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ABSTRACT

The molecular composition of blood is a signa-
ture of human health, reflected in the thousands of
blood biomarkers known for human diseases. How-
ever, establishing robust disease markers is chal-
lenging due to the diversity of individual samples.
New sequencing methods have simplified biomarker
discovery for circulating DNA and RNA while pro-
tein profiling is still laborious and costly. To har-
ness the power of high-throughput sequencing to
profile the protein content of a biological sample,
we developed a method termed APTASHAPE that
uses oligonucleotide aptamers to recognize pro-
teins in complex biofluids. We selected a large
pool of 2′Fluoro protected RNA sequences to rec-
ognize proteins in human plasma and identified a
set of 33 cancer-specific aptamers. Differential en-
richment of these aptamers after selection against
1 �l of plasma from individual patients allowed us
to differentiate between healthy controls and blad-
der cancer-diagnosed patients (91% accuracy) and
between early non-invasive tumors and late stage tu-
mors (83% accuracy). Affinity purification and mass
spectrometry of proteins bound to the predictive ap-
tamers showed the main target proteins to be C4b-
binding protein, Complement C3, Fibrinogen, Com-
plement factor H and IgG. The APTASHAPE method
thus provides a general, automated and highly sen-
sitive platform for discovering potential new disease
biomarkers.

INTRODUCTION

The physiology, life-style and health state of an individual
are reflected in the composition of the blood, as illustrated
by the numerous disease biomarkers reported in plasma.
In particular, the profiling of genetic material (RNA and
DNA) has advanced rapidly in recent years due to the ad-
vent of next generation sequencing (NGS), which has led to
the discovery of a wide range of circulating RNA and DNA
biomarkers with strong predictive values for diseases such
as cancer (1,2). Also, many protein biomarkers have been
identified in blood using mass spectrometry but despite its
high sensitivity, this approach has much lower throughput
and remains relatively costly (3).

In this study, we developed a novel RNA aptamer-based
strategy termed APTASHAPE that allows high throughput
profiling of global protein composition in any biofluid us-
ing NGS as a read-out. The method utilizes the capacity
of chemically modified, serum-stable RNA oligonucleotides
to form sequence-dependent functional shapes (RNA ap-
tamers) that can specifically interact with protein epitopes
(4). The RNA oligonucleotides are made serum-stable by
the introduction of a 2′-Fluoro (2′F) modification on the
ribose sugar of the pyrimidines. This modification protects
the RNA from autohydrolysis and degradation by RNases
(5,6) The aptamers are selected from very large (1015) ran-
domized 2′F-pyrimidine-modified RNA libraries by itera-
tive selection for binding to all components in plasma by
systematic evolution of ligands by exponential enrichment
(SELEX; (7,8)). Previous studies have shown that specific
pools of aptamers can be generated for complex targets such
as exosomes (9), cells (10) and tissue samples (11), but selec-
tions have traditionally been conducted to an extent where
the final pool of sequences shows very little diversity.

Implementation of deep NGS methods to analyze ap-
tamer sequences has enabled much more comprehensive
analysis of highly diverse aptamer pools. We have previously
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demonstrated that highly diverse RNA aptamer libraries,
selected towards a single protein, can be used to map single
amino acid substitutions and interaction sites for binding
partners (12). In the present study, we have taken a similar
approach but directed the selection towards the full com-
plexity of human plasma, constituting a mixture of >10 000
proteins (13).

As a proof of concept, we tested the APTASHAPE
method on plasma samples from bladder cancer patients.
The 5-year survival rate for bladder cancer patients depends
on the stage of diagnosis: 95% for non-muscle invasive
(Ta) bladder cancer, declining to 69% for muscle invasive
(T2–T4) and to 5% if distant metastasis is diagnosed
(https://www.cancer.org/research/cancer-facts-statistics/
all-cancer-facts-figures/cancer-facts-figures-2019.html,
https://www.cancer.net/cancer-types/bladder-cancer/
statistics) Hence, a key to successful treatment is accu-
rate cancer staging and associated optimal treatment
but to date, only three FDA-approved tests for blad-
der cancer are available for biofluids and none of them
are currently recommended for diagnosis, partly due to
the poor sensitivity for low grade tumors (16%-47%)
(https://www.cancer.org/research/cancer-facts-statistics/
all-cancer-facts-figures/cancer-facts-figures-2019.html,
https://www.cancer.net/cancer-types/bladder-cancer/
statistics). This means that non-invasive methods for the
accurate detection of bladder cancer development are
currently lacking.

Here, we demonstrate that the 1000 most abundant ap-
tamers obtained from an APTASHAPE training set can dis-
tinguish Ta and T2–T4-stage bladder cancer patients from
individuals without diagnosed bladder cancer with >90%
accuracy. Among these 1000, the 33 aptamers with the
highest capacity to distinguish patients with bladder cancer
from controls, or early stage cancer from late stage cancer,
were produced as individual clones and used to pull down
their cognate target proteins. Mass spectrometry analysis
identified a number of previously identified bladder can-
cer biomarkers, highlighting the potential of the method to
identify bladder cancer patients based on plasma samples.

