetic renal disease and had an asymptomatic younger biological relative who volunteered to be an LKD. Clinical and laboratory data were obtained from the medical record or from patient interviews. Control samples were unrelated persons with no medical or familial history of renal disease. The study was approved by the institutional review board (IRB no. 201301818) for human subject research.

Targeted gene panel

A set of 115 genes implicated in a variety of genetic renal diseases was assembled by enumerating renal phenotypes (e.g. ciliopathy, FSGS, and congenital anomaly of the kidney and urinary tract [CAKUT]) and then assembling a list of known causal genes by literature review. Genes that are implicated in the development of atypical hemolytic-uremic syndrome and other complement-mediated glomerular diseases were excluded from this panel. Targeted genomic enrichment and MPS of these 115 genes (hereafter referred to as KidneySeq) was completed as described (genes included in this panel are shown in Tables 1 and S3). Genomic DNA was assessed for quality by gel electrophoresis and spectrophotometry (260/280 ratio of 1.8-2.2; Nanodrop 1000; Thermo Fisher Scientific, Waltham, MA) and quantity by fluorometry (Qubit 2.0 fluorometer; Life Technologies, Carlsbad, CA). Libraries were prepared using a modification of the solution-based Agilent SureSelect target enrichment system (Agilent Technologies, Santa Clara, CA) using liquid-handling automation equipment (Perkin Elmer, Waltham, MA). In brief, 3 µg of genomic DNA was randomly fragmented to an average size of 250 bp (Covaris Acoustic Solubilizer; Covaris Inc., Woburn, MA), fragment ends were repaired, Atails were added, and sequencing adaptors were ligated before the first amplification. Solid-phase reverse immobilization purifications were performed between each enzymatic reaction. Hybridization and capture with RNA baits were followed by a second amplification before pooling for sequencing. Minimal amplification was used, typically six cycles for the prehybridization polymerase chain reaction (PCR) and 14 cycles for the posthybridization PCR, using Agilent Herculase II Fusion DNA Polymerase (Agilent Technologies). All samples were bar coded and multiplexed before sequencing on an Illumina MiSeq in pools of five (Illumina Inc, San Diego, CA; performance metrics are shown in Table S1).

Bioinformatic analysis

Data storage and analysis were performed on dedicated computing resources maintained by the Iowa Institute of Human Genetics at the University of Iowa. Sequencing data were archived as fastq files on a secured storage server and then analyzed using locally implemented open source Galaxy software on a high-performance computing cluster (15). The workflow for variant calling integrated publicly available tools: Reads were mapped using Burrows–Wheeler alignment (BWA–MEM) against human reference genome GRCh37/hg19; duplicates were removed by Picard; realignment, calibration and variant calling were performed with the Genome Analysis Toolkit; and variant annotation was

American Journal of Transplantation 2017; 17: 401–410

 Table 1: Genes implicated in genetic renal diseases and
 screened by targeted genomic enrichment and massively parallel

