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Abstract
In the last few decades, a large body of experimental evidence has highlighted
the complex role for mitochondria in eukaryotic cells: they are not only the site
of aerobic metabolism (thus providing most of the ATP supply for endergonic
processes) but also a crucial checkpoint of cell death processes (both necrosis
and apoptosis) and autophagy. For this purpose, mitochondria must receive
and decode the wide variety of physiological and pathological stimuli impacting
on the cell. The “old” notion that mitochondria possess a sophisticated
machinery for accumulating and releasing Ca , the most common and
versatile second messenger of eukaryotic cells, is thus no surprise. What may
be surprising is that the identification of the molecules involved in mitochondrial
Ca  transport occurred only in the last decade for both the influx (the
mitochondrial Ca  uniporter, MCU) and the efflux (the sodium calcium
exchanger, NCX) pathways. In this review, we will focus on the description of
the amazing molecular complexity of the MCU complex, highlighting the
numerous functional implications of the tissue-specific expression of the
variants of the channel pore components (MCU/MCUb) and of the associated
proteins (MICU 1, 2, and 3, EMRE, and MCUR1).
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Introduction
Ca2+ is universally recognised as one of the most pleiotropic sec-
ond messengers in cell biology. Indeed, Ca2+ ions are responsible 
for decoding a variety of extracellular and intracellular stimuli,  
which, in animals, range from endocrine secretion to gene expres-
sion, muscle contraction, and synaptic transmission1–5. The  
efficacy of Ca2+ as a signalling molecule relies mainly on the 
maintenance of a steep Ca2+ gradient between the concentration  
in the extracellular (few mM) and intracellular (∼100 nM)  
environments. This >10,000-fold difference ensures that even 
very small changes in intracellular Ca2+ concentration ([Ca2+]

i
) 

are effective in regulating the numerous Ca2+-sensitive proteins of  
the cell, such as catalytic enzymes, channels, and transcription  
factors6. The maintenance of a low [Ca2+]

i
 is tightly controlled 

by the presence of pumps and transporters both at the plasma  
membrane7 and at the membrane of organelles accumulating 
large amounts of Ca2+8,9. The endoplasmic/sarcoplasmic reticu-
lum (ER or SR in striated muscle) is undoubtedly the main  
intracellular Ca2+ store; nevertheless, other cellular compartments 
actively participate in modulating [Ca2+]

i
: first of all mitochondria 

but also the Golgi apparatus10, endosomes, and lysosomes2,5,11.

The role for mitochondria in Ca2+ handling was first demon-
strated in the 1960’s, when their ability to actively accumulate  
Ca2+ was evaluated in different cellular ex vivo models12–14. This 
occurred even before the advent of the chemiosmotic theory15,  
which provided the thermodynamic basis for Ca2+ entry into mito-
chondria. In addition, the role for mitochondria in cell function 
has gradually expanded, and its initial identification as the power-
house for cellular energy supply was subsequently integrated into  
a more complex activity that includes the regulation of cell death, 
metabolism, and signalling pathways16–18. Notably, many mito-
chondrial functions are directly regulated by the level of Ca2+ ions  
inside the organelles4,19. The control of mitochondrial Ca2+ con-
centration ([Ca2+]

mt
) is thus of primary relevance for cell physi-

ology, and emerging evidence converges on the concept that its  
dysregulation is of utmost importance in the establishment of  
pathological conditions.

In this commentary, we will focus on the molecular machinery 
underlying mitochondrial Ca2+ uptake, the mitochondrial Ca2+  
uniporter (MCU) complex (see Figure 1), to which our laboratory 
has dedicated much effort in the last decade, contributing to its  

Figure 1. The mitochondrial calcium uniporter (MCU) complex. Schematic representation of MCU-mediated Ca2+ entry into mitochondria at 
different intracellular Ca2+ concentrations ([Ca2+]i). Mitochondrial Ca2+ uptake is controlled by a multiprotein complex consisting of MCU and 
MCUb (the pore-forming subunits) together with the essential mitochondrial Ca2+ uniporter regulator (EMRE), the mitochondrial Ca2+ uptake 
(MICU) proteins, MICU1, MICU1.1, MICU2, and MICU3, and, possibly, the MCU regulator 1 (MCUR1). At low [Ca2+]i, MICU1/MICU1.1–MICU2 
or MICU1/MICU1.1–MICU3 heterodimers ensure MCU gatekeeper activity, preventing undesirable mitochondrial Ca2+ cycling in resting cells. 
At high [Ca2+]i, the MICU proteins act as positive regulators of MCU channel activity, allowing efficient mitochondrial Ca2+ uptake (right). IMS, 
intermembrane space; IMM, inner mitochondrial membrane.
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discovery in 2011 and unravelling its molecular complexity and 
functional significance.