MATERIALS AND METHODS

Patient sampless

Plasma samples were collected at Aarhus University Hospi-
tal, Skejby between 2008 and 2013. Samples were obtained
from patients diagnosed with bladder cancer, median age 69
or from a control group from patients without cancer in the
bladder or urinary tract. Samples from both groups were
age-matched.

The data consists of two cohorts. A training cohort with
plasma from 32 control individuals, 32 patients diagnosed
with Ta bladder tumors and 32 patients diagnosed with T2–
T4 cancer and a validation cohort of eight patients with
bladder tumor stage Ta, four with bladder cancer stage T2–
T4, and 10 control samples, which were a subset of the sam-
ples used in the training set. For all sets of samples, the pa-
tients were age-matched and the samples were collected at
the same facilities. Informed written consent to take part in
future research projects was obtained from all patients, and

the specific project was approved by the National Commit-
tee on Health Research Ethics (#1706291 and #1708266).

Collection of blood

10 mL EDTA blood (Vacutainer with K2EDTA) was drawn
from the patient. The container was inverted 8–10 times to
mix blood with the anticoagulant. The mixture was cen-
trifuged 10 min at 3000 g at room temperature and the
plasma supernatant was pipetted into 4.5 ml TPP cryotubes
(TPP Techno Plastic Products AG). Tubes with plasma
samples were frozen and stored immediately at –80◦C.

SELEX protocol

The 2′F-pyrimidine-modified RNA pool was prepared as
described previously (4) with minor modifications. Briefly,
dsDNA was prepared by primer annealing and Klenow
DNA extension (Thermo Fisher Scientific) using the
oligonucleotides 5′-CGCGGATCCTAATACGACTCA
CTATAGGGGCCACCAACGACATT-3′ (forward oligo)
and 5′-GATCCATGGGCACTATTTATATCAAC-N36
-AATGTCGTTGGTGGCCC-3′ (pool oligo) obtained
from Integrated DNA Technologies. dsDNA was purified
by 6% non-denaturing PAGE (National Diagnostics) and
transcribed in a reaction containing 80 mM HEPES (pH
7.5), 30 mM DTT, 25 mM MgCl2, 2 mM spermidine–HCl,
2.5 mM of ATP and GTP (Thermo Fisher Scientific), 2.5
mM of 2′F-dCTP and 2′F-dUTP (MetkinenChemistry),
100 �g/ml BSA Thermo Fisher Scientific), 0.5 �M dsDNA
template and 150 �g/ml mutant T7 RNA polymerase
Y639F. The dsDNA was then digested by DNA poly-
merase I (Thermo Fisher Scientific) and the 2′F-pyrimidine
RNA pool purified by denaturing urea–PAGE.

To select aptamer pools for plasma proteins, 1 �l of
EDTA-plasma was conjugated to 1 mg of NHS-activated
magnetic beads (Thermo Fisher Scientific) overnight in
HBS (20 mM HEPES pH 7.4, 140 mM NaCl) at 4◦C.
Plasma derived from patients diagnosed with T2–T4 stage
bladder cancer was applied for positive selection. For
counter-selection, magnetic beads were prepared with
plasma protein material obtained from bladder cancer neg-
ative patients. Beads were washed using SELEX wash buffer
(SWB; HBS including 2 mM MgCl2, 2 mM CaCl2, 5
mM KCl and 0.01% Tween20) and remaining reactive sites
blocked with SWB supplemented with 0.1% BSA for 1 h.
For the first round of selection, the 2′F-pyrimidine-modified
RNA pool (5 copies of 1015 different sequences or 8.5 nmol)
was refolded by heating to 95◦C for 2 min and cooling
on ice and counter-selection performed for 1 hour using
SELEX buffer (SB; SWB supplemented with 100 ug/ml
tRNA and 0.1% BSA). The supernatant from the counter-
selection was subsequently transferred to positive selection
magnetic beads and binding allowed for 1 hour (selection).
Beads were then washed 3 times with SWB and Super-
script III reverse transcription (Thermo Fisher Scientific)
performed directly on the washed beads using the reverse
oligo 5-CCCGACACCCGCGGATCCATGGGCACTAT
TTATATCAA-3′ (IDT). cDNA was converted to dsDNA
using the Thermo Scientific Phusion High-Fidelity DNA
Polymerase PCR system with forward and reverse oligos,

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
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and the optimal number of PCR cycles determined from a
small-scale reaction prior to the full-scale reaction to reduce
PCR bias. dsDNA was then digested by BamHI (Thermo
Fisher Scientific), purified by the GeneJet PCR purification
Kit (Thermo Fisher Scientific), and transcribed to produce
RNA for the following round of selection. For subsequent
rounds of selection, 200 pmol of RNA pool was applied.