Table 1: Continued

Accession Locus/ Accession alternative Exon HCGA1 NML 33413 DHDPSL 7 Gene number name 0.001 HCGA1 NML 0133413 DHDPSL 7 ACTH4 NML 003824 21 INF2 NML 0138174 FSGS5 22 ACTH4 NML 003882 SLCA1 20 INFPSE NML 01425 NMLP12 17 ACTH4 NML 003884 SLCA1 20 INVS NML 014257 NPHP12 17 ACTH NML 00137146 FSGS4 6 KLH1.3 NML 001267734 18 APOLI NML 00137465 SLAMS2 SCNU NML 00174746 8 8 APOLI NML 00174746 JBTS3 10 MKKS NML 00174746 BS56 6 APIL3B NML 00174746 JBTS3 10 MKKS NML 0017474 BE56 6 APIL3E NML 00174746 JBTS3 NML NT 70748 BE56 6 6 AP	screened by targeted genomic enrichment and massively parallel sequencing					Locus/		
Locusy Locusy <thlocusy< th=""> <thlocusy< th=""> <thlocusy< th="" tr<=""><th></th><th></th><th></th><th></th><th>Cana</th><th>Accession</th><th>alternative</th><th>Exon</th></thlocusy<></thlocusy<></thlocusy<>					Cana	Accession	alternative	Exon
Gene Inumber Data HOGA1 NML_01130241 CPUE 7 ACTMA NML_0013924 21 INF2 NML_00131714 FSGS55 22 ACTMA NML_000342 SLC4A1 20 INFPSE NML_0191322 JBTS1 10 ACTMA NML_000366 3 INVS NML_011425 NPHPP2 17 ACTM NML_00136743 JBTS3 27 KAL1 NML_0012757 NPHP5 15 ALMS1 NML_0013664 FSGS4 6 KLH3 NML_001271144 IS APCL NML_0013664 FSGS4 6 KLH3 NML_001271144 BS ACP2 APRT NML_00174150 JBTS8 10 MKKS NML_00174748 BSS6 6 ARL138 NML_00178738 BTS3 8 MKS1 NML_001769 11 APPVAA NML_0016697 JBTS4 20 20 23 24 APPVA NML_002064 3 NEK8 NM		Accession	Locus/	Evon	Gene	number	name	count
Construct Construct Final NML_001100241 FSGS 21 ACTIM4 NML_000342 SLCA1 20 INPPE NML_0110807114 FSGSS 22 ACTIM4 NML_0003042 SLCA1 20 INPPE NML_011425 NPHPE 17 AGXT NML_00113666 3 INV NML_001123570 NPHP5 15 ALMIN NML_001136460 FSGS4 6 KLHL NML_002157194 15 APRT NML_0004860 5 LAMB2 NML_002257194 15 APRL NML_001774160 BTSS 10 MKKS NML_0027744 BSS6 6 APRL5 NML_0026323 ATPRIVA NML_002773 18 20 MYH9 NML_002773 11 BSS1 NML_001226320 ATPS 3 NEK8 NML_00174465 20 27 BSS1 NML_002632 ATPRVAA NML_002770 NPHP5 15 27 BSS2 NML_012866 17 <	Gene	number	name	count	HOGA1	NM_138413	DHDPSL	7
ACTNA NM_004924 SLCA1 21 INF2 NM_001041714 FISDS 22 AGTR2 NM_000686 SLCA1 20 INFPS INM_D11425 JBTS1 10 AGTR2 NM_000866 11 IQCB1 NM_0012370 NPHP2 17 AGXT NM_00013640 PSGS4 27 KAL1 NM_0002370 NPHP5 15 AHI NM_00136500 PSGS4 6 KLH13 NM_00127144 BS6 3 APOL NM_000466 4 LMX15 NM_001174146 8 8 ARLI38 NM_001278233 BSS3 8 MKS1 NM_001165927 41 AVPPAD4 NM_0027823 ATPSN16 22 MYHP NM_00107981 11 11 BSS1 NM_0027823 ATPSN16 24 MYHP NM_00107981 11 11 BSS2 NM_00128678 17 NPHP1 NM_00007981 27 10 BSS1 NM_001286778 12					IFT80	NM_001190241	50005	21
AE1 NM_000842 SLCAA1 20 INP-Pote NM_01019882 JB131 10 AGKT NM_000030 11 ICCB1 NM_010123370 NPHP5 15 AGKT NM_0011425 NPHP5 15 NM_011425 NPHP5 15 ALM1 NM_001124500 JBTS3 27 KCAL1 NM_0012370 NPHP5 14 ALM51 NM_001126640 FSGS4 6 KLM11 NM_002292 32 APR1 NM_000465 5 LAMB2 NM_00171446 8 8 APR1 NM_0002532 ATPSVDA4 NM_002773 18 11 10 APP2 NM_001250622 ATPSVDA4 NM_002773 JBTS 27 18 APP2 NM_001250678 17 NLRP3 NM_001278 27 BS5 NM_0128062 17 NLP13 NM_0012963 27 BS5 NM_0128062 17 NLP33 NM_00129193 27 BS5 NM_0012806	ACTN4	NM_004924	010111	21	INF2	NM_001031714	FSGS5	22
ALIR2 NML000280 13 INVS NML01428 INPTP2 17 ARXT NML000230 11 IQCB1 NML0012370 NPTP2 14 ALMS1 NML0012370 NPTP2 14 ALMS1 NML00125764 ROMK1 3 APQL NML001257194 BS766 ROMK1 3 APQT NML0001265 5 LAMB2 NML001724146 8 APRT NML00174160 JBTS8 10 MKKS1 NML0174744 BBS6 6 APPL2 NML020054 3 NEK8 NML77774 BBS7 41 AVPP2 NML02062078 15 NML02070821 11 11 BS51 NML0262678 15 NPHP1 NML001079821 11 BS52 NML018190 18 NPH51 NML0101202 11 BS53 NML018190 18 NML0191705 10 10 CC2D2A NML018190 18 NML0191705 10 <td< td=""><td>AE1</td><td>NM_000342</td><td>SLC4A1</td><td>20</td><td>INPPSE</td><td>NIVI_019892</td><td>JRISI</td><td>10</td></td<>	AE1	NM_000342	SLC4A1	20	INPPSE	NIVI_019892	JRISI	10
NML_000134800 JBTS3 217 ICLS1 NML_00112320 NPFPS 14 ALMI NML_001134800 JBTS3 27 KAL1 NML_0001257194 14 ALMIS NML_00136640 FSGS4 6 KLH1 NML_001257194 15 APRT NML_000485 4 LAMIS NML_0012767194 88 APRT NML_000486 4 LAMIS NML_00176786 88 APRT NML_000178293 BBS3 8 MKS NML_010165927 18 ATP6V0A4 NML_002632 ATP6N1B 22 MYH9 NML_00165927 18 ATP6V0A4 NML_001252678 15 NPHP3 NML_0101291633 27 BS5 NML_0120120 18 NPH51 NML_001291503 27 BS44 NML_001202 4 NPH52 NM_001291503 27 BS5 NML_001202 4 NPH52 NM_001291503 27 BS50 NML_001202 4 NPH52 NM_00129151	AGTR2	NM_000686		3		NIVI_014425		17
AHIL NML_DOI 134830 JB 15.3 27 KELL NML_DOI25120 18 ARDLI NML_001136540 FSGS4 6 KLHL3 NML_001257194 15 APCI NML_001136540 FSGS4 6 KLHL3 NML_001257194 BS 32 APRT NML_001174150 JBTS3 10 MKKS NML_001174166 8 ARL13B NML_0011774253 JBTS3 10 MKKS NML_00116927 18 ARL5 NML_001774293 BBS3 8 MKS1 NML_001079821 11 AVPP2 NML_00054 3 NEKR NML_178170 NPHP9 15 BS1 NML_01256278 15 NPHP3 NML_01291593 27 BS5 NML_012864 12 NPHP4 NML_00276 7 BS5 NML_0129102 18 NPHS1 NML_00276 7 BS4 NM_00018652 JBTS9 38 OFD1 NM_000276 74 CC22A NM_0001804	AGXI	NIVI_000030				NIVI_001023570	INPHP5	15
ALMAIN NM_013120 23 KLIKJ NM_0123704 35 APRT NM_000486 FSGS4 6 KLIKL3 NM_0127114 35 APRT NM_000486 4 LAMB2 NM_002292 32 ARL13 NM_00174150 JBTS8 10 MKKS NM_0170784 8 ARL14 NM_0016927 18 NM_0016927 18 18 ATP6V044 NM_002632 ATP6N18 22 MYH9 NM_0016927 18 ATP6V044 NM_001252678 15 NPHP3 NM_00107923 JBTS4 20 BSS NM_01252678 15 NPHP3 NM_01291503 27 BSS NM_0120122 4 NH52 NM_001291503 27 BSN NM_0000852 JBTS9 38 OFD1 NM_000297 29 C20204 NM_001291 37 OCR1 NM_000297 20 23 C21204 NM_0000852 JBTS9 38 OFD1 NM_000297		NIVI_001134830	JD123	27		NIM 152766	POMK1	2
APRT NML_001 NML_001 NML_001 NML_001 NML_001 APRT NML_001174160 JBTS6 1 LMX1B NML_001171416 8 ARL13B NML_001174160 JBTS6 10 MKKS NML_00177824 BBS6 6 ARL6 NML_000178293 BBS3 8 MKS1 NML_00177824 BBS6 6 APPEV0A NML_000054 3 NEK8 NML_00179821 11 AVPR2 NML_000054 3 NEK8 NML_151240 27 BBS1 NML_00128678 17 NPHP1 NML_001291503 27 BBS4 NML_001220 4 NPHS2 NML_001291503 27 BS57 NML_013180 18 NPHS1 NML_001291503 27 BS58 NML_001202 4 NPHS2 NML_001291503 7 BS50 NML_001202 4 NPHS2 NML_001291575 7 BS50 NML_001080522 JBTS9 38 OFD1 NM		NIVI_015120	ESCSA	23	KUHI 3	NIM_001257194	NOMINI	15
ATH INM_000486 JBTS Denote INM_00117416 S ARL28 NM_001174150 JBTS8 10 MKKS NM_1001174146 S ARL158 NM_0017745293 BBS3 8 MKS1 NM_001169927 18 ATPEVDA4 NM_000264 3 NEKS NM_1717170 NPHP9 15 BBS1 NM_000264 3 NEKS NM_1717170 NPHP9 15 BBS1 NM_0012526778 15 NPHP3 NM_000272 JBTS4 20 BBS4 NM_012526778 15 NPHP3 NM_000275 7 BBS5 NM_152364 12 NPHP3 NM_001291593 27 BS50 NM_001202 4 NPHS2 NM_001291593 27 SBND NM_001202 4 NPHS2 NM_001291593 27 C2D2A NM_001205022 JBTS5 54 PHES2 NM_000276 29 C2D2A NM_001205022 JBTS5 54 PHEX	APULI	NIVI_001130340	F3G34	5	LAMR2	NIM 002292		32
KLI 2 INV_00174150 JBTS8 10 MKS NM_1070784 BBS6 6 ARLISB NM_001278293 BBS3 8 MKS1 NM_00168927 18 ARLF NM_000054 2 MYH9 NM_0024733 141 AVPR2 NM_000054 3 NEK8 NM_178170 NPHP9 15 BBS1 NM_0252678 15 NPHP1 NM_001291593 27 BBS5 NM_0122678 15 NPHP3 NM_001291593 27 BS5 NM_015120 18 NPHP4 NM_001291593 27 BS5 NM_015120 4 NPH52 NM_001291593 27 BS5 NM_001202 4 NPH52 NM_001291593 27 BS5 NM_001202 4 NPH52 NM_001291593 27 BS5 NM_001288 7 CFCL1 NM_000276 24 CC2D2A NM_00198522 JBTS9 38 OFD1 NM_000278 10		NNA 000485		5	LAWD2	NM 001174146		8