The mitochondrial Ca2+ uniporter complex
Since the first reports of mitochondrial Ca2+ uptake12–14, exten-
sive studies have been conducted to identify the mitochondrial  
Ca2+ entry mechanism, characterised by Ruthenium Red sensitiv-
ity, high selectivity, and high capacity for the cation20. Only from  
2010, with the identification of the first regulator of the mito-
chondrial Ca2+ channel, the mitochondrial Ca2+ uptake protein 
1 (MICU1)21, and, one year after, by the cloning and molecular 
characterisation of the gene coding for the MCU22,23, the entry  
pathway was characterised at the molecular level and the route for 
the genetic manipulation of mitochondrial Ca2+ uptake was finally 
open.

The mitochondrial Ca2+ uniporter MCU
In 2011, two independent in silico screenings22,23 identified the 
CCDC109a gene product as the long-sought pore-forming unit 
of the MCU channel mediating mitochondrial Ca2+ uptake in  
mammalian cells. Purified MCU protein reconstitution in lipid 
bilayers revealed a Ca2+ channel activity with the electrophysi-
ological features of the hypothetical MCU20. In addition, it was  
clearly shown that MCU downregulation in mammalian cells  
inhibits mitochondrial Ca2+ uptake while its overexpression 
increases mitochondrial Ca2+ accumulation, thus proving that it  
is bona fide the channel mediating Ca2+ uptake in mitochondria23.

The sequence of MCU consists of two transmembrane α-helix 
domains spanning the inner mitochondrial membrane (IMM), 
the second of which contains the critical DIME motif responsi-
ble for the channel selectivity filter, linked by a short loop toward 
the mitochondrial intermembrane space (IMS), while both the  
C- and the N-termini face the mitochondrial matrix22,24.  
A single MCU molecule per se is thus not able to form the chan-
nel but should organise in oligomers, and MCU was initially 
proposed to arrange itself into tetramers25. This hypothesis was  
very recently confirmed by coherent high-resolution cryo-EM data 
from four independent groups on different MCU orthologs24,26–28. 
These seminal studies finally unveiled the structure and arrange-
ment of MCU protomers within the complex and the exact posi-
tion of the channel selectivity filter. The 3D reconstruction of  
EM data unambiguously revealed that MCU forms tetramers with 
a nonobvious symmetry: the transmembrane domain displays a 
fourfold symmetry, while the N-terminal domain (NTD) on the 
matrix side shows a twofold symmetry axis. These findings con-
futed the pentameric MCU architecture that was previously pro-
posed based on magnetic resonance and negative staining EM 
data from Caenorhabditis elegans MCU-ΔNTD protein, in which  
a significant portion of the NTD was removed to facilitate the 
analysis29. In addition, the MCU DIME motif, which contains 
the two critical acidic residues directly involved in the cation  
coordination, has now been shown to reside at the beginning  
of––and thus integral to––the second transmembrane helix (TMH), 
and not in the loop connecting the two transmembrane helices,  
as previously suggested29.

However, as Raffaello et al. showed, MCU is not the only 
pore-forming unit of the oligomer, but it associates with the  
protein encoded by the MCU paralog gene CCDC109b, which 

was thus named MCUb25. The characterisation of MCUb demon-
strated that it acts as a negative regulator of MCU activity both  
in lipid bilayer experiments and when overexpressed in mamma-
lian cells25 (see Figure 1). To note, in other organisms, such as  
Trypanosoma cruzi, the ortholog of MCUb acts as a Ca2+ con-
ducting subunit and its overexpression enhances, rather than  
dampens, mitochondrial Ca2+ uptake30. Interestingly, in another 
trypanosomatid, Trypanosoma brucei, two additional MCU iso-
forms were identified, MCUc and MCUd, which are also endowed 
with Ca2+ uniporter activity and are able to form heterotetra-
meric complexes with their homologues MCU and MCUb31. This  
highlights the existence of significant species-specific differences 
in the function and distribution of MCU orthologues, despite  
their sequence conservation, and this should be taken into  
account when studying different organisms. Moreover, the expres-
sion and relative proportion of MCU and MCUb vary signifi-
cantly among different tissues in mammals; thus, each cell type  
may have different variants of the uniporter owing to the specific 
composition and stoichiometry of MCU subunits. This accounts 
for tissue-specific variations of the capacity of mitochondria 
to take up Ca2+ and perfectly fits with the electrophysiological 
recordings of MCU Ca2+ currents in mitochondria from different  
mammalian tissues32. In skeletal muscle, for example, the presence 
of a high MCU:MCUb ratio25 matches the highest mitochondrial 
Ca2+ conductance recorded in this tissue32, whereas, in adult heart, 
the relatively elevated MCUb expression25 results in a consider-
ably low Ca2+ current in cardiomyocyte mitochondria32. In cardiac  
cells, in which ∼37% of the volume is occupied by mitochondria33, 
this is crucial for preventing massive mitochondrial Ca2+ accu-
mulation that would potentially cause undesired buffering of the  
[Ca2+]

i
 transients required for contraction, futile cycling of Ca2+ 

across the IMM, and, eventually, organelle Ca2+ overload and  
apoptosis. The control of the MCU:MCUb proportion in the 
mitochondrial Ca2+ channel pore domain is thus fundamental  
for the function and physiology of different tissues.