The RNA pools after four rounds of selection were used
for branched selection (i.e. one round of parallel selection
for each patient sample). The branched selections were per-
formed as described for the aptamer pool selections, how-
ever without a counter selection step. For each PCR sam-
ple, forward and reverse oligos containing specific barcode
sequences were used to allow sample multiplexing dur-
ing next-generation sequencing. Barcoded PCR samples
were submitted to the Beijing Genomics Institute (BGI) for
PCR-free pool preparation and one-lane 2 × 100 (Paired
End) Illumina HiSeq 4000 sequencing. Reads were subse-
quently subjected to demultiplexing, pair-mate joining, de-
replication and clustering as described previously (12) pro-
ducing a table of the sequences and the number of times
each sequence was observed. Only sequences observed at
least 4 times were included. Sequence copy numbers were
divided by the total read number for each sample to esti-
mate sequence frequency as the fraction of pool in percent
allowing comparison of values across samples.

Aptamer discovery Scripts

A linear regression model was built for the training set
using unweighted models and with no confounding fac-
tors using the function lm from base R (14). The P-values
were adjusted using the Benjamini–Hochberg method, us-
ing the p.adjust function from base R (14), a false discov-
ery rate of 0.01% and a 0.5 change in regression coeffi-
cient between healthy and cancer samples and a 0.25 regres-
sion coefficient increase or decrease was used between the
early and late stage cancer samples. The aptamers found to
be significant were drawn in a variable clustered heatmap
using the pheatmap (15) package. PCA analysis was per-
formed using the prcomp function from base R (14) and
visualized using the ggplot2 package (16). The datawran-
gling was performed using the ReShape (17), Summarized-
Experiment (18), and TidyVerse (19) packages. Calcula-
tion of Damerau–Levenshtein distance, used for merging
sequences stemming from single nucleotide differences, was
done with the vwr (20) package. Experimental scripts are
available upon request, all analyses were written and run us-
ing RStudio ServerVersion 1.3.1073 (21) in R version 4.0.2

Protein pull-down and SDS-PAGE analysis

Biotinylation of aptamers was performed by 3′-end ribose
oxidation using sodium-metaperiodate followed by reaction
with EZ-link Biotin-LC-Hydrazide using the standard pro-
tocol of the provider (Thermo Fisher Scientific). 400 pmol
of biotinylated aptamer was captured on 100 �l of strep-
tavidin magnetic beads (Thermo Fisher Scientific) in HBS
buffer for 30 min. Beads were washed 3 times with 500 �l
SWB and incubated with SB buffer supplemented with 10%
plasma sample for 30 minutes. Beads were then washed 3

times with 500 �l SWB and protein material eluted with
HBS 50 mM EDTA. Eluates were analyzed by SDS-PAGE
using NuPAGE 4–12% Bis–Tris Gels (Thermo Scientific).

Mass spectrometry

Mass spectrometry-based protein identification. Bands of
interest were excised from Coomassie blue stained SDS-
PAGE gels, cut in small cubes, and washed in water. The gel
pieces were then incubated in acetonitrile and rehydrated
in 0.1 M ammonium bicarbonate. Finally, the gel pieces
were swelled in 50 mM ammonium bicarbonate contain-
ing 25 mg/ml trypsin before ammonium bicarbonate was
added to cover the pieces. The samples were digested for
approximately 16 h at 37◦C. Following digestion, the tryptic
peptides were purified on C18 stage tips. LC–MS was per-
formed using online reverse-phase separation of peptides
over a 15 cm column packed in-house with Reprosil-Pur 120
C18-AQ 3 �M resin (Dr. Maisch GmbH) on an EASY-nLC
1200 (Thermo Fisher Scientific) and an Orbitrap Eclipse
Tribrid mass spectrometer (Thermo Fisher Scientific) run-
ning in data-dependent acquisition mode. For protein iden-
tification MS files were converted to the generic Mascot for-
mat (MGF) using Raw converter (version 1.1.0.18, Scripps
Research Institute) (22), and the generated peak lists were
searched against the human Swiss-Prot database (23) using
the Mascot search engine (Matrix Science) and the follow-
ing search parameters: MS tolerance of 10 ppm, MS/MS
tolerance of 0.1 Da, trypsin digestion with one missed cleav-
ages, carbamidomethyl as a fixed modification, and oxi-
dized methionine as a variable modification. The main pro-
teins bound were defined as the most abundant protein frag-
ments identified in the MS. With a score of at least 500 and
at least twice the score of the highest score of keratin. Ker-
atin is known as a common contaminant, and it was there-
fore used as the baseline for measurement.