NLLIDD INV_00178293 BBS3 8 MKS1 NM_0016927 18 ATPSVD44 NM_0002632 ATPSND4 3 NEKS1 NM_0016927 18 ATPSVD44 NM_0002632 ATPSND4 3 NEKS1 NM_0016927 18 BBS1 NM_0002652 ATPSND4 3 NEKS1 NM_000722 JBT54 20 BBS2 NM_01252678 15 NPHP3 NM_000272 JBT54 20 BBS5 NM_012192 4 NPHS1 NM_001297575 7 BBS1 NM_001202 4 NPHS1 NM_0012976 24 SEND NM_001080522 JBT59 38 OFD1 NM_000276 24 C2D2A NM_001080522 JBT55 54 PHX2 NM_000278 10 C2E2920 NM_00108052 JBT55 54 PHK2 NM_000286 ADPKD-1 46 C1CMS NM_000084 CLC5 12 PKD1 NM_0018999 NPHS3 32 <td>ADFZ</td> <td>NM 001174150</td> <td>IBTS8</td> <td>10</td> <td>MKKS</td> <td>NM 170784</td> <td>BBS6</td> <td>6</td>	ADFZ	NM 001174150	IBTS8	10	MKKS	NM 170784	BBS6	6
ALTERVIDA INL 020632 ATPENTB 22 MVH9 NL002473 41 AVPR2 INM_000064 3 NEK8 NM_17170 NPH99 15 BBS1 INM_02449 17 NLRP3 NN_001079821 11 BBS2 NM_031885 17 NPHP1 NM_0012722 JBTS4 20 BBS5 NM_152384 12 NPHP4 NM_001297575 7 BBS7 NM_018190 18 NPHS1 NM_001297575 7 BSNP4 NM_0010022 4 NPHS2 NM_000276 24 CC2D2A NM_00160522 JBTS9 38 OFD1 NM_000278 10 CC2D2A NM_00160522 JBTS9 38 OFD1 NM_000278 10 CC2D2A NM_0016052 JBTS9 38 OFD1 NM_000278 10 CLCAK NM_00070 20 PLC1 NM_000279 ADPKD-2 15 CLCNKB NM_00065 20 REN NM_000279<	ARLE	NIM_001278293	BBS3	8	MKS1	NM_001165927	2200	18
NML 000064 NML 000064 NML 0178170 NPHP9 15 BBS1 NML 024849 17 NLRP3 NML 0017921 11 BBS2 NML 01856 17 NPHP1 NML 000272 JBTS4 20 BBS4 NML 01252678 15 NPHP3 NML 01231593 27 BBS5 NML 0123264 12 NPHP3 NML 001291593 27 BBS5 NML 0118190 18 NPHS1 NML 00129765 7 BSND NML 001202 4 NPHS2 NML 0012976 24 CC2D2A NML 000388 7 OCRL1 NML 000311 JBTS1 23 CC2D2A NML 001202 18 PAX2 NML 000444 22 CC2D2A NML 012120 18 PAX2 NML 000444 22 CLCNKA NML 000084 CLC5 12 PKHD1 NML 000297 ADPKD-1 46 CLCNKA NML 000085 20 PEKN NML 000037 10 CLCNKA<		NM_020632	ATP6N1R	22	MYH9	NM 002473		41
BBS1 NM_024649 17 NLRP3 NM_0002792,1 11 BBS2 NM_001252678 15 NPHP1 NM_001272,2 JBTS4 20 BBS5 NM_0153240 27 BBS5 NM_0153240 27 BBS5 NM_0153284 12 NPHP4 NM_004646 29 BBS7 NM_001702 4 NPHS1 NM_000001 9 BSND NM_0018022 JBTS9 38 OFD1 NM_000001 9 GCSR NM_010100522 JBTS9 38 OFD1 NM_000276 24 CC2D2A NM_001006522 JBTS9 38 OFD1 NM_0002778 10 CE22A0 NM_0025114 JBTS5, 54 PHEX NM_000277 ADPKD-2 15 CLCNA NM_000084 CLC5 12 PKD1 NM_000297 ADPKD-2 16 CLCNKB NM_000085 HOMG3 5 RET NM_0002630 19 CLCNHS NM_000085 HOMG6 </td <td>AVPR2</td> <td>NM_000054</td> <td></td> <td>.3</td> <td>NEK8</td> <td>NM 178170</td> <td>NPHP9</td> <td>15</td>	AVPR2	NM_000054		.3	NEK8	NM 178170	NPHP9	15
BBS2 NM_031885 17 NPHP1 NM_00272 JBTS4 20 BBS4 NM_01252678 15 NPHP3 NM_153240 27 BBS5 NM_018190 18 NPHP3 NM_00121993 27 BBS7 NM_018190 18 NPHS1 NM_001291593 27 BBS7 NM_001202 4 NPHS2 NM_001297575 7 BSND NM_000361 JBTS1 NM_000276 24 C2D2AP NM_001080522 JBTS9 38 OFD1 NM_000276 23 C2D2AP NM_001080522 JBTS5 54 PHEX NM_000276 20 C2C2D2A NM_001084 CLC5 12 PKD1 NM_000276 20 CLCNKA NM_00084 CLC5 12 PKD1 NM_000276 30 CLCNKA NM_00085 20 REN NM_00115897 NPH53 32 CLCNKA NM_00112395 HOMG5 4 RPGRIPIL NM_001127892	BBS1	NM 024649		17	NLRP3	NM 001079821		11
BB3A NM_00125678 15 NPHP3 NM_153240 27 BBS5 NM_152384 12 NPHP4 NM_001291593 27 BBS7 NM_018190 18 NPHS1 NM_004646 29 BMP4 NM_001202 4 NPHS2 NM_0029755 7 BSND NM_005022 JBTS9 38 OPD1 NM_000276 24 CC2D2A NM_00108522 JBTS9 38 OPD1 NM_000276 10 CC2D2A NM_00108522 JBTS5 54 PHEX NM_00026 ADPKD-1 46 C222P NM_000084 CLC5 12 PKHD1 NM_000297 ADPKD-1 46 CLCNK5 NM_000085 20 PEC1 NM_001185979 NPH53 32 CLCNK8 NM_000085 20 RET NM_00037 19 CLCNK8 NM_000686 4 RPGRIP1L NMS5 32 CLCNK8 NM_00035 5 RET NM_00138	BBS2	NM 031885		17	NPHP1	NM 000272	JBTS4	20
BBSS NM_152384 12 NPHP4 NM_01291593 27 BBS7 NM_018190 18 NPHS1 NM_0014646 29 BBS7 NM_0057176 4 NR3C2 NM_001297575 7 BSND NM_001805522 JBTS9 38 OFD1 NM_000276 24 C2D2AP NM_012120 18 PAX2 NM_000276 23 C2D2AP NM_012120 18 PAX2 NM_000278 10 CEP290 NM_025114 JBTS5, 54 PHEX NM_000278 20 CLCNKA NM_00084 CLC5 12 PKD1 NM_000297 ADPKD-2 15 CLCNKA NM_00085 20 REN NM_00537 10 CLDN16 NM_0006560 HOMG5 52 SALL1 NM_001127892 3 COLA41 NM_001794 HOMG6 8 MK55 13 SCNN1A NM_00136 13 COLA41 NM_000179846 30 SIX1	BBS4	NM 001252678		15	NPHP3	NM 153240		27
BBS7 NM_018190 18 NPHS1 NM_004646 29 BMP4 NM_001202 4 NPHS2 NM_001297575 7 BSND NM_000388 7 OCRL1 NM_000276 24 CC2D2A NM_001080522 JBTS9 38 OFD1 NM_000276 23 CC2D2A NM_025114 JBTS5, 54 PHEX NM_000296 ADPKD-1 46 CC2NS NM_0000862 LC5 12 PKD1 NM_000297 ADPKD-2 15 CLCNKB NM_000085 20 REN NM_000537 10 CLCNKB NM_000085 20 REN NM_00537 10 CLDN16 NM_00012395 HOMG5 4 RPGRIP1L NM_001127897 JBTS7, NPHP8, 25 CNM2 NM_0011345 52 SALL4 NM_001127892 3 3 CLCNKB NM_0001845 52 SALL4 NM_001127892 3 3 COLAA1 NM_000495 51	BBS5	NM 152384		12	NPHP4	NM_001291593		27
BMP4 NM_001202 4 NPH22 NM_001297675 7 BSND NM_007776 4 NR3C2 NM_000361 9 CSR NM_00180522 JBTS9 38 OFD1 NM_0003611 JBTS10 23 CD2AP NM_012120 18 PAX2 NM_000276 10 CEP290 NM_025114 JBTS5, 54 PHEX NM_000276 22 CL2P30 NM_00084 CLC5 12 PKD1 NM_000297 ADPKD-2 15 CLCNKA NM_000085 20 PLCE1 NM_0015979 NPHS3 32 CLCNKA NM_0006580 HOMG3 5 RET NM_00112797 JBTS7, NPHP8, 25 CLN16 NM_00163395 HOMG3 5 RET NM_0012863 10 CLAN18 NM_00091 52 SALL1 NM_001286 13 33 COL4A1 NM_000092 48 SCNN1A NM_000386 13 33 COL4A5	BBS7	NM 018190		18	NPHS1	NM_004646		29
BSND NM_0057176 4 NR3C2 NM_000801 9 CaSR NM_0008652 JBTS9 38 OFD1 NM_000276 24 CC2D2A NM_012120 18 PAX2 NM_0003611 JBTS10 23 CD2AP NM_025114 JBTS5, 54 PHEX NM_000276 ADPKD-1 46 CEP290 NM_025114 JBTS5, 54 PHEX NM_000296 ADPKD-2 15 CLCNS NM_000084 CLC5 12 PKD1 NM_000297 ADPKD-2 16 CLCNKB NM_000085 200 REN NM_00537 10 CLDN19 NM_000850 HOMG3 5 RET NM_020600 19 CLDN19 NM_001728395 HOMG6 8 MKS5 MKS5 MKS5 10 COL4A1 NM_000127849 HOMG6 8 SCNN1A NM_00127892 22 2 COL4A4 NM_00163161 13 SCN1A NM_0010386 133	BMP4	NM 001202		4	NPHS2	NM_001297575		7
CASR NM_000288 7 OCRL1 NM_000276 24 CC2D2A NM_001060522 JBTS9 38 OFD1 NM_003611 JBTS10 23 CD2AP NM_025114 JBTS5, 54 PHEX NM_000276 10 CEP30 NM_025114 JBTS5, 54 PHEX NM_000276 ADPKD-1 46 NPHP6 PKD2 NM_000297 ADPKD-2 15 CLCNK5 NM_000084 CLC5 12 PKHD1 NM_0165979 NPHS3 32 CLCNK6 NM_00065 20 REN NM_000165979 NPHS3 32 CLCNK6 NM_00065 4 RPGRIP1L NM_001127897 JBTS7, NPHP8, 25 CNMM2 NM_017649 HOMG6 8 MKS5 MKS5 33 COL4A1 NM_00091 52 SALL4 NM_001127892 33 COL4A4 NM_00017846 30 SIX1 NM_001038 13 COL4A5 NM_00107846 <	BSND	NM_057176		4	NR3C2	NM_000901		9
CC2D2A NM_0101080522 JBTS9 38 OFD1 NM_003611 JBTS10 23 CD2AP NM_012120 18 PAX2 NM_000278 10 CEP290 NM_025114 JBTS5, 54 PHEX NM_000296 ADPKD-1 46 CEP290 NM_000086 CLC5 12 PKD1 NM_000297 ADPKD-2 15 CLCNKA NM_000084 CLC5 12 PKHD1 NM_00537 10 CLDN16 NM_000685 20 REN NM_001127897 JBTS7, NPHP8, 25 CNMM2 NM_01123395 HOMG5 4 RPGRIP1L NM_001127897 JBTS7, NPHP8, 25 COL4A1 NM_001845 52 SALL1 NM_001038 4 4 COL4A3 NM_00091 52 SALL4 NM_001038 13 33 COL4A4 NM_001031681 13 SIX2 NM_001039 13 33 COL4A4 NM_001031681 13 SIX2 NM_001038 <td>CaSR</td> <td>NM_000388</td> <td></td> <td>7</td> <td>OCRL1</td> <td>NM_000276</td> <td></td> <td>24</td>	CaSR	NM_000388		7	OCRL1	NM_000276		24