After the molecular identification of the MCU pore compo-
nents and auxiliary factors, the path for the genetic manipulation  
of mitochondrial Ca2+ uptake machinery in cells and animal mod-
els was finally opened. The first MCU–/– mouse was generated by 
Finkel’s group in 2013. It shows a relatively mild phenotype, and, 
despite the expected abrogation of mitochondrial Ca2+ uptake, it 
develops normally and displays unaffected basal metabolism34. 
However, the MCU–/– mouse shows increased plasma lactate lev-
els after starvation and impaired exercise performance accompa-
nied by a reduction in the activity of pyruvate dehydrogenase in  
skeletal muscle34. These findings, together with the fact that MCU–/– 
mouse survival depends on the genetic background (MCU dele-
tion is embryonically lethal in a pure C57/BL6 background35), 
pointed to a more subtle and less obvious involvement of mito-
chondrial Ca2+ uptake in organ metabolism and organism devel-
opment. This issue has been elegantly addressed by recent studies  
implementing tissue-specific modulation of MCU expression (by 
ablation/downregulation or overexpression) in adult tissues. For 
example, cardiac-specific tamoxifen-inducible MCU deletion 
in adult mice, differently from the germline genetic ablation of 
MCU, which did not protect from ischemic-reperfusion injury34,  
clearly protects from ischemia-reperfusion heart damage, abro-
gates the contractile responsiveness to β-adrenergic stimulation 
responsible for the so-called “fight-or-flight” response, and reduces 

Page 4 of 13

F1000Research 2018, 7(F1000 Faculty Rev):1858 Last updated: 28 NOV 2018



heart bioenergetics reserve capacity, even though it does not induce  
phenotypic abnormalities either in basal conditions or after  
cardiac overload and does not alter cardiomyocytes’ resting 
[Ca2+]

mt
36–39. These results suggest that MCU may be dispensable 

for cardiac homeostasis in basal conditions, while it appears to  
play a major role in cardiac metabolic flexibility during acute 
stress. Similarly to what has been reported for the heart tissue, 
germline deletion of MCU did not protect from hypoxic/ischemic 
brain injury40. However, brains from conditional neuronal-specific  
inducible MCU-deleted mice as well as primary cortical neurons 
silenced for MCU show a significant reduction of the hypoxic/
ischemic damage and decreased cell death without impairment  
of neuronal mitochondria metabolism41. Once more, these find-
ings point to the existence of a strong drive for organs and tis-
sues to respond to chronic MCU ablation by establishing adaptive  
metabolic shunts in order to cope with/bypass impaired mitochon-
drial Ca2+ signalling. Such adaptation to mitochondria dysfunc-
tion has also been described in the cardiac-specific Tfam–/– mouse, 
the murine model for human cardiomyopathies with mtDNA  
depletion42, in which the alteration in mitochondrial metabolism 
due to oxidative phosphorylation (OXPHOS) deficiency induces 
a secondary upregulation of MCU protein and a concomitant 
downregulation of NCLX transcription43. The resulting increased  
mitochondrial Ca2+ uptake and reduced Ca2+ efflux in Tfam–/–  
cardiac mitochondria, although inducing an elevated and poten-
tially damaging [Ca2+]

mt
, appear somehow functional to ensure  

an efficient Ca2+-dependent mitochondrial respiration that  
otherwise would be compromised by the pathology41.

Overall, these findings lead us to the following consideration: 
experimental systems featuring long-term genetic manipulation  
of the mitochondrial Ca2+ uptake machinery should be evalu-
ated with caution, and the potential induction of unpredicted  
phenotypes, as a consequence of adaptive/maladaptive responses, 
should be taken into account. This is particularly relevant when  
in vivo models are considered.

In line with this, the acute but transient manipulation of MCU 
expression in skeletal muscle provided additional intriguing  
evidence of the wide-ranging influence of mitochondrial Ca2+ 
signalling in the maintenance of organ and organism homeosta-
sis. The decrease or enhancement of [Ca2+]

mt
 by AAV-mediated 

MCU silencing or overexpression, respectively, demonstrated that 
mitochondrial Ca2+ uptake regulates myofibre trophism through 
the modulation of the activity of the insulin growth factor-1/Akt 
pathway and the transcription of the peroxisome proliferator-
activated receptor gamma coactivator 1 alpha 4 gene (PGC1α4). 
In particular, the overexpression of MCU in both adult and neo-
natal muscles induces significant fibre hypertrophy, which is not  
accompanied by alterations in mitochondrial membrane poten-
tial or other metabolic parameters (such as glycogen content and  
succinate dehydrogenase activity)44. On the contrary, MCU  
downregulation leads to marked fibre atrophy as demonstrated 
by reduction of fibre size, inhibition of Akt activity, reduction  
of PGC1α4 transcripts, and impaired activation of the pyru-
vate dehydrogenase complex44, in agreement with the data from  
the MCU–/– mice34 (see Figure 2).