RESULTS

APTASHAPE panel training

The workflow in APTASHAPE is illustrated in Figure 1.
A pool of 1015 2′F-pyrimidine-modified RNAs containing
a randomized region of 36 nucleotides was generated as a
starting pool. The RNA molecules were incubated with to-
tal human plasma protein immobilized on magnetic beads
and RNA aptamers with protein binding affinity were se-
lected in an unbiased manner by performing four SELEX
rounds (referred to as panel training; Figure 1A). For the
panel training, plasma proteins pooled from five randomly
selected patients diagnosed with bladder cancer stage T2–
T4 (muscle-invasive) were used as bait. A negative selection
step against plasma from control individuals was included
in each SELEX round to enhance the representation of ap-
tamers binding target proteins upregulated in plasma from
cancer patients. The aptamer pools, enriched for binding to
plasma protein from cancer patients, were sequenced after
four and five rounds of panel training to evaluate the diver-
sity of the RNA pool. In the RNA pool generated in round
4 (R4) the most abundant aptamers constitute about 10%
of the sequences and >90% of aptamers represent individu-
ally <1% of the pool (Supplementary Figure S1). This pool
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Figure 1. Workflow for APTASHAPE analysis. (A) A randomized RNA library is subjected to SELEX on the sample type of interest (referred to as panel
training). RNA aptamers binding to plasma from control individuals are depleted from the library pool (negative selection). The remaining aptamers are
exposed to a mixture of plasma from bladder cancer patients (positive selection) and actively binding aptamers are reverse transcribed, PCR-amplified,
and transcribed back into RNA. This process is repeated four times to create a panel of aptamers enriched for their ability to bind biomolecules in the
plasma of bladder cancer patients. (B) The trained panel of aptamers is used for selection against plasma from either control individuals (C, green), Ta
stage- (purple) or T2–T4 cancer (orange) patients. Each sample type will produce a unique pattern of aptamer abundance, reflecting the composition of
the sample.

was chosen as input for subsequent selection on individual
patient samples.

Applying APTASHAPE to plasma from bladder cancer pa-
tients

The R4 aptamer pool was subjected to one additional round
of selection against plasma-derived proteins from individ-
ual bladder cancer patients (‘branched selection’; Figure
1B), hypothesizing that distinct shifts in the ratio of in-
dividual aptamer sequences between samples reflect alter-
ations in the relative concentration of the proteins bound by
that aptamer. A total of 96 plasma samples from a cohort
comprising 32 controls without bladder cancer (C), 32 pa-
tients with bladder cancer stage Ta (non-muscle-invasive),
and 32 patients with bladder cancer stage T2–T4 were in-
cluded in the first study. The aptamer composition after
each branched selection was determined by Illumina se-
quencing (generating an average of 3.5 million sequences
per sample) and we focused on aptamers that change in rela-
tive abundance across the branched selection for individual
patient samples. This led to recognition of 31 327 unique ap-
tamers across all 96 samples tested. At the sequencing depth
used, ∼4000 aptamers were detected in all samples at least 4
times (Supplementary Figure S2). Near identical sequences
presumably originate from the same ancestor sequence and
likely recognize the same protein. To reduce the data set,
we then clustered the homologous sequences (Levenshtein–
Damerau distance < 4), thereby reducing the number of ap-
tamers to 13 258. To further reduce the burden of multiple
hypothesis testing correction we continued our analysis for
descriptive aptamers by selecting the 1000 most abundant
sequences (averaged over all samples).

The counts and nucleotide sequence of the aptamers used
for training and validation can be found in Supplementary
Tables S2 and S3, respectively.

Identifying aptamers descriptive of cancer and tumor progres-
sion stages

For each of the 96 plasma samples analyzed, the abundance
of the 1000 sequences was normalized to percent of total
reads to enable comparison of aptamer levels between sam-
ples. Furthermore, aptamer levels were divided by the mean
across all 96 samples to compare the degree of variation be-
tween individual aptamers. Next, Ordinary Least Squares
regression analysis was applied to determine the ability of
individual aptamers to distinguish plasma samples from pa-
tients with Ta and T2–T4 stage cancer from C using plasma
samples from control patients as baseline. For identifica-
tion of aptamers capable of discriminating between patients
with Ta and T2–T4 tumors, Ta samples were used as base-
line. P-values were calculated according to a Student’s T-
distribution using the Benjamini–Hochberg procedure for
multiple testing correction. The average difference in ap-
tamer level between sample types (C, Ta and T2–T4) as well
as the P-values for each of the 1000 sequences were evalu-
ated using volcano plots (Figure 2). Aptamers capable of
differentiating between cancer stages were defined based on
two criteria. They must 1: exhibit a significant shift in abun-
dance ratio when comparing patient groups (>0.5 change
in regression coefficient between Ta or T2–T4 samples and
C, or >0.25 between Ta and T2–T4 samples), 2: have a
Benjamini–Hochberg adjusted P-value <0.01.