CD2AP NM_012120 18 PAX2 NM_000278 10 CEP290 NM_025114 JBTS5, 54 PHEX NM_000296 ADPKD-1 46 NKS4, PKD1 NM_000297 ADPKD-2 15 CLCN5 NM_00084 CLC5 12 PKHD1 NM_001165979 NPHS3 32 CLCNK8 NM_00085 20 PLC1 NM_001165979 NPHS3 32 CLCNK8 NM_00123395 HOMG3 5 RET NM_001127897 JBTS7, NPHP8, 25 CNMM2 NM_0017649 HOMG6 8 MKS5 4 COL4A1 NM_001036 13 COL4A1 NM_00091 52 SALL1 NM_001038 13 3 COL4A5 NM_000092 48 SCNN1A NM_001038 13 3 COL4A5 NM_00103681 13 SIX2 NM_00139 13 3 COL4A5 NM_0010361681 13 SIX2 NM_001389 NCCT 26	CC2D2A	NM_001080522	JBTS9	38	OFD1	NM_003611	JBTS10	23
CEP290 NM_025114 JBTS5, MKS4, NPHP6 54 PHEX NM_000444 22 CLCN5 NM_000084 CLC5 12 PKD2 NM_000297 ADPKD-2 15 CLCN5 NM_0004070 20 PLCE1 NM_0165979 NPHS3 32 CLCNKA NM_00085 20 PLC1 NM_000537 10 CLCNKA NM_000558 HOMG3 5 RET NM_0001127897 JBTS7, NPHP8, 25 CLN16 NM_001123395 HOMG6 4 RCGU4A1 NM_001845 32 COL4A1 NM_00091 52 SALL4 NM_00138 13 COL4A3 NM_000495 51 SCNN1A NM_000336 13 COL4A4 NM_0013681 13 SIX1 NM_00139 13 COL4A5 NM_001031681 13 SIX2 NM_016332 2 CTNS NM_00103681 13 SIX2 NM_016332 2 CHS NM_00116313 46 SLC12A1	CD2AP	NM_012120		18	PAX2	NM_000278		10
MKS4, NPHP6 PKD1 NM_000296 ADPKD-1 46 CLCN5 NM_000084 CLC5 12 PKHD1 NM_138694 67 CLCNKA NM_00085 20 PLCE1 NM_001165979 NPHS3 32 CLCNKB NM_000680 HOMG5 5 RET NM_002637 19 CLDN16 NM_01123395 HOMG5 4 RPGRIP1L NM_001127897 JBTS7, NPHP8, 25 CNM2 NM_017649 HOMG6 8 MKS5 3 COL4A1 NM_0001845 52 SALL4 NM_001127897 JBTS7, NPHP8, 25 COL4A3 NM_000091 51 SCNN1A NM_00138 4 COL4A4 NM_0001695 51 SCNN1B NM_001336 13 COL4A5 NM_0010257197 15 SIX5 NM_16932 2 CNS NM_001265197 15 SIX5 NM_00338 NCC2 27 CH4A5 NM_00178130 HOMG4 23 SLC12A1 <td>CEP290</td> <td>NM_025114</td> <td>JBTS5,</td> <td>54</td> <td>PHEX</td> <td>NM_000444</td> <td></td> <td>22</td>	CEP290	NM_025114	JBTS5,	54	PHEX	NM_000444		22
NHP6 PKD2 NM_000297 ADPKD-2 15 CLCN5 NM_00084 CLC5 12 PKHD1 NM_138694 67 CLCNKA NM_00085 20 PLCE1 NM_0115597 NPHS3 32 CLCNKB NM_00085 20 REN NM_00537 10 CLDN16 NM_006580 HOMG3 5 RET NM_001127897 JBTS7, NPHP8, 25 CNMM2 NM_017649 HOMG6 8 MKS5 3 COL4A1 NM_00091 52 SALL4 NM_00127892 3 COL4A3 NM_00092 48 SCNN1A NM_00138 13 COL4A4 NM_00095 51 SCNN1B NM_001039 13 COL4A5 NM_00131681 13 SIX2 NM_01032 2 2 CTNS NM_00131681 13 SIX2 NM_01632 2 2 CUL3 NM_00138161 13 SIX2 NM_00388 NCCT 26			MKS4,		PKD1	NM_000296	ADPKD-1	46
CLCN5 NM_000084 CLC5 12 PKHD1 NM_138694 67 CLCNKA NM_004070 20 PLCE1 NM_00116579 NPHS3 32 CLCNKA NM_00085 20 REN NM_0016577 10 CLDN16 NM_00123395 HOMG5 4 RPGRIP1L NM_00127397 JBTS7, NPHP8, 25 CNNM2 NM_017649 HOMG6 8 MKS5 3 COL4A1 NM_00092 48 SCN11A NM_001038 13 COL4A3 NM_000495 51 SCN11B NM_001038 13 COL4A4 NM_00179846 30 SIX1 NM_001039 13 COQ2 NM_01016811 13 SIX2 NM_016992 2 CUI3 NM_001318817 9 SLC12A1 NM_00038 NKCC2 27 EGF NM_001178130 HOMG4 23 SLC12A3 NM_00038 NKC2 27 EGF NM_0016133 42 SLC3A1 NM_0			NPHP6		PKD2	NM_000297	ADPKD-2	15
CLCNKA NM_0004070 20 PLCE1 NM_001165979 NPHS3 32 CLCNKB NM_00085 20 REN NM_00057 10 CLDN16 NM_001123395 HOMG3 5 RET NM_001127897 JBTS7, NPHP8, 25 CNMM2 NM_017649 HOMG6 8 MKS5 MKS5 COL4A1 NM_000091 52 SALL4 NM_00138 4 COL4A4 NM_000092 48 SCNN1A NM_00036 4 COL4A5 NM_000495 51 SCNN1B NM_00036 13 COQ2 NM_01079846 30 SIX1 NM_00039 13 COQ2 NM_00131681 13 SIX2 NM_0038 NKCC2 27 CHS NM_0013817 9 SLC12A1 NM_000339 NCCT 26 EGF NM_00163181 18 SLC26A4 NM_000339 NCC2 27 FGF23 NM_020638 3 SLC34A1 NM_001167579 NPT2a	CLCN5	NM_000084	CLC5	12	PKHD1	NM_138694		67
CLCNKB NM_00085 20 REN NM_00537 10 CLDN16 NM_006580 HOMG3 5 RET NM_020630 19 CLDN19 NM_001123395 HOMG5 4 RPGRIP1L NM_001127897 JBTS7, NPHP8, 25 CNNM2 NM_017649 HOMG6 8 MKS5 3 COL4A1 NM_000091 52 SALL4 NM_001127892 3 COL4A4 NM_000092 48 SCNN1A NM_001038 13 COL4A5 NM_001079846 30 SIX1 NM_001039 13 COL2 NM_01013681 13 SIX2 NM_016932 2 CTINS NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_00116817 9 SLC12A1 NM_000339 NCCT 26 EYA1 NM_001633 18 SLC26A4 NM_00116779 NPT2a 9 FNAS1 NM_001166133 42 SLC3A1 NM_00118357 13	CLCNKA	NM_004070		20	PLCE1	NM_001165979	NPHS3	32
CLDN16 NM_006580 HOMG3 5 REI NM_020630 19 CLDN19 NM_001123395 HOMG5 4 RPGRIP1L NM_001127897 JBTS7, NPHP8, 25 CNNM2 NM_017649 HOMG6 8 MKS5 3 COL4A1 NM_00091 52 SALL4 NM_001386 4 COL4A3 NM_000092 48 SCNN1A NM_000386 13 COL4A5 NM_000495 51 SCNN16 NM_001386 13 COQ2 NM_016697 7 SCNN16 NM_00139 13 CREBBP NM_001031881 13 SIX2 NM_016932 2 CIL3 NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_001178130 HOMG4 23 SLC12A1 NM_000339 NCCT 26 EYA1 NM_002063 18 SLC26A4 NM_00116779 NPT2a 9 FRI NM_001002295 6 SLC34A1 NM_00117835 13	CLCNKB	NM_000085		20	REN	NM_00537		10
CLDN19 NM_001123395 HOMG5 4 HPGRIP1L NM_001127897 JBIS7, NPHP8, 25 CNNM2 NM_017649 HOMG6 8 MKS5 COL4A1 NM_001845 52 SALL1 NM_001127892 3 COL4A3 NM_000091 52 SALL4 NM_001038 4 COL4A4 NM_000092 48 SCNN1A NM_001038 13 COL4A5 NM_0010994 51 SCNN1B NM_000336 13 COL2 NM_0116697 7 SCNN1G NM_001039 13 CREBBP NM_001031681 13 SIX2 NM_016932 2 CUL3 NM_00115817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_001178130 HOMG4 23 SLC12A1 NM_00039 NCCT 26 EYA1 NM_002063 18 SLC26A4 NM_001167579 NPT2a 9 FN1 NM_002063 24 SLC34A3 NM_001167579 NPT2a	CLDN16	NM_006580	HOMG3	5	REI	NM_020630		19
CNNM2 NM_017649 HOMG6 8 MKS5 COL4A1 NM_001845 52 SALL4 NM_020127892 3 COL4A3 NM_000091 52 SALL4 NM_02036 4 COL4A3 NM_000495 51 SCNN1A NM_00036 13 COL4A5 NM_001079846 30 SIX1 NM_001039 2 CNL3 NM_00105861 13 SIX2 NM_016932 2 CUL3 NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_001163817 9 SLC12A3 NM_000338 NKCC2 27 EGF23 NM_020638 3 SLC34A1 NM_000167579 NPT2a 9 FN1 NM_00026 46 SLC34A1 NM_001167579 NPT2C 13 GATA3 <td>CLDN19</td> <td>NM_001123395</td> <td>HOMG5</td> <td>4</td> <td>RPGRIP1L</td> <td>NM_001127897</td> <td>JBIS7, NPHP8,</td> <td>25</td>	CLDN19	NM_001123395	HOMG5	4	RPGRIP1L	NM_001127897	JBIS7, NPHP8,	25
COL4A1 NM_001845 52 SALL1 NM_001127892 3 COL4A3 NM_000091 52 SALL4 NM_001038 4 COL4A4 NM_00092 48 SCNN1A NM_001038 13 COL4A5 NM_001455 51 SCNN1B NM_001039 13 COQ2 NM_0115697 7 SCNN1G NM_001039 13 COQ2 NM_001257197 15 SIX5 NM_016932 2 CUL3 NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_00163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_002063 18 SLC26A4 NM_000441 21 FGF23 NM_020638 3 SLC34A3 NM_001177316 NPT2a 9 FN1 NM_00266 46 SLC34A3 NM_001177316 NPT2 13 <	CNNM2	NM_017649	HOMG6	8	0.4.1.4		MKS5	0
COLAA3 NM_000091 52 SALL4 NM_020436 4 COL4A4 NM_000092 48 SCNN1A NM_001038 13 COL4A5 NM_001695 51 SCNN1B NM_001039 13 COQ2 NM_015697 7 SCNN1G NM_001039 13 CREBBP NM_001079846 30 SIX1 NM_005982 2 CTNS NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_001163817 9 SLC12A1 NM_000339 NCCT 26 EGF NM_001163817 9 SLC12A3 NM_000339 NCCT 26 EYA1 NM_0020638 3 SLC12A3 NM_000441 21 21 FGF23 NM_020206 46 SLC3A41 NM_00117716 NPT2a 9 FN1 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000168 15 TCTN1 NM_001082537 JBTS13 15 <	COL4A1	NM_001845		52	SALLI	NM_001127892		3