Figure 2. The role of mitochondrial Ca2+ signalling in skeletal muscle trophism. Schematic representation of the effects of manipulating 
mitochondrial Ca2+ uptake in skeletal muscle fibres. Increased mitochondrial Ca2+ accumulation by enhanced expression of mitochondrial 
Ca2+ uniporter (MCU) or mitochondrial Ca2+ uptake protein 1.1 (MICU1.1) leads to muscle hypertrophy by stimulating fibre growth and ATP 
production (left). Reduction of mitochondrial Ca2+ uptake by downregulation of either MCU or MICU1.1 causes fibre atrophy and impaired ATP 
production (right). [Ca2+]mt, mitochondrial Ca2+ concentration.
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Moreover, the recent description of a mouse model bearing  
constitutive skeletal muscle-specific deletion of MCU  
(skMCU–/– mice) has been fundamental to uncover the meta-
bolic rewiring occurring at the level of skeletal muscle cell but 
also, importantly, systemically45. In line with previous data34,44, 
the muscle of skMCU–/– mice shows decreased performance and 
smaller fibre size compared to that of control mice45. Moreover, it  
shows a shift toward fast fibre type and an enhanced preference 
for fatty acid oxidative metabolism45. Interestingly, the ablation 
of MCU in skeletal muscle also impinges on other tissues, as  
shown by the increased catabolic response in both liver and adi-
pose tissue of skMCU–/– animals45. This clearly points out how the  
mitochondrial metabolic adaptation in response to altered Ca2+ 
dynamics (i.e. MCU deletion) within the muscle tissue may  
have major systemic impact on different tissues and, importantly, 
on the modulation of global metabolism.

The MICU proteins
MICU1 was the first regulator of mitochondrial Ca2+ uptake 
to be identified21, even before the identification of MCU itself. 
It was initially described as an EF-hand Ca2+-binding protein  
associated with the IMM that stimulates MCU channel opening 
and thus acts as a positive modulator of mitochondrial Ca2+ uptake. 
Subsequent findings defined the crucial role of MICU1 in keeping  
the channel inactive under resting conditions, i.e. at low [Ca2+]

i
46,47, 

thus preventing massive Ca2+ entry that will otherwise cross the 
IMM down the steep electrochemical gradient and cause harm-
ful mitochondrial Ca2+ overload. MICU1 was thus appropriately  
defined as the gatekeeper of the MCU channel. This concept has 
been recently confirmed by two independent in vivo MICU1–/– 
mouse models. These MICU1–/– animals, despite normal embryonic  
development and growth, show a variable degree of postnatal 
lethality (one out of six to one out of seven surviving pups in the 
case of CRISPR/Cas9 mutants48 and 100% lethality in the case of 
Cre recombinase/LoxP deleted alleles49) mostly due to breathing  
failure for the underdevelopment of the respiration coordina-
tion centres (cerebellum and Purkinje cells)49. The few surviving 
knockout mice display muscle impairment and ataxia48, a phe-
notype very similar to that described in children with a MICU1  
mutation50. The analysis of MICU1–/– mitochondria revealed 
increased matrix [Ca2+]

mt
, increased sensitivity to permeability tran-

sition pore (PTP) opening and cell death, and reduced production 
of ATP, similar to what was reported in MICU1-silenced hepato-
cytes and Hela cells46,47. Overall, these data clearly highlight the  
relevance of MICU1 gatekeeping function in the control of  
mitochondrial Ca2+ homeostasis and metabolism. Nevertheless, 
an additional intriguing feature of MICU1 action has recently 
emerged, which consists of its ability to confer MCU selectivity 
for Ca2+ over Mn2+. Indeed, the DIME motif in the MCU pore subu-
nit appears to be unable per se to discriminate between Ca2+ and 
Mn2+ in the absence of MICU151. However, when present, MICU1 
prevents Mn2+ entry in mitochondria, thus ensuring the stringent 
Ca2+ selectivity of MCU51. In this scenario, the proper stoichiom-
etry of MICU1 is thus crucial to avoid mitochondrial Mn2+ uptake  
and to prevent Mn2+ toxicity. This concept may have relevant 
implications for human pathologies, especially for those dis-
eases caused by MICU1 deficiency50,52,53 but also for Parkinson’s  
disease, as already suggested51.

Additional MICU family members have been identified by  
genome sequence analysis soon after MICU1, namely MICU2 
(EFHA1) and MICU3 (EFHA2)54, which share 41% and 34% 
identity with MICU1, respectively, but display a broad and non- 
overlapping expression pattern compared to MICU155. In  
particular, MICU2 was shown to bind covalently to MICU1 
through disulphide bridges, and the resulting dimer endows the 
genuine MCU gatekeeper activity56. In this scenario, cytosolic 
Ca2+ elevation causes Ca2+ binding to the EF-hand domains of  
the MICU1–MICU2 dimer, allowing MICU1 to function as a 
positive regulator of MCU activity, thus efficiently promoting  
Ca2+ entry into the organelle56 (see Figure 1).