According to these criteria, a total of 33 aptamers were
deemed discriminatory of the disease conditions when ana-
lyzing plasma samples (Table 1). The aptamers were desig-
nated as depleted or increased in one type of samples rela-
tive to another based on the change in the regression coeffi-
cients. Exact values are shown in Supplementary Table S1.
Fourteen aptamers were depleted in branched selections for
plasma samples from patients diagnosed with bladder can-
cer versus C individuals, while one was specifically depleted
in plasma from T2–T4 patients compared to C individuals
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Figure 2. Volcano plots of P-values and fold changes in Ordinary Least Squares analysis of training set. The 1000 most abundant aptamers in the R4 pool,
across all 96 branched selections, were tested for statistical significance when using OLS for each aptamer. A change in regression coefficient of 0.5 (for C
(control) versus Ta (early stage cancer) or T2–T4 (late stage cancer)) or 0.25 (for Ta versus T2–T4) and a Benjamini–Hochberg adjusted P-value of 0.01
were defined as significant for all comparisons. (A) Comparison between T2–T4 and C showed 14 aptamer sequences to be significantly downregulated
in T2–T4 samples. (B) Comparison between Ta and C showed 15 aptamer sequences to be significantly downregulated for Ta versus C; 14 of these are
likewise specific for T2–T4 versus C. (C) Comparison between Ta and T2–T4 showed 18 aptamer sequences to be significantly different in abundance in
Ta samples versus T2–T4. (D) Summary of the specificity of the descriptive aptamers.

(Figure 2A, B). The remaining 18 aptamers were all signifi-
cantly different in abundance when analyzing plasma from
Ta patients versus T2–T4 patients (Figure 2C). Of these,
three were on average more abundant in branched selections
on plasma from Ta patients than in T2–T4, while 15 ex-
hibited higher average abundance in branched selections on
plasma from T2–T4 patients than in Ta. These numbers are
likewise summarized in Figure 2D. A search for common se-
quence motifs in the 33 aptamers revealed that 24 of them
constitute nine families (named A–I) exhibiting distinct se-
quence motifs (Table 1), suggesting that each aptamer fam-
ily may bind similar protein targets. The remaining nine ap-
tamers did not exhibit any common extended sequence mo-
tifs.

Validation of descriptive aptamers on a second patient cohort

To validate the ability of the 33 aptamers to differentiate be-
tween plasma samples from patients with various stages of
bladder cancer and controls, we performed branched selec-
tion on plasma samples from an independent bladder can-
cer cohort containing eight Ta, four T2–T4, and 10 Cs using
the same R4 aptamer pool as input. The aptamer compo-
sition after branched selection was determined by Illumina

sequencing as described above, yielding an average of 4.4
million reads per plasma sample. We found all 33 discrim-
inatory aptamers from the 1st cohort to be present in the
branched selections for the second validation cohort sam-
ples and performed an unsupervised hierarchical clustering
of the samples based on changes in aptamer ratios (Figure
3). The heatmap shows that the 33 discriminatory aptamers
have a similar pattern of differential enrichment and deple-
tion in the validation cohort as compared to 1st cohort. The
descriptive aptamers fall into the same two groups as for the
first patient cohort: 15 aptamers could discriminate between
plasma from cancer patients (Ta + T2–T4) and controls
(with two individuals possibly miscategorized) and 18 ap-
tamers could distinguish between plasma from Ta and T2–
T4 patients, the behavior of each aptamer in the heatmap
was consistent with the predicted behavior from the OLS
(Table 1). The ability of the 33 discriminatory aptamers to
distinguish between high and low cancer stage in the sec-
ond cohort was further investigated by principal compo-
nent analysis (PCA; Figure 4). In Figure 4A, all 2nd co-
hort samples were plotted according to the levels of the 15
sequences descriptive of Ta or T2–T4 versus controls. This
showed that cancer status of the patient is the factor that
best explains the variation in the data set (PC1, 94% varia-
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Table 1. Descriptive aptamers identified using APTASHAPE

Sequence composition and enriched motifs for the 33 descriptive aptamers grouped by sequence similarity. The main proteins detected by mass spectrometry
in the aptamer pull-down are noted in the third column. ND indicates that no significant protein was found. Aptamers that were not used for pull-down
experiments are denoted ‘no MS’. The relative abundance relative to the C (Control) or Ta (early stage cancer) stages is noted in the fourth and fifth column,
respectively, based on the analysis shown in Figure 2. Raw regression coefficients and P-values are shown in Supplementary Table S1.
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Figure 3. The descriptive aptamers separate disease stage in validation samples. The 33 discriminatory aptamers identified in the first selection round
retain discriminatory power in a second patient cohort. The data shows the relative abundance for each aptamer compared to the mean across all samples.
Columns were hierarchically clustered based on the binding profiles using complete linkage. Rows were arranged according to the sequence families shown
in Table 1. Red color in the heatmap shows high relative abundance, white shows average relative abundance and blue shows low relative abundance.

tion explained) when comparing plasma samples from con-
trols and cancer patients.