COLAAA NM_000092 48 SCNNTA NM_0001038 13 COLAA5 NM_000495 51 SCNNTB NM_000336 13 COQ2 NM_015697 7 SCNNTG NM_001039 13 CREBBP NM_001031681 13 SIX1 NM_005982 2 CTNS NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_000503 18 SLC34A1 NM_000441 21 FGF23 NM_020638 3 SLC34A1 NM_001167579 NPT2a 9 FRAS1 NM_001166133 42 SLC34A1 NM_001177316 NPT2C 13 FRAS1 NM_001002295 6 SLC34A1 NM_001098484 26 GATA3 NM_00169 7 SMARCAL1 NM_001098484 26 GATA3 NM_00168 15 TCTN1 NM_001082537 JBTS13 15 GLIS2 </td <td>COL4A3</td> <td>NM_000091</td> <td></td> <td>52</td> <td>SALL4</td> <td>NIVI_020436</td> <td></td> <td>4</td>	COL4A3	NM_000091		52	SALL4	NIVI_020436		4
COLAAS NM_000495 51 SCINITB NM_00036 13 COQ2 NM_015697 7 SCINITB NM_001039 13 CREBBP NM_001079846 30 SIX1 NM_005982 2 CUL3 NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_001178130 HOMG4 23 SLC12A1 NM_000339 NCCT 26 EYA1 NM_000503 18 SLC26A4 NM_000441 21 17 FGF23 NM_001166133 42 SLC34A1 NM_000441 21 10 FRAS1 NM_001166133 42 SLC34A3 NM_001177316 NPT2a 9 FRAS1 NM_001166133 42 SLC3A41 NM_001355 13 GATA3 NM_001002295 6 SLC7A9 NM_001127207 18 GLI3 NM_001068 15 TCTN1 NM_001127207 18 GLI3 NM_00168 15 TCTN1 NM_001014385 JBTS13 <td>COL4A4</td> <td>NM_000092</td> <td></td> <td>48</td> <td>SCINITA SCINITA</td> <td>NIVI_001038</td> <td></td> <td>13</td>	COL4A4	NM_000092		48	SCINITA SCINITA	NIVI_001038		13
CUC2 NM_015697 7 SCNNTG NM_001039 13 CREBBP NM_001079846 30 SIX1 NM_005982 2 CTNS NM_001031681 13 SIX2 NM_016932 2 CUL3 NM_001157197 15 SIX5 NM_175875 3 DHCR7 NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_00503 HOMG4 23 SLC12A3 NM_000441 21 FGF23 NM_0206638 3 SLC34A1 NM_001167579 NPT2a 9 FN1 NM_001166133 42 SLC34A3 NM_001177316 NPT2C 13 FRAS1 NM_001166133 42 SLC444 NM_001126335 13 GLA NM_001002295 6 SLC7A9 NM_001126335 13 GL3 NM_001168 15 TCTN1 NM_001082537 JBTS13 15 GL3 NM_00168 15 TCTN1 NM_0010173990 JBTS2, MKS2	COL4A5	NM_000495		51	SCININ I B	NIVI_000336		13
CREBBP NM_001079846 30 SIX1 NM_000382 2 CTNS NM_001031681 13 SIX2 NM_016932 2 CUL3 NM_001257197 15 SIX5 NM_75875 3 DHCR7 NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_001178130 HOMG4 23 SLC12A3 NM_000339 NCCT 26 EYA1 NM_000503 18 SLC26A4 NM_000441 21 21 FGF23 NM_0202638 3 SLC34A1 NM_001167579 NPT2a 9 FN1 NM_001166133 42 SLC3A1 NM_001167579 NPT2C 13 FRAS1 NM_001166133 42 SLC3A1 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_000168 15 TCTN1 NM_001082537 JBTS13 15 GLI3 NM_0011646177 9 TMEM216	COUZ	NIVI_015697		/	SUNNIG	NIVI_001039		13
CINS NM_001031681 13 SIA2 NM_01032 2 CUL3 NM_001257197 15 SIX5 NM_175875 3 DHCR7 NM_001163817 9 SLC12A1 NM_000338 NKCC2 27 EGF NM_001178130 HOMG4 23 SLC12A3 NM_000339 NCCT 26 EYA1 NM_000503 18 SLC26A4 NM_000441 21 FGF23 NM_020638 3 SLC34A1 NM_001167579 NPT2a 9 FN1 NM_00166133 42 SLC3A1 NM_001177316 NPT2C 13 FRAS1 NM_001166133 42 SLC3A1 NM_00198484 26 GATA3 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_001164617 9 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 N	CREBBP	NIVI_001079846		30	SIV1	NM 016022		2
COLOS NM NM OD1257197 15 SIXS NM NM SIXS NM SIXS S		NIVI_001031081		13	SIXE	NM 175875		2
DHCH7 NM_001163817 9 SLC12A1 NM_000305 NRCC2 27 EGF NM_001178130 HOMG4 23 SLC12A3 NM_000339 NCCT 26 EYA1 NM_000503 18 SLC26A4 NM_000441 21 FGF23 NM_020638 3 SLC34A1 NM_001167579 NPT2a 9 FN1 NM_002026 46 SLC34A3 NM_001177316 NPT2C 13 FRAS1 NM_001166133 42 SLC3A1 NM_000341 10 FREM2 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_00168 15 TCTN1 NM_001082537 JBTS13 15 GLI3 NM_001164617 9 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_0020458		NNI_001237197		15	SI C12A1	NIM 000338		27
EYA1 NM_00017/8130 NOVIG4 23 SLC12/30 NM_2000503 10011 21 FGF23 NM_020638 3 SLC26A4 NM_000411 21 FGF23 NM_020638 3 SLC34A1 NM_001167579 NPT2a 9 FN1 NM_001166133 42 SLC3A1 NM_001177316 NPT2C 13 FRAS1 NM_001166133 42 SLC3A1 NM_000341 10 FREM2 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_000168 15 TCTN1 NM_001082537 JBTS13 15 GLI3 NM_00116417 9 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_00203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 9 HNF1B NM_000458 9 NM_001142301 JBTS6, MKS3, 29 9 <td></td> <td>NIVI_001103017</td> <td></td> <td>3</td> <td>SLC12A1</td> <td>NIM 000339</td> <td>NCCT</td> <td>26</td>		NIVI_001103017		3	SLC12A1	NIM 000339	NCCT	26
FGF23 NM_000003 10 GLC24A1 NM_0001167579 NPT2a 9 FGF23 NM_0020638 3 SLC34A1 NM_001167579 NPT2a 9 FN1 NM_002026 46 SLC34A3 NM_001177316 NPT2C 13 FRAS1 NM_001166133 42 SLC3A1 NM_0000341 10 FREM2 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_00168 15 TCTN1 NM_001082537 JBTS13 15 GLI32 NM_001164617 9 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 9 HNF1B NM_000458 9 NPHP11		NM 000503	11010104	18	SL C2644	NM_000441	NOOT	20
FN1 NM_02000 46 SLC34A3 NM_001177316 NPT2C 13 FRAS1 NM_001166133 42 SLC3A1 NM_001177316 NPT2C 13 FREM2 NM_001166133 42 SLC3A1 NM_001098484 26 GATA3 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001082537 JBTS13 15 GLI3 NM_0011668 15 TCTN1 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 29 HNF1B NM_000458 9 NM_001142301 JBTS6, MKS3, 29 NPHP11	EGE23	NM_020638		3	SI C34A1	NM_001167579	NPT2a	9
FRAS1 NM_001166133 42 SLC3A1 NM_000381 10 FREM2 NM_207361 24 SLC4A4 NM_001098484 26 GATA3 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_00168 15 TCTN1 NM_001082537 JBTS13 15 GLIS2 NM_001164617 9 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_0011203 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 9 HNF1B NM_000458 9 NM_001142301 JBTS6, MKS3, 29 0	FN1	NM_002026		46	SI C34A3	NM 001177316	NPT2C	13
FREM2 NM_207361 24 SLC4A4 NM_001098484 26 GATA3 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_00168 15 TCTN1 NM_001082537 JBTS13 15 GLIS2 NM_001164617 9 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_0020358 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 HNF1B NM_000458 9 NMEM67 NM_001142301 JBTS6, MKS3, 29	FRAS1	NM_001166133		42	SLC3A1	NM 000341	111 120	10
GATA3 NM_001002295 6 SLC7A9 NM_001126335 13 GLA NM_000169 7 SMARCAL1 NM_001127207 18 GLI3 NM_000168 15 TCTN1 NM_001082537 JBTS13 15 GLIS2 NM_032575 NPHP7 6 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 9 HNF1B NM_000458 9 NPHP11	FRFM2	NM 207361		24	SLC4A4	NM 001098484		26
GLA NM_000169 7 SMARCAL1 NM_001127207 18 GL3 NM_000168 15 TCTN1 NM_001082537 JBTS13 15 GLI3 NM_032575 NPHP7 6 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 HNF1B NM_000458 9 NM_001142301 JBTS6, MKS3, 29	GATA3	NM_001002295		6	SLC7A9	NM 001126335		13
GLI3 NM_000168 15 TCTN1 NM_001082537 JBTS13 15 GLIS2 NM_032575 NPHP7 6 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 HNF1B NM_000458 9 NM_001142301 JBTS6, MKS3, 29	GLA	NM 000169		7	SMARCAL1	NM_001127207		18
GLIS2 NM_032575 NPHP7 6 TMEM216 NM_001173990 JBTS2, MKS2 5 GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 HNF1B NM_000458 9 NM_001142301 NPHP11	GLI3	NM_000168		15	TCTN1	NM_001082537	JBTS13	15
GPC3 NM_001164617 9 TMEM237 NM_001044385 JBTS14 12 GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 HNF1B NM_000458 9 MEM67 NM_001142301 NHP11	GLIS2	NM_032575	NPHP7	6	TMEM216	NM_001173990	JBTS2, MKS2	5
GRHPR NM_012203 9 TMEM67 NM_001142301 JBTS6, MKS3, 29 HNF1B NM_000458 9 NPHP11	GPC3	NM_001164617		9	TMEM237	NM_001044385	JBTS14	12
HNF1B NM_000458 9 NPHP11	GRHPR	NM_012203		9	TMEM67	NM_001142301	JBTS6, MKS3,	29
	HNF1B	NM_000458		9			NPHP11	