As for MICU3, its evolutionary conservation and sequence 
similarity to MICU1 suggested that it may share a common  
biological function with MICU154. Along this line, its role as a 
positive regulator of mitochondrial Ca2+ uptake has been demon-
strated recently55. Indeed, the expression of MICU3 in Hela cells,  
which normally do not express it, showed that it interacts with 
MICU1, but not with MICU2, forming obligatory dimers55  
(see Figure 1). This interaction causes a significant increase of 
mitochondrial Ca2+ uptake, demonstrating the stimulatory action 
of MICU3 on MCU activity. In addition, while displaying a  
reduced gatekeeper activity, MICU3 has been shown to mediate 
a more rapid response of mitochondria to [Ca2+]

i
 changes, allow-

ing a shorter delay between the [Ca2+]
i
 rise and the increase in  

mitochondria Ca2+ uptake compared to MICU155. MICU3 thus 
plays a pivotal role in determining the kinetics of mitochondrial 
Ca2+ signalling and consequently in the modulation of global  
[Ca2+]

i
 dynamics, which may be of utmost relevance for the  

decoding of Ca2+ signals in excitable cells, such as neurons, where 
indeed MICU3 shows the highest level of expression54,55.

By the interaction of monomers with non-overlapping functions, 
the MICU proteins confer an important property of the mitochon-
drial Ca2+ uptake system: the sigmoidicity of the dose-response  
to Ca2+. Indeed, the activity of MCU, which is kept low at rest-
ing [Ca2+]

i
 (∼100 nM) owing to the MICU1–MICU2 gatekeeper  

action, as already discussed, becomes extremely efficient upon 
[Ca2+]

i
 elevation. Indeed, Ca2+ binding to the MICU1–MICU2  

regulatory complex converts it from an inhibitory regulator 
(ensuring gatekeeping) at basal [Ca2+]

i
 to an activator, strongly  

enhancing the flux through the channel. The threshold for MCU 
activation is directly dependent on the Ca2+ affinity of MICUs’  
EF hands (which range from 300 nM to 1.3 µM), since the coop-
erative Ca2+ binding to these domains induces a conformational  
change in the MICU1–MICU2 dimer, which acts as a molecular 
switch relieving MCU inhibition57.

Despite the role for MICU2 in the regulation of MCU  
gatekeeping and activation being controversial still, an intrigu-
ing hypothesis is that it has evolved to spatially restrict the Ca2+ 
crosstalk between single inositol trisphosphate receptor (IP3R) 
and MCU channels58. Indeed, the presence of MICU2 has been  
shown to decrease the Ca2+ affinity of the MICU1 gatekeeper, 
thus elevating the threshold for MCU opening58. In the context  
of the intracellular environment, this increased threshold for 
mitochondrial Ca2+ uptake translates into the need for a shorter  
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distance between the ER Ca2+-releasing channel (IP3R) and the 
mitochondrial Ca2+ uptake channel (MCU)58.

In line with this, in the last few years, the stoichiometry of MCU 
components has emerged as a crucial feature of the modula-
tion of mitochondrial Ca2+ uptake rate. The relative proportion  
of the MICU proteins, in particular, has been demonstrated as the 
basis of the tissue-specific differences in cellular Ca2+ dynamics59. 
Indeed, the different ratio of MICU1:MCU and MICU1:MICU2 
proteins in the liver, the heart, and skeletal muscle has been cor-
related with the distinct mitochondrial Ca2+ handling of these  
three tissues59. The level of MICU1 expression, which is much  
lower in cardiac tissue (while MCU and MICU2 are present at 
similar levels) compared to liver, has been suggested to deter-
mine the lower maximal Ca2+ uptake capacity and less-steep Ca2+ 
dependence that characterise cardiac mitochondria compared to 
liver mitochondria, as electrophysiological data32 and intracellular  
Ca2+ measurements59 revealed. The low amount of MICU1 in car-
diac mitochondria is instrumental to reduce mitochondrial Ca2+ 
uptake upon cytosolic Ca2+ elevation, allowing the decoding of the 
repetitive cytosolic Ca2+ spikes of the beating heart into a graded 
increase of matrix Ca2+. This integration of frequency fluctuations 
is crucial to prevent mitochondrial Ca2+ overload, which will be 
otherwise detrimental to the cardiac myocytes. By contrast, the 
relatively high MICU1 level and its cooperative activation of  
MCU in hepatocytes ensure the punctual and massive mitochon-
drial Ca2+ increase at every single cytosolic Ca2+ spike59, which  
is functional to liver oxidative metabolism.