We performed a separate principal component analysis
for the Ta and T2–T4 plasma samples from the 2nd cohort
using the 18 aptamers descriptive of cancer stage and saw a
clear but less pronounced clustering of the samples (Figure
4B). The control samples were separated from the cancer
samples on principal component 1 (78% variation), while
the Ta and T2–T4 samples were separated on principal com-
ponent 2 (10% variation). This shows that the main varia-
tion described by the cancer stage-descriptive aptamers in
the second cohort is between sample types. In Figure 4C, all
second cohort samples were plotted according to the levels
of the 33 discriminatory aptamers. This showed that can-
cer status (disease versus control) aligns well with the ma-
jor contributor to data variation for this sequence data set
(PC1, 78% variation explained) and that cancer stage aligns
with the second largest contributor to data variation (PC2,
12% variation explained). Based on the coordinates in Fig-
ure 4C it is possible to arrange the samples into groups.
Healthy and cancer status is determined by the first compo-
nent, with a positive coordinate indicating cancer and a neg-
ative coordinate indicating that the plasma sample is from a
control. Using this, we calculated the accuracy of differen-
tiating control vs cancer samples to be 91%. For the same
dataset, the early and late stage cancers can be separated
on the second component, with the late stage showing posi-
tive coordinates and the early stage having negative coordi-
nates. Using this, we calculated the accuracy for early stage
versus late stage to be 83%. We conclude that the descrip-
tive power of the aptamers identified using the first patient
cohort could be validated in a second patient cohort.

Identification of proteins bound by the discriminatory ap-
tamers

We hypothesized that the differential abundance of ap-
tamers after branched selection mirrors the differential ex-
pression or modification of target proteins in the patient
plasma samples, and that the aptamers provide a means to
affinity-purify these proteins. To identify the protein targets,
26 of the 33 cancer-discriminatory aptamer were generated
individually by in vitro transcription, tagged with biotin for
capture onto streptavidin magnetic beads and incubated
with plasma. After extensive washing, the aptamer-bound
proteins were analyzed by SDS-PAGE and the most promi-
nent bands were excised and subjected to mass spectrom-
etry (Supplementary Figure S3A–I). Similarities in pro-
tein patterns between aptamer pull-downs on the SDS-
PAGE gels suggested that some of the discriminatory ap-
tamers may bind the same protein; this was particularly fre-
quent for aptamers that share common sequence motifs.
Notably, most of the aptamers pulled down a mixture of
proteins, which suggests that the proteins recognized by the
aptamers are part of larger complexes. As a control, we in-
cluded a pull-down using empty beads (Supplementary Fig-
ure S3I). The protein bands appearing in this sample were
disregarded across all aptamer pull-downs, as they likely
reflect non-specific binding to highly abundant plasma
proteins.

Mass spectrometry (MS) analysis of the excised bands
was used to identify the proteins bound by each aptamer
(Table 1). The target proteins bound by the aptamers were
defined as the most abundant protein fragments in the MS
with a score of at least 500 and at least twice the score
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Figure 4. PCA plots of validation samples using discriminatory aptamers. Principal component analysis of the validation samples using the aptamers
found to be discriminatory for either cancer stage vs control (A) or Ta versus T2–T4 (B). (C) Combined PCA with the discriminatory aptamers from (A)
and (B). Here, the first component mainly separates the C samples from the cancer samples and the second component mainly separates the Ta stage from
the T2–T4 samples.

of the highest score of keratin, a common contaminant in
MS data derived from plasma samples. The 26 aptamers
tested bound five main proteins: Complement C3, Fibrino-
gen (FBG), C4b-binding protein (C4BP), Complement fac-
tor H (CFH) and Immunoglobulin gamma (IgG). In addi-
tion to these main proteins, several other proteins including
Protein S (PROS1), Apolipoprotein E (APOE) and Hap-
toglobin (HP) were found associated with the aptamers. Al-
bumin (ALB) was present in most pull-downs, including the
negative control with no aptamers, and therefore reflects
non-specific binding (Supplementary Figure S3I, lane NA).
As expected, aptamers within the same family (based on
shared sequence motifs) were found to bind the same pro-
tein (Table 1), supporting the observation from SDS-PAGE
that several aptamers with closely related sequence motifs
share the target protein.