(continued)

(continued)

Table 1: Continued

Gene	Accession number	Locus/ alternative name	Exon count
TRPC6	NM_004621	FSGS2	13
TTC21B	NM_024753	JBTS11	29
TTC8	NM_144596	BBS8	15
UMOD	NM_001008389		11
UРКЗА	NM_001167574		4
WNK1	NM_001184985		28
WNK4	NM_032387		19
WNT4	NM_030761		5
WT1	NM_000378		9

performed with a CLCG annotation and reporting tool developed by our bioinformatics team (16-18).

Variant prioritization and Sanger validation

The total number of reads per sample varied as a function of the number of samples per run and DNA input per sample. Low-quality variants (depth <10 or QD <5) were filtered out by quality control. Common variants with minor allele frequency (MAF) >1% in any population were excluded (based on the National Heart, Lung, and Blood Institute GO Exome Sequencing Project [http://evs.gs.washington.edu], the 1000 Genomes Project [http://www.1000genomes.org] and the Exome Aggregation Consortium [http://exac.broadinstitute.org]) unless the variant was a known risk allele. Variants also were filtered based on predicted effect, retaining nonsynonymous single-nucleotide variants, canonical splicing changes and indels, which were prioritized based on MAF, nucleotide conservation, reported functional and expressive impact, and phenotype correlation. Reference databases that were routinely gueried included the Human Gene Mutation Database, ClinVar and our in-house renal variant database. GERP++ (19), PhyloP (20), MutationTaster (21), PolyPhen-2 (22), SIFT (23) and likelihood ratio tests (24) were used to calculate variant-specific pathogenicity scores based on the sum of tools predicting a given variant to be deleterious. All reported variants were Sanger validated, as were specific portions of the KidneySeq panel not amenable to targeted genomic enrichment (Table S2).

Variant interpretation

To provide a clinically relevant report, a multidisciplinary board (KidneySeq group meeting) reviewed all genetic data in the context of the available clinical data (Table 3) (case descriptions follow). Standards developed by the American College of Medical Genetics were used to assign variants to one of five categories: pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign and benign (25). Variants with MAF >1% known to be unrelated to disease were classified as "benign." Variants with an allele frequency greater than expected for the disease and for which computational evidence suggested low likelihood of pathogenicity were classified as "likely benign." Ultrarare variants reported as pathogenic in the literature and with supporting functional evidence were classified as "pathogenic." Null variants, such as partial or whole gene deletions, frame-shift mutations, initiation codon mutations, splice-site mutations (+1 or -1 or -2) and truncation mutations (if the stop codon was not in the terminal exon) that segregated with disease were classified as "pathogenic" when loss of function was a known mechanism of disease. Novel or rare missense variants that have an unknown impact on protein function were classified as either "likely pathogenic" or "VUS," a distinction that reflected two considerations: likely pathogenic variants were also (i) missense variants with pathogenicity scores ≥ 5 (based on GERP++, PhyloP, MutationTaster, PolyPhen-2, SIFT and LRT), ultrarare (MAF <0.00001%) and found in disease-related functional domains or loci or (ii) novel and caused loss of function. Based on genotypic findings and the clinical phenotype, additional testing was occasionally recommended.

Results

Massively parallel sequencing

The targeted regions of 115 candidate genes on KidneySeq covered ≈ 0.58 Mb of the genome (Table 1). On average, 4.4 million sequence reads per sample were generated for a mean depth of coverage of 586× with >99% of targeted regions covered at $\geq 10\times$ (Table S1). Approximately 500 variants were detected per sample. These variants were annotated and filtered to identify high-quality rare and novel variants (Table 2). For each sample, we also identified regions with <10× coverage if they were associated with the disease phenotype (Table S2).

Sanger sequencing

For confirmation purposes, exons carrying a variant determined to be pathogenic were Sanger sequenced (Table 3). Primers for PCR and for sequencing were designed using Primer 3 and are available upon request (26). In addition, the duplicated regions of the *PKD1* gene (exons 1–34) were Sanger sequenced using published primers in those patients with suspected polycystic kidney disease (27).

Patients and KidneySeq multidisciplinary group meetings

Four transplant candidates with their six related LKDs participated in this study. The cohort included two patients with autosomal dominant polycystic kidney disease (ADPKD), one patient with suspected Alport syndrome and one patient with presumed hypertensive nephropathy who had a sibling with ESRD, raising suspicion of a genetically undefined inherited kidney disease (Figure 1). All patients and donors were white; the patients ranged in age from 40 to 63 years, and the donor candidates ranged in age from 20 to 36 years.

Case 1: The first patient was diagnosed with ADPKD in her early 50s when workup for a urinary tract infection in the setting of family history of ADPKD revealed multiple cysts in bilaterally enlarged kidneys (Figure 1A). She presented for transplant evaluation at age 63 years, and a daughter aged 25 years wished to be evaluated as a living donor. Genetic testing of the transplant candidate revealed a heterozygous 6-bp insertion in exon 41 of PKD1, which resulted in the in-frame insertion of Ala-Thr. This insertion has not been reported in the ADPKD Mutation Database (http://pkdb.mayo.edu) or in population databases. Segregation analysis identified this insertion in the patient's affected brother and in two other affected daughters. Based on the change in protein length, absence of controls, cosegregation with disease and close proximity of this in-frame insertion to another in-frame insertion classified as pathogenic in the ADPKD Mutation Database, this variant was classified as

American Journal of Transplantation 2017; 17: 401-410

	Case 1	Case 2	Case 3	Case 4	Control 1	Control 2	Control 3	Control 4	Control 5	Control 6
Total number of variants Quality filter (Q_VAR >50,	421 385	546 522	471 433	515 489	561 527	566 532	509 490	523 499	523 500	466 445
QD >5 and observed % >30)										
Rarity filter MAF <1 %	8	30	11	14	44	19	42	23	12	16
Functional filters (exonic, nonsynonymous, splice)	2	7	4	5	5	5	6	5	5	5

 Table 2: Variant filtering for the samples and controls included in this study

Q_VAR, quality of the variant (quality of the identification of the nucleotide generated by automated DNA sequencing); QD, Phred-like quality score divided by depth; MAF, minor allele frequency.

Table 3:	Transplant	candidates	tested	with	KidneySeq
----------	------------	------------	--------	------	-----------

Case	Clinical diagnosis	Result	Genotype	Genetic diagnosis
1 2 3 4	ADPKD Alport syndrome/FSGS ADPKD CKD	Positive Positive Positive No finding	<i>PKD1</i> —NM_000296:c.7866C>G, p.Tyr2622Stop <i>COL4A5</i> —NM_000495:c.3604+1G>A <i>PKD1</i> —NM_000296:c.11488_11489insGCGACC	ADPKD Alport syndrome ADPKD

This table shows clinical diagnosis and genotype findings for the four transplant candidates tested in this pilot study. ADPKD, autosomal dominant polycystic kidney disease; CKD, chronic kidney disease; FSGS, focal segmental glomerulosclerosis.

"likely pathogenic." The donor candidate was negative for the insertion and was accepted to continue her donor evaluation. Unfortunately, the transplant candidate developed major complications from peripheral vascular disease, and that has precluded her transplant.

Case 2: The second patient was diagnosed with ADPKD in his late 30s when workup for severe hypertension in the setting of a positive family history of ADPKD revealed bilateral enlarged cystic kidneys (Figure 1B). He presented for a transplant evaluation at age 51 years, and his three children, aged 20, 22, and 25 vears, wished to be evaluated as living donors. Genetic testing of the transplant candidate revealed a nonsense mutation in exon 21 of PKD1 (p.Tyr2622X) that has been reported to be pathogenic (28). Pre- and posttest genetic counseling was provided to the candidate's three unaffected children. The mutation segregated in the family, and two of the three children were negative for the mutation. The 25-year-old son completed his evaluation and had normal urinalysis, normal kidney function, and no kidney cysts on computed tomography angiography. He underwent donor nephrectomy, and both recipient and donor are doing well.

Case 3: The third transplant candidate presented at age 40 years for an evaluation together with his sister, who wished to be considered as a donor (Figure 1C). The patient had had an earlier renal transplant that lasted 17 years. He first presented at age 18 years when hematuria and proteinuria were noted on an athletic

American Journal of Transplantation 2017; 17: 401-410

physical examination. A renal biopsy at the time showed FSGS on light microscopy with segmental mesangial and glomerular capillary loop staining for IgM and C3 and glomerular basement membrane lamellations with segmental thickening and thinning on electron microscopy. Ophthalmology examination showed anterior lenticonus and mild retinal pigmentary epithelial clumping, but an audiogram showed no deafness. His mother has proteinuria and hematuria, and his maternal grandmother had "Bright's disease." The clinical picture with laboratory data was consistent with an X-linked or autosomal dominant hereditary nephritis suggestive of Alport syndrome, although hereditary FSGS was also a possibility. Genetic testing identified a splice site mutation in intron 38 of COL4A5 (3657-9A>G). This variant has been reported as pathogenic, confirming X-linked Alport syndrome (29). The 35-year-old sister had negative urinalysis and a negative slit lamp examination and was negative for the splicing mutation. She was accepted as a donor but was blood type incompatible so is awaiting a match in the paired kidney donor program.

Case 4: The fourth case was a man aged 59 years who presented for a transplant evaluation with his 30-year-old son, who wished to be his living donor (Figure 1D). The patient had hypertension and advanced CKD with hematuria and proteinuria on dipstick testing. An ultrasound at first presentation several years earlier was noted to show a few small scattered cysts in both kidneys, consistent with hypertensive nephrosclerosis with acquired cysts, although other tubulointerstitial kidney diseases could not be ruled out. The patient's

Figure 1: Pedigree chart of candidates and donors tested. Transplant candidates are shown as the probands. ADPKD, autosomal dominant polycystic kidney disease; ESRD, end-stage renal disease; FSGS, focal segmental glomerulosclerosis.

younger sibling had presented at age 37 years with advanced CKD, an absent left kidney and right-sided hydronephrosis on ultrasound. On retrograde pyelography, this sibling had moderate right-sided caliectasis with a possible filling defect in the ureter and narrowing consistent with obstructive right-sided urolithiasis or congenital ureteropelvic junction obstruction or unilateral vesicoureteric reflux. The left ureteric orifice was cannulated and appeared to have a blind end within 1 cm, consistent with an involuted multicystic dysplastic kidney or left-sided renal agenesis.