An additional degree of complexity came with the discov-
ery of an alternative MICU1 isoform, extremely conserved and  
expressed at the highest level in skeletal muscle, which originates 
from the alternative splicing of the MICU1 mRNA, the MICU1.1 
splice variant60 (see Figure 1). This alternative isoform was  
shown to dimerise with MICU2, showing gatekeeper activity sim-
ilar to that of MICU1, but it binds Ca2+ one order of magnitude  
more efficiently than MICU1 and activates MCU at lower [Ca2+]

i
 

than MICU160. Thus, in skeletal muscle, the MICU1.1–MICU2 
dimer ensures a much higher net Ca2+ entry and elevated ATP 
production than the MICU1–MICU2 dimer60. These results high-
light a novel mechanism of the molecular plasticity of the MCU  
Ca2+ uptake machinery that allows skeletal muscle mitochondria  
to adapt to the intense metabolic challenge that characterises this 
tissue (see Figure 2).

The essential mitochondrial Ca2+ uniporter regulator EMRE
To add further complexity to the study of MCU channel regula-
tion, other molecules have been shown to interact with MCU  
in recent years. Indeed, the quantitative mass spectrometry analysis 
of the MCU-interacting proteins revealed the presence of a criti-
cal component of the MCU complex, the essential MCU regula-
tor (EMRE) (see Figure 1), a 10 kDa single-pass transmembrane  
protein that was proposed to be necessary for MCU function by 
bridging MCU interaction with MICU1 in mammalian cells61. 
Interestingly, EMRE appears to be required for MCU channel 
activity in metazoans only, since it is not found in plants, fungi, 
or protozoa, such as Dictyostelium discoideum, although they 
express MCU proteins with functional channel activity. While 

its exact role in the MCU complex is still uncertain, EMRE was  
proposed to mediate MCU sensitivity to matrix [Ca2+]

mt
, suggest-

ing that MCU activity may be modulated by Ca2+ sensors facing 
both the IMS (MICUs) and the matrix (EMRE)62. However, this  
hypothesis was subsequently questioned by other groups, whose 
data supported an opposite topology for the EMRE protein, 
with the short N-terminus exposed to the matrix while its acidic  
C-terminus faces the IMS63,64. In this conformation, EMRE action 
would be that of supporting MCU Ca2+ transport activity by inter-
acting with the first TMH of MCU within the IMM and to interact 
also with MICU1 at the IMS via its C-terminus poly-aspartate  
tail, thus ensuring MICU1 binding to the channel and  
gatekeeping activity63.

Recently, the control of EMRE protein levels has emerged as 
a crucial aspect of MCU complex regulation. Indeed, a correct  
amount of EMRE is fundamental to guarantee the exact stoichi-
ometry of the different MCU components. Alteration of EMRE 
protein levels by ablation of the AAA-proteases responsible for its  
degradation65, or by expression of proteolytic-resistant EMRE 
constructs62, leads to uncontrolled MCU channel opening causing  
mitochondrial Ca2+ leakage and mitochondrial Ca2+ overload, 
resulting in neuronal cell death65,66. The existence of a tight con-
trol of EMRE protein levels has also been demonstrated in vivo 
in the MICU1–/– mice, where EMRE is reduced in a genetic con-
dition characterised by increased [Ca2+]

mt
 basal levels48. These  

findings clearly underline a negative regulatory mechanism that 
keeps EMRE expression in check in order to cope with changes  
in MCU activity48.

The mitochondrial Ca2+ uniporter regulator 1 MCUR1
Another protein that has been associated with the MCU 
complex67,68, despite the original proteomic analysis of the MCU 
interactors failed to recover it61, is the MCU regulator 1 (MCUR1). 
MCUR1 is a coiled-coil-containing protein encoded by the 
CCDC90A gene initially identified by a RNAi screen search-
ing for a mitochondrial membrane protein involved in MCU  
homeostasis67, whose precise function in the regulation of MCU 
activity and mitochondrial metabolism is still debated. Indeed, 
MCUR1 has been shown to be required for MCU-dependent  
Ca2+ uptake, since its knockdown dampens mitochondrial  
Ca2+ entry while its overexpression enhances it67. However, a direct 
action of MCUR1 on MCU activity was questioned by the find-
ing that its silencing leads to a significant loss of mitochondrial 
membrane potential (ΔΨ

m
), which per se can account for the  

decreased mitochondrial Ca2+ uptake69. In this context, MCUR1 has 
been suggested to act primarily as a cytochrome c oxidase (COX) 
assembly factor69, and this concept would also be supported by 
the fact that a MCUR1 orthologue is present in budding yeast70, 
which lack MCU, and is required for yeast COX activity and  
survival in non-fermentable medium69. Nevertheless, the patch 
clamp data of Ca2+ currents from voltage-clamped mitoplasts 
point to an effective role for the MCUR1 protein on MCU channel 
conductance, independently of ΔΨ

m
71. In line with this, experi-

ments in Drosophila cells, which are resistant to Ca2+-induced  
mitochondrial permeability transition (MTP)72 and in which 
no MCUR1 homologs are found, show increased sensitivity to  
Ca2+-dependent PTP opening when heterologous human MCUR1 
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is expressed, which is not accompanied by alterations in the rate 
of mitochondrial Ca2+ uptake72. Conversely, MCUR1 knockdown 
in mammalian cells renders them resistant to Ca2+ overload,  
providing protection from cell death72. This led the authors to 
conclude that MCUR1 regulates the Ca2+ threshold for the MPT 
and may act as a molecular bridge connecting the MCU channel  
to the MTP complex. Whether this hypothesis holds true still  
has to be tested.