DISCUSSION

Currently, there is an unmet need for high throughput tech-
nologies to screen the protein content in biological sam-
ples. We have developed an RNA aptamer-based protein
profiling tool, APTASHAPE, for patient sample analysis
and potential biomarker discovery. We demonstrate that

dynamic changes in the aptamer pools after branched se-
lection on plasma from bladder cancer patients can be
used to discriminate between samples from cancer patients
and healthy individuals, and it can be used to discrim-
inate between cancer stages. Presumably, the changes in
aptamer profiles seen among the branched selections re-
flect differences in the global proteome of the plasma sam-
ples (e.g. protein concentration, post-translational modi-
fications or formation of larger complexes). Differential
selection of aptamers to biological samples has been re-
ported before. Domenyuk et al. showed that DNA ap-
tamer pools generated by tissue-SELEX on formalin-fixed
paraffin-embedded (FFPE) tumor samples could distin-
guish trastuzumab-responding breast cancer patients from
non-responders in combination with chemotherapy (24). In
another study, aptamer panels raised against exosomes al-
lowed stratification of samples from healthy, breast can-
cer biopsy-negative, and -positive women (9). Also, a pilot
study performed on blood serum from 16 mice (10 trans-
genic mice that mimic Alzheimer’s disease, 6 healthy mice)
reported that a combination of DNA aptamers could dis-
tinguish between the different types of mice; however this
was not validated in an independent cohort and no targets
were identified (25).
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In the present study, plasma samples from two cohorts
of bladder cancer patients and controls were profiled using
chemically modified RNA aptamers, one for developing a
set of diagnostic aptamers and one for validating the pre-
dictive power of these aptamers on a second set of samples.
This cross-validation confirmed the robustness of the AP-
TASHAPE method and enabled us to provide a set of spe-
cific aptamers that can distinguish between plasma samples
from bladder cancer patients and controls with high level of
confidence and even, with a significant level of accuracy, dis-
criminate between non-invasive and invasive bladder cancer
stages. Importantly, APTASHAPE enables discrimination
of the disease status independently of target identification.
However, to better understand the basis for the Aptashape
result, an MS analysis was performed and it showed that
the discriminatory aptamers bind at least five different main
proteins, several of which are factors in the complement sys-
tem.

The protein bound by the highest number of discrimina-
tive aptamers (ten) is Complement factor C3 (C3), a cen-
tral factor in both the classical and alternative complement
system (26). Upon activation, C3 is cleaved and deposited
on pathogenic cells (27), which means that an active infec-
tion or pathogenic condition is expected to reduce C3 lev-
els in the blood as shown for bladder cancer patients (28).
In agreement with this, we found that all C3-binding ap-
tamers had a higher relative abundance in control samples
than cancer samples. The SDS-PAGE for pull-downs using
C3 binding aptamers showed lower molecular weight bands,
which may be C3 cleavage products. In addition, the MS
data for several of the C3-binding aptamers also revealed
the presence of Complement factor H, a known inhibitor
of C3 activation (Supplementary Figure S3; see below).

Fibrinogen was recognized by the second-highest num-
ber of aptamers (six). Fibrinogen is an important part of
the coagulation system (29) but it is also involved in inflam-
mation and apoptosis (30) and a previous study showed that
increased fibrinogen levels in blood correlated with a poor
prognosis in bladder cancer (31). Consistent with this, the
fibrinogen-binding aptamers were all enriched in branched
selections of plasma from late-stage cancer patients.

C4b-binding protein (C4BP) is recognized by three ap-
tamers. It is a large multimer component of the complement
system that binds activated C4b and promotes its degrada-
tion (32). C4BP is known to bind Protein S (PROS1), which
may help to localize complement regulatory activity to cer-
tain cells (33). Three C4BP-binding aptamers also pulled
down Protein S and these aptamers showed increased abun-
dance in branched selections from late-stage bladder can-
cer patients. This observation agrees with previous reports
that C4BP levels are elevated in some cancers (34,35) and
that Protein S is related to poor prognosis in bladder can-
cer (36, https://www.proteinatlas.org/ENSG00000184500-
PROS1/pathology/urothelial+cancer).

Immunoglobulin gamma (IgG) accounts for 10–20% of
plasma proteins and is an important part of the humoral
immune response. Multiple subtypes of IgG are found in
the body with differing specificities and functions (37). IgG
is recognized by three discriminatory aptamers, which all
show increased rates in plasma from Ta patients compared
to T2–T4 patients. It has been shown in the literature that

tumor tissue in bladder cancer patients expresses IgGs,
which are distinct from normal B-cell derived IgGs (38) but
the MS data obtained did not enable us to determine which
type of IgG these aptamers bind.