In these two siblings, we considered disease associated with hepatocyte nuclear factor 1β (*HNF1B*) presenting as interstitial kidney disease in one and as a CAKUT in the other. Comprehensive renal gene panel testing in the transplant candidate did not identify any likely pathogenic variants in any of the genes on KidneySeq, including *HNF1B*. Of note, copy number variant analysis of *HNF1B*

406

was normal, a relevant finding because about half of *HNF1B*-associated disease arises from gene or chromosomal microdeletions on 17q12 (30,31). We confirmed this finding using array chromosomal gene hybridization as an orthogonal technology. Having found no likely pathogenic variants, the son was counseled and completed his donor evaluation with no detectable abnormalities on functional testing and proceeded to donor nephrectomy. Both recipient and donor are doing well.

Discussion

LKDs have a greater lifetime risk of ESRD than otherwise matched controls (4,5). Whether this increase reflects unrecognized risk factors that are not affected by the donation process or whether the loss of one kidney increases the risk of kidney disease in a subset of donors is not known. In either case, genetic susceptibility may

American Journal of Transplantation 2017; 17: 401–410

Multigene Renal Disease Panel in Living Donors

contribute to the risk, with nephrectomy either promoting progressive CKD or simply shortening the time to reach ESRD once CKD begins.

Because \approx 40% of LKDs are close biological relatives of the transplant recipient, it is imperative, if appropriate, to exclude presymptomatic genetic disease prior to accepting a donor candidate for nephrectomy. There are published instances in which this precaution was not taken and the genetic risk to a sibling LKD was unrecognized, only to have the donor develop the same kidney disease years later (32,33). Assessing this risk is difficult because recipient candidates who progress to ESRD are often not appropriately phenotyped with a renal biopsy and are seldom genotyped for possible genetic causes of disease.

We designed, developed and validated a targeted gene panel to provide comprehensive genetic testing for 115 genes implicated in a wide variety of renal diseases (Table S3). Although this gene panel was developed to facilitate the genetic diagnosis in patients with hereditary kidney diseases, in this publication, we described its utility for the evaluation of asymptomatic LKDs without evident kidney disease who nevertheless have a family history of kidney disease.

There are many reasons to consider comprehensive gene panel testing in this setting. First, although >60% of transplant-eligible patients have diabetes or hypertension as the stated cause of their renal disease, this diagnosis is often based on association rather than probable causality. If biopsy correlation is available, up to one-third of patients with diabetes or hypertension may have an alternative diagnosis to explain their ESRD (7–9). In another 20% of transplant candidates, the cause of ESRD is unknown, preventing a focused genetic evaluation of related family members (1,6).

Second, some diseases such as *HNF1B*-associated kidney disease (also known as renal cysts and diabetes) have limited penetrance and variable expression, which makes clinical diagnosis challenging. Although heterozygosity for pathogenic variants in HNF1B represents the most common monogenic cause of developmental kidney disease (30.34), the disease is a multisystem disorder. Renal cysts are the most frequently presenting feature, but the spectrum of possible renal structural abnormalities includes renal hypodysplasia, pelvic-ureteric junction obstruction, horseshoe kidney, unilateral renal agenesis, single kidneys and renal hypoplasia (35). Extrarenal phenotypes also occur, and other affected family members might present with early onset diabetes (maturity onset diabetes of the young type 5) or genital abnormalities (36,37). This complexity and the often apparently limited number of affected relatives can reduce suspicion of a genetic disease.

Third, some types of kidney diseases (e.g. FSGS) are genetically heterogeneous, with at least 15 known loci that cause dominant or recessive disease, and this list is growing, making traditional gene testing impractical (38,39). Furthermore, classically distinct genetic diseases can phenocopy other diseases, blurring the difference between phenotypes. Variants in, for example, other syndromic glomerular disease genes; the Alport genes, *COL4A3/COL4A4*; and the gene for nail–patella syndrome, *LMX1B*, can be identified in a number of patients without extrarenal features who have histological FSGS (12,40–42). Variants in ciliary disease genes *TTC21B* and *NPHP4* that typically cause juvenile nephronophthisis have been recently reported as causing inherited FSGS (43–45). Phenotypic similarities mean that often a large number of candidate genes are associated with a given renal disease, making gene-bygene screening prohibitive in terms of cost and time.

Fourth, genetic diseases that present in adult life, with the exception of ADPKD, do not have accepted diagnostic tests—short of genetic testing—that have been validated for presymptomatic screening to exclude disease in a living donor at risk. Even with ADPKD, although agedependent ultrasound and magnetic resonance imaging (MRI) criteria for the exclusion of disease have been developed, there are many scenarios in which diagnostic certainty is insufficient, making genetic screening requisite to establish or exclude a diagnosis (46,47).

Finally, comprehensive genetic testing takes on even areater importance for specific ethnic groups. A prime example is the contribution of West African ancestry to the risk of FSGS and CKD associated with two common alleles in the gene apolipoprotein L1 (APOL1), referred to as G1 and G2 (48,49). The G1 allele is composed of two missense variants in linkage disequilibrium. Ser342Glv and Ile384Met, and the G2 allele is an in-frame deletion of two amino acids, delN388/Y389. In the Yoruba people of Nigeria, the prevalence of these alleles is 40% and 8%, respectively, reflecting the heterozygous protection they afford to carriers from infection with Trypanosoma brucei rhodesiense. In African Americans, G1 is found in 52% of those with and 18-23% of those without FSGS; for the G2 allele, the percentages are 23% and 15%, respectively. Under a recessive model (i.e. carriers of two risk alleles: G1/G1, G1/G2 or G2/G2), there is a seven- to 10-fold increased risk of hypertensionassociated renal disease and a 10- to 17-fold increased risk of FSGS. These two APOL1 risk alleles also affect allograft outcomes of the donor kidney. Kidneys from deceased African American donors with two APOL1 risk variants fail more rapidly after transplantation than kidneys from donors with no or one risk allele; however, the APOL1 allele status of the transplant recipient does not affect outcome (50-52). Taken together, some have suggested that all African American kidney donors should be screened for these APOL1 risk alleles (10,53,54).

In this pilot series, we tested four transplant candidates to determine the genetic basis of disease (Table 3). In

Thomas et al

two candidates, the clinical diagnosis of ADPKD was easily made on the basis of strong family history of enlarged cystic kidneys and autosomal dominant inheritance; however, their children were all aged <30 years, limiting the utility of imaging-based screening. In a third candidate, although there was a high suspicion of Alport disease based on the clinical features of childhood-onset hematuria and proteinuria and glomerular-basement membrane lamellations with segmental thinning on ultrastructural examination of a renal biopsy, there were some inconsistencies; for example, there was no hearing deficit, and the light microscopy and immunofluorescence suggested FSGS. The fourth case was the most problematic because there was no unifying diagnosis for the two affected siblings in the pedigree. Nevertheless, negative screening in this case reduced concern about a common genetic disease and was valuable in providing counseling to the donor candidate.

The KidneySeq panel includes many genes not associated with ESRD or CKD but with other distinct renal phenotypes. The clinical utility of their inclusion is multifold. First, the added sequencing cost of additional genes is trivial. Second, by including all known causes of genetic renal disease. it becomes possible to restrict the bioinformatic analysis, if necessary, to the genes associated with the phenotype of interest. As more genes are discovered to be causes of renal diseases, updating a single targeted panel also becomes more practical than updating multiple phenotypedefined panels (e.g. a panel limited to FSGS). Third, phenotypes are often blurry with the absence of pathognomonic clinical, imaging or biopsy information, making it unclear whether the focus should be on a glomerular disease or a tubulointerstitial disease. Moreover, as stated earlier, even when the phenotype is clear, there is significant variability in the phenotypic expression of some genes.

Who are candidates for genetic screening? For living donors, we recommend genetic testing in all persons with a clear family history of CKD or ESRD or when two or more family members have kidney disease of unknown or uncertain etiology, unless an alternative screening test with a negative predictive value close to 100% is available. Genetic testing should also be considered for living donors with just one first-degree relative with CKD or ESRD unless that renal disease is clearly diabetic, immunologic (e.g. lupus nephritis), vascular, obstructive, or drug or toxin related. About 40% of the 5000 annual living donors in the United States are biologically related to their recipients; 8-10% of recipients have a known genetic diagnosis like polycystic kidney disease and 18–20% have an unknown cause of ESRD (1,6). At a conservative estimate, 5-10% of these unknown causes may have gene variants that confer a Mendelian risk of future disease. We suggest that 9-12% of LKDs may benefit from formal testing to exclude monogenic kidney disease. Such testing could include imaging studies with high negative predictive value (e.g. MRI for ADPKD),

focused genetic testing for diseases like Alport (*COL3A3*, *COL3A4* and *COL3A5*) or comprehensive screening using targeted gene panels. Expanded genetic testing may also increase the living donor pool by excluding genetic disease in susceptible persons who are currently not being accepted because of clinical uncertainty.

Whole-exome sequencing (WES) is increasingly used for the diagnosis of monogenic disorders in a research setting and has been proposed by some as the preferred clinical genetic diagnostic test when locus heterogeneity is extreme or when the phenotype is indistinct (55,56). When applied to clinical diagnostics, however, the bioinformatic analysis of WES data must be restricted to genes known to be clinically implicated in the disease under consideration. Compared with targeted panels like KidneySeq, the aggregate sequencing and analysis costs of WES are far higher, the depth of sequencing is lower, the bioinformatic throughput is slower, and the type of analysis is more restricted—all points that favor the use of targeted panels in the clinical arena.

Diagnostic laboratories offering genetic panels must be certified (College of American Pathologists or Clinical Laboratory Improvement Amendments program). In addition, we strongly advocate that sequencing and bioinformatic data be reviewed by a multidisciplinary group in the context of the clinical data. This group should include, at a minimum, research scientists with expertise in targeted genomic enrichment and MPS, bioinformaticians, clinical geneticists and physicians with expertise in genetic renal diseases. We also recommend that biological relatives who are considering becoming LKDs be offered pre- and posttest genetic counseling. Genetic counselors can assist in the evaluation of an appropriate family history in addition to providing counseling and interpretation of test results. Last, both donor candidates and clinicians should understand the benefits and limitations of genetic testing.

There are several limitations to genetic testing for LKDs. First, the majority of kidney disease is polygenic or secondary to diabetes, hypertension or autoimmune conditions or from infections or toxins. Second, not all genetic variants are identified by targeted NGS panels (or WES), including variants in 5' regulatory regions, introns or untranslated exonic regions. Third, a negative screen may falsely reduce perceived risk and thus provide misleading reassurance to the transplant center and the donor. Fourth, some identified VUSs may be exceedingly difficult to interpret, leading the transplant center and/or the donor to unwarranted dissuation from donation. Finally, significant variants unrelated to the phenotype (unsolicited but nevertheless medically significant discoveries) may be identified that are actionable and that need to be addressed.

In summary, the reasons to include comprehensive genetic testing in the evaluation of prospective renal transplant recipients and donors are compelling. We showed that a targeted sequencing approach works well and detects single-nucleotide changes and more complex indels and copy number variants. Areas that are not adequately captured must be clearly defined so that complementary sequencing methods can be included in the analytical pipeline to ensure comprehensive coverage, and all likely pathogenic or pathogenic variants should be Sanger confirmed on a new DNA sample extracted from the originally received blood samples (Figures S1 and S2). Finally, to ensure a clinically meaningful report, a multidisciplinary review of all variants in the context of the phenotypic data is essential.

Disclosure

The authors of this manuscript have no conflicts of interest to disclose as described by the *American Journal of Transplantation*.

References

- 1. Hart A, Smith JM, Skeans MA, et al. Kidney. Am J Transplant 2016; 16: 11–46.
- Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: A critical reappraisal. Am J Transplant 2011; 11: 450–462.
- Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 2000; 342: 605–612.
- Muzaale AD, Massie AB, Wang M, et al. Risk of end-stage renal disease following live kidney donation. JAMA 2014; 311: 579–586.
- Mjøen G, Hallan S, Hartmann A, et al. Long-term risks for kidney donors. Kidney Int 2014; 86: 162–167.
- 2015 USRDS annual data report: Epidemiology of kidney disease in the United States. United States Renal Data System NIoH, National Institute of Diabetes and Digestive and Kidney Diseases. Bethesda, MD, 2015.
- Christensen PK, Larsen S, Horn T, Olsen S, Parving H-H. Causes of albuminuria in patients with type 2 diabetes without diabetic retinopathy. Kidney Int 2000; 58: 1719–1731.
- Sharma SG, Bomback AS, Radhakrishnan J, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol 2013; 8: 1718–1724.
- Caetano ERSP, Zatz R, Saldanha LB, Praxedes JN. Hypertensive nephrosclerosis as a relevant cause of chronic renal failure. Hypertension 2001; 38: 171–176.
- Kuppachi S, Smith RJH, Thomas CP. Evaluation of genetic renal diseases in potential living kidney donors. Curr Transplant Rep 2015; 2: 1–14.
- Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015; 26: 1279–1289.
- Gast C, Pengelly RJ, Lyon M, et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 2016; 31: 961–970.
- McCarthy HJ, Bierzynska A, Wherlock M, et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2013; 8: 637–648.

American Journal of Transplantation 2017; 17: 401–410

Multigene Renal Disease Panel in Living Donors

- Redin C, Le Gras S, Mhamdi O, et al. Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: Efficient mutation detection in Bardet-Biedl and Alström Syndromes. J Med Genet 2012; 49: 502–512.
- Goecks J, Nekrutenko A, Taylor J. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010; 11: R86–R86.
- Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Cornell University Library, 2013: arXiv:1303.3997v1301 [q-bio.GN].
- DePristo MA, Banks E, Poplin RE, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.
- Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. Cornell University Library, 2012: arXiv:1207.3907 [q-bio.GN].
- Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 2010; 6: e1001025.
- Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15: 901–913.
- Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7: 575–576.
- Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.
- Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.
- 24. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res 2009; 19: 1553–1561.
- Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405–423.
- Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007; 23: 1289– 1291.
- Rossetti S, Hopp K, Sikkink RA, et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 2012; 23: 915–933.
- Audrézet M-P, Cornec-Le Gall E, Chen J-M, et al. Autosomal dominant polycystic kidney disease: Comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 2012; 33: 1239–1250.
- Martin P, Heiskari N, Pajari H, et al. Spectrum of COL4A5 mutations in Finnish Alport syndrome patients. Hum Mutat 2000; 15: 579–579.
- Heidet L, Decramer S, Pawtowski A, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 2010; 5: 1079–1090.
- Faguer S, Decramer S, Chassaing N, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int 2011; 80: 768–776.
- Winn MP, Alkhunaizi AM, Bennett WM, et al. Focal segmental glomerulosclerosis: A need for caution in live-related renal transplantation. Am J Kidney Dis 1999; 33: 970–974.

- Kofman T, Audard V, Narjoz C, et al. APOL1 polymorphisms and development of CKD in an identical twin donor and recipient pair. Am J Kidney Dis 2014; 63: 816–819.
- Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 2011; 26: 897–903.
- Bockenhauer D, Jaureguiberry G. HNF1B-associated clinical phenotypes: The kidney and beyond. Pediatr Nephrol 2015; 31: 707–714.
- Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. Nat Rev Nephrol 2015; 11: 102–112.
- 37. Oram RA, Edghill EL, Blackman J, et al. Mutations in the hepatocyte nuclear factor-1 β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am J Obstet Gynecol 2010; 203: e1–e5.
- Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014; 21: 422–425.
- Lovric S, Ashraf S, Tan W, Hildebrandt F. Genetic testing in steroid-resistant nephrotic syndrome: When and how? Nephrol Dial Transplant 2015; DOI: 10.1093/ndt/gfv355 [Epub ahead of print].
- Malone AF, Phelan PJ, Hall G, et al. Rare hereditary COL4A3/ COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 2014; 86: 1253–1259.
- 41. Pierides A, Voskarides K, Athanasiou Y, et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol Dial Transplant 2009; 24: 2721–2729.
- 42. Boyer O, Woerner S, Yang F, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 2013; 24: 1216–1222.
- Cong EH, Bizet AA, Boyer O, et al. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol 2014; 25: 2435–2443.
- Bullich G, Vargas I, Trujillano D, et al. Contribution of the TTC21B gene to glomerular and cystic kidney diseases. Nephrol Dial Transplant 2016; DOI: 10.1093/ndt/gfv453 [Epub ahead of print].
- 45. Mistry K, Ireland JHE, Ng RCK, Henderson JM, Pollak MR. Novel mutations in NPHP4 in a consanguineous family with histological findings of focal segmental glomerulosclerosis. Am J Kidney Dis 2007; 50: 855–864.
- Pei Y, Hwang Y-H, Conklin J, et al. Imaging-based diagnosis of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2015; 26: 746–753.
- 47. Pei Y, Obaji J, Dupuis A, et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 2009; 20: 205–212.
- Friedman DJ, Pollak MR. Apolipoprotein L1 and kidney disease in African Americans. Trends Endocrinol Metab 2016; 27: 204–215.
- Kruzel-Davila E, Wasser WG, Aviram S, Skorecki K. APOL1 nephropathy: From gene to mechanisms of kidney injury. Nephrol Dial Transplant 2016; 31: 349–358.
- Freedman BI, Pastan SO, Israni AK, et al. APOL1 genotype and kidney transplantation outcomes from deceased African American donors. Transplantation 2016; 100: 194–202.
- 51. Freedman BI, Julian BA, Pastan SO, et al. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure. Am J Transplant 2015; 15: 1615–1622.

- Lee BT, Kumar V, Williams TA, et al. The APOL1 genotype of African American Kidney transplant recipients does not impact 5-year allograft survival. Am J Transplant 2012; 12: 1924–1928.
- Riella LV, Sheridan AM. Testing for high-risk APOL1 alleles in potential living kidney donors. Am J Kidney Dis 2015; 66: 396–401.
- Freedman BI, Julian BA. Should kidney donors be genotyped for APOL1 risk alleles? Kidney Int 2015; 87: 671–673.
- Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 2013; 369: 1502–1511.
- Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: Single-gene, gene panel, or exome/genome sequencing. Genet Med 2015; 17: 444–451.

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Figure S1: KidneySeq test workflow. The diagram in this figure shows the test workflow. Samples received in the laboratory were entered into a database. Quality of samples was assessed after several steps (DNA extraction, library preparation, and hybridization and capture). Successful samples were then pooled in batches of five samples and sequenced in the MiSeq. Sequencing data were analyzed through an in-house-developed pipeline (Figure S2), and an internal report was generated. Variants in this report were evaluated for interpretation at the multidisciplinary board meeting, those variants interpreted as etiologic were Sanger sequenced and a final results letter was generated.

Figure S2: Analysis pipeline for processing massively parallel sequencing data. The pipeline shows processing of raw sequencing reads to variant detection and report generation, which includes FastQC to monitor quality, Burrows–Wheeler alignment to map reads to thereference genome, Picard to remove read duplicates, the Genome Analysis Toolkit for variant detection across the KidneySeq target regions, Freebayes to call variants in the *PKD1* gene, and an in-house–developed tool to annotate and filter variants and generate a final complete report.

Table S1: Total sequence reads and percentage of thetarget region covered.

Table S2: Target regions covered with <10×.

Table S3: Broad disease phenotypes, genes tested, andmodes of inheritance.