More recently, the genetic deletion of MCUR1 in endothelial  
and cardiac tissues in vivo by mouse conditional knockout  
models68 points to an involvement of MCUR1 in the assembly  
and function of the MCU channel. In particular, MCUR1 bind-
ing to MCU and EMRE appears to be necessary for MCU  
oligomerisation and stability, since MCUR1–/– cells will display 
a significantly decreased amount of MCU-containing high- 
molecular-weight complexes and reduced rate of mitochondrial 
Ca2+ uptake68. This, as expected, impinges on cellular energet-
ics, as it is reflected by the dramatic reduction of ATP levels and 
consequent activation of the pro-survival autophagy pathway  
in cells depleted of MCUR172. Whether the pleiotropic roles 
for MCUR1 in the regulation of mitochondrial Ca2+ uptake, 
OXPHOS efficiency, and the apparent discordant phenotypes of  
MCUR1-depleted cells depend on the intrinsic transcriptional and 
metabolic differences of different cell types or on the species- 
specific features of the mitochondrial Ca2+ machinery is still  
an open question, and further investigation is needed to clarify it.

The complexity of mitochondrial Ca2+ uptake 
regulation
The regulation of the mitochondrial Ca2+ uptake machinery  
has been revealed to be far more complex than that resulting from 
just considering the cooperative actions of the different MCU  
components and their possible combinations. Indeed, the activ-
ity of the MCU channel relies on a multifaceted integration of  
regulatory mechanisms acting on both the MCU pore subu-
nits and its co-regulators. Moreover, these mechanisms have 
been shown to occur at multiple levels––transcriptional, post- 
transcriptional, and post-translational––and their systematic identi-
fication has started to be accomplished only in recent years.

In neurons, for example, MCU transcription appears to be under 
the control of activity-dependent cytosolic Ca2+ signalling through 
the involvement of calmodulin (CaM) and the activation of  
CaM-kinase (CaMK)73. It has been shown that the immediate-
early gene Npas4, a neuronal transcription factor with neuropro-
tective action against excitotoxicity74, acts directly downstream 
of the NMDAR signalling and of CaMK to modulate MCU  
transcription73. In another context, chromatin immunopre-
cipitation and promoter reporter analyses revealed that the  
Ca2+-regulated transcription factor cyclic adenosine monophos-
phate response element-binding protein (CREB) directly binds 
the MCU promoter and stimulates its transcriptional activity in 
chicken DT40 lymphocyte cells75. The CREB-mediated activ-
ity-dependent modulation of MCU expression in response to  
intracellular Ca2+ mobilisation via IP3R and store-operated  

Ca2+ entry (SOCE) has also been proven to be crucial to ensure  
a prompt metabolic flexibility and cell survival in lymphocytes75.

The existence of post-transcriptional regulation of MCU has 
been initially described in cancer76, where a strong inverse  
correlation between MCU expression level and the abundance 
of microRNA (miR)-25 has been reported in both tumour cell 
lines and colon adenocarcinoma samples76. Indeed, MCU expres-
sion is found to be upregulated in both colon and prostate cancer  
cells that show a reduced level of miR-25, and the overexpres-
sion of miR-25 in these cells downregulates MCU and increases  
cell sensitivity to apoptosis76. Similarly, in breast cancer, the  
downregulation of miR-340 is correlated with increased MCU 
expression in highly metastatic cells, while MCU targeting  
by miR-340 blocks the metabolic shift from OXPHOS to aero-
bic glycolysis that would otherwise favour cell migration and  
invasiveness77. In the context of pulmonary arterial hypertension 
(PAH), in which vascular cells are hyper-proliferative and apop-
tosis resistant, exhibiting a cancer-like phenotype, the decreased 
MCU function that underlies the key phenotypic features of PAH  
(including elevation of [Ca2+]

i
, reduction of [Ca2+]

mt
, mitochon-

drial fragmentation, and the Warburg phenomenon) has been 
ascribed to the downregulation of MCU expression by both miR-25  
and miR-13878. The overexpression of MCU or the blocking 
of the MCU-targeting miRs in PAH cells indeed restores Ca2+  
dynamics, mitochondrial metabolism, and cell proliferation to 
physiological levels78. MiR-25 has also been shown to target and 
downregulate MCU in the heart, where it is suggested to protect  
myocytes from oxidative damage by reducing [Ca2+]

mt
 levels79. 

Another two muscle-specific miRNAs (myomiR), miR-1 and 
miR-206, have been implicated in the regulation of MCU expres-
sion in muscle80, of which miR-1 plays a major role in the con-
text of cardiac development in both mice and humans. In mice,  
miR-1 upregulation is crucial during the first few postnatal weeks 
for the modulation of MCU activity in order to prevent massive 
[Ca2+]

mt
 elevation that would otherwise occur, since mitochon-

dria distribution undergoes heavy remodelling at this time point  
and organelles are placed in close contact with the SR  
Ca2+-releasing channels80.