A single aptamer bound Complement factor H (CH) as
the main protein. CH is another complement component,
known to bind C3 and inhibit its activation (26,27). We
found CH to be present in small amounts in most of the
pull-downs for C3-binding aptamers, consistent with C3–
CH complex formation for a subpopulation of the aptamer-
bound C3. Interestingly, the major CH binding aptamer
(L1) lacks the C3 band (lane L1 in Supplementary Fig-
ure S3G), suggesting that it preferentially binds the CH
monomer. The CH monomer-specific aptamer is enriched
in T2–T4 samples, in contrast to the C3-binding aptamers
that have a higher relative abundance in the control sam-
ples. This opposite behavior of aptamers binding C3–CH
and CH only is consistent with a report that found higher
levels of complement factor H in urine of bladder cancer
patients (38).

Altogether, five main proteins identified by MS have pre-
viously been found to show altered expression in bladder
cancer, supporting the ability of APTASHAPE to iden-
tify proteins with a putative biomarker function. Notably,
even large complexes such as C4BP-Protein S were identi-
fied by MS of affinity-purified proteins, underlining the abil-
ity of APTASHAPE to target naturally occurring protein
complexes rather than individual proteins. We previously
showed that aptamers are able to distinguish between differ-
ent post-translationally modified forms of a single protein
(12), and it is likely that some of the changes in aptamer
composition observed here reflect the presence of multiple
protein isoforms. It remains to be studied how much these
variables influence our APTASHAPE results.

Although the signals obtained from mass spectrometry
and APTASHAPE both are affected by the abundance of
particular biomarker proteins there are also fundamental
differences in their mechanism of surveillance. Where mass
spectrometry directly measures the abundance of the pro-
teins (or peptides) the APTASHAPE readout is reflecting
the exposure or disappearance of epitopes as a result of con-
formational changes and complex formation in plasma pro-
tein.

Using aptamer-based pull-downs for validation of po-
tential biomarkers by mass spectrometry strongly reduces
background noise compared to mass spectrometry of
plasma samples from different patients. Considering the
thousands of proteins present in plasma, we see only a few
cases of unspecific protein binding, i.e. proteins pulled down
irrespective of the aptamer used, in the aptamer pull-downs
(Supplementary Figure S3). Applying mass spectrometry
analysis of the affinity purified samples will lower patient-
to-patient variation as well as the burden of multiple hy-
pothesis testing is reduced, enabling more significant pre-
dictions. The disadvantage of aptamer-based biomarkers is
that only proteins that are recognized by a specific aptamer
in the selected pools contribute to the prediction algorithm.
For computational reasons, only the 1000 most abundant
aptamer sequences from the branched selections were used
in our analysis. This may explain why the main protein tar-
gets found were relatively abundant blood proteins, includ-

https://www.proteinatlas.org/ENSG00000184500-PROS1/pathology/urothelial+cancer
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ing C3, which was bound by 13 individual aptamers. Of
these, 10 aptamers belong to four different sequence fam-
ilies while three represent unique sequences. Previous stud-
ies of aptamers targeting complex mixtures also showed
that a few specific aptamers often dominate the selection
(39–41). Detection of more lowly concentrated proteins
may require a deeper sequencing of the branched selection
samples.

In our selection, the target protein with the lowest re-
ported concentration in blood (CH, 3 �M) (42) is only rec-
ognized by a single aptamer. Increasing the number of ap-
tamers included in the training of the computational model
would most likely allow us to detect less abundant tar-
get proteins. However, the decrease in signal to noise ratio
due to Poisson noise poses a challenge for analyzing low-
abundant aptamers. This can be solved either by actively
depleting the most abundant sequences from the pool at
an experimental level, or by increasing the total amount
of reads from the sequencing to cover rare aptamers with
more reads. It is also possible that the aptamers for which
no targets could be identified recognize proteins that are
not sufficiently abundant in plasma to be detectable by
MS.

In this study, the SELEX procedure is performed us-
ing untreated human plasma, unlike previous studies that
used purified exosomes (9) or tissue slices (11). Only 1 �l
of plasma is sufficient for running a branched selection,
which complies with minimal invasiveness for the patient
and which opens the possibility to develop bedside diag-
nostic assays with a pool of defined aptamers. In addition,
the low production costs and stability during storage make
aptamers prime candidates for non-invasive point-of-care
detection. Although the work here was done using plasma,
which requires an additional processing step before point-
of-care detection compared to whole blood, APTASHAPE
may be expanded to work on other unprocessed biofluids,
such as blood or spinal fluid, as long as the library training
is performed on the same biofluid. As opposed to aptamers
selected to purified targets under non-physiological condi-
tions, the individual aptamers selected by APTASHAPE
function optimally in biofluids and can therefore be appli-
cable to other types of detection devices and eventually as
drug candidate. The APTASHAPE aptamers are also likely
to work well in combination as they were originally selected
under combinatorial conditions.

We conclude that APTASHAPE can differentiate plasma
samples from bladder cancer patients and healthy controls
with high level of accuracy and even, to some extent, dis-
tinguish between cancer stages. Finally, APTASHAPE pro-
vides a discovery tool for potential biomarker proteins in
plasma that may represent targets for future therapy.
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