Post-translational modifications of MCU proteins have also been 
described. Indeed, the Ca2+-dependent tyrosine kinase Pyk2 
has been shown to directly interact and phosphorylate MCU 
in cardiac cells in response to α-adrenergic stimulation81. The 
MCU phosphorylation by Pyk2 has been proposed to promote 
its oligomerisation and to enhance mitochondrial Ca2+ entry, thus  
stimulating mitochondrial metabolism and favouring cytosolic 
Ca2+ clearance in cardiac cells81. In addition, the atomic resolu-
tion data of the N-terminus of MCU (residues 72–189) allowed the  
description of the exact structure of the MCU matrix domain82. 
This domain was shown to acquire a β-grasp-like fold and to bind  
Mg2+ and Ca2+ through a MCU-regulating acidic patch (MRAP)82. 
The disruption of cation binding via mutation of the MRAP 
sequence impairs MCU oligomerisation, reduces basal [Ca2+]

mt
 

levels, and leads to significant dampening of mitochondrial 
Ca2+ uptake after agonist stimulation, highlighting the role of  
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divalent cations in the regulation of MCU activity81. This has 
been proposed as a possible feedback mechanism of MCU regu-
lation aimed at preventing excessive mitochondrial Ca2+ entry in  
conditions of elevated [Ca2+]

i
.

Finally, a wide range of chemical modifications have been reported 
to target the thiol moiety of Cys residues in many proteins,  
enabling biological switching of structure and reactivity  
oxidation83. One of these modifications, S-glutathionylation, was 
recently shown to occur in MCU protein as the result of oxidation at  
the evolutionarily conserved Cys-9784. The S-glutathionylation has 
been demonstrated to promote a MCU conformational change, 
which increases oligomerisation84. In human pulmonary microv-
ascular endothelial cells (HPMVECs), this enhances MCU activ-
ity and promotes increased mitochondrial Ca2+ entry both in basal  
conditions and upon agonist challenge, causing cellular  
bioenergetics crisis and higher sensitivity to cell death84.

Overall, the understanding of the mechanisms controlling Ca2+ 
entry in mitochondria has made a great step forward in the 
last few years, and new possibilities for effective modulation  
of MCU activity have been revealed. In this line, very recently, a 
systematic orthologous interspecies chemical screen based on the 
combination of an optimised yeast cell system and a mammalian 
mitochondria-based NCC library drug screen picked out and vali-
dated the first MCU-specific inhibitor molecule to be described: 
mitoxantrone85. Mitoxantrone has been utilised already in  
clinical practice for its antineoplastic action against non-Hodg-
kin’s lymphomas and acute myeloid leukaemia86; however, the 
anti-tumour properties of this drug appear to rely on a different  
molecular moiety with respect to its anti-MCU activity, thus 
opening up the possibility for the chemical engineering of new  
lead compounds to specifically target MCU function. This is 
of outmost relevance for the design of novel potential thera-
peutic approaches to pathologies in which mitochondrial  
Ca2+ signalling dysfunction is involved17,87,88, including those  
characterised by primary MCU dysfunction due to mutations in  
its components50,52,53.

In conclusion, despite many of the molecular mechanisms  
refining MCU activity in the cell having been described, of 
which the most relevant are presented in this review, a number of 
other possibilities for the modulation of uniporter function may  
exist (at transcriptional and post-transcriptional levels), and 
additional efforts are needed from the scientific community to  
fully unravel the complexity of mitochondrial Ca2+ uptake  
regulation.

Conclusions
In the last few years, tremendous advances have been made 
in defining the molecular identity of the mitochondrial Ca2+ 
transport machinery. Most of the components of the MCU  

complex have been identified, and several cellular and in vivo 
models have been generated that helped to define the physiologi-
cal relevance of mitochondrial Ca2+ uptake. Still, many issues 
remain obscure and need to be investigated. The entire spectrum 
of molecular mechanisms by which different cell types finely 
tune mitochondrial Ca2+ uptake appears to be related not only  
to the metabolic needs but also to the breadth of cellular activi-
ties modulated by organelle Ca2+ levels. We believe that the  
complete picture will emerge when at least three conceptual 
mechanisms are fully investigated, i.e. gene expression (the MCU 
and MICU1 isoforms show significant tissue-specific differences 
in expression), alternative splicing (as in the case of MICU1.1), 
and post-transcriptional and post-translational regulation (which, 
so far, has been only partially explored). We then need to explore  
the functional interplay between mitochondrial Ca2+ transport 
and other ion fluxes, such as Na+ and K+, for which complexity  
and partial redundancy of transport mechanisms have been 
described but molecular definition still lags behind. Unravelling 
this cross-talk will greatly enhance our insight into the regulation  
of mitochondria, these fascinating organelles with pleiotropic 
effects on a cell’s life and death.